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Uncertainty Quantification in System-level Prognostics: Application to

Tennessee Eastman Process

Ferhat Tamssaouet1, TP Khanh Nguyen1, Kamal Medjaher1 and Marcos E. Orchard2

Abstract— This paper addresses the problem of uncertainty
quantification in system-level prognostics. To this purpose, a
three-step methodology, based on the inoperability input-output
model, is presented. The first step concerns the estimation
of the system inoperability, using a new adapted particle
filtering method, while considering the interactions between
its components. The second step focuses on the long-term
prediction of the system inoperability in order to determine its
evolution. Finally, in the third step, a method for calculating
the remaining useful life of the system, based on the system
configuration, is formulated. The proposed methodology is
applied on data obtained from the Tennessee Eastman Process
simulations to predict the shutdown due to violation of process
constraints.

I. INTRODUCTION

Prognostics and Health Management (PHM) is essential

to ensure safe, reliable and correct operation of complex

technical systems. Among the key elements of PHM, prog-

nostics allows predicting the remaining useful life (RUL)

of components, subsystems or systems before they become

inoperable. Based on these predictions, effective actions can

be taken to minimize losses, optimize maintenance, and

extend components life.

According to practical requirements, prognostics received

a great attention in literature. However, it has often been

approached from a component view without considering

interactions with other system components and the environ-

ment [1], [2]. Hence, for complex engineering systems, it

is necessary to study the concept of failure prognostics at

system-level by considering the mutual interactions between

its elements.

Moreover, notwithstanding the increasing accuracy and

precision of prognostics algorithms, their objects of study,

i.e. degradation and failure mechanisms, remain stochastic

phenomena and, therefore, the uncertainty cannot be elimi-

nated totally [3]. Indeed, various sources contribute to make

the estimation and prediction of one system state uncertain.

The number of the uncertainty sources will rapidly increase

when considering prognostics at system-level.

To provide a solution to the problems stated above, a new

method that allows quantifying the uncertainty in the system

remaining useful life (SRUL) prediction is proposed in this

paper. It introduces, as a first contribution, a novel system-

level prognostics framework based on the inoperability input-

output model (IIM). This model allows tackling the issue
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related to the interactions between the system components.

As a second contribution, a methodology to quantify uncer-

tainty in the SRUL predictions based on the particle filtering

is proposed. This methodology will be applied to the well-

known Tennessee Eastman Process (TEP) to demonstrate its

effectiveness.

The remainder of the paper is organized as follows.

Section II presents the new system degradation model which

is based on the inoperability input-output model. Section III

describes the proposed methodology for uncertainty quantifi-

cation and the SRUL determination. Section IV deals with

uncertainty modeling and quantification for the Tennessee

Eastman Process. A comparison of the obtained results

with process real data, were made in order to show the

effectiveness of the proposed method. Finally, Section V

concludes the paper and gives some future works.

II. INOPERABILITY INPUT-OUTPUT MODEL

One of the main challenges for the SRUL prediction is to

develop a model that allows taking into account the mutual

components interactions and effects of the mission profile on

the degradation evolution. For this purpose, a new model for

the degradation of multi-component systems is proposed in

this section, that is based on the inoperability input-output

model (IIM). The proposed model is then used in Section III

to quantify the uncertainty when predicting the SRUL.

The proposed model is inspired by the IIM which is an

extension of the input-output model developed by Leontief

Wassily in 1936 [4]. The IIM model and its variants are

usually used to investigate the global effects of negative

events on highly interdependent infrastructures or multi-

sector economies [5], [6]. This is achieved by using the

concept of inoperability, which is defined as the inability

of a system to perform its intended functions. The aptitude

of the IIM to consider mutual interactions between numerous

elements offers a promising perspectives when applying it in

PHM domain.

The IIM adapted to prognostics is proposed firt in [7] and

is represented by the following formula:

q(t) = K(t).[A.q(t −1)+ c(t)] (1)

where:

• q(t) is a vector representing the overall inoperability of

the system components at time t. Each component of

this vector is a value between 0 and 1, where qi(t) =
0 corresponds to a healthy component (with an ideal

performance) and qi(t) = 1 to a faulty component (no

longer able to perform its tasks).



• A is a matrix representing the interdependencies be-

tween the system components. Each element ai j of the

matrix corresponds to the influence of the inoperability

of component j on the inoperability of component i.

The bigger ai j is, the greater is the influence of j on i.

• c(t) is a vector representing the internal inoperabilities

of the system components at time t, i.e. the degradation

of the component due to wear, corrosion or any other

failure mechanism. The parameter ci(t) can be obtained

by normalizing the health indicator of component i to

its failure threshold.

More details about the normalization of the component’s

health indicator can be found in [7].

• A.q(t) represents the inoperability of a component due

to its interdependencies. This quantity informs about

the degradations caused by the interactions between

components.

• K(t) is a diagonal matrix representing the factors in-

fluencing the inoperabilities of components at time t

with respect to the system inputs (mission profiles and

environment conditions). Each element ki is specific to

only one component i.

As one can notice in (1), the degradation of component

i, characterized by an inoperability qi(t), depends on its

inherent natural degradation mechanisms expressed by ci(t)
and the degradation induced by the interactions with other

components through the term A.q(t). By integrating these

two types of degradation, IIM can estimate the health state

of systems more accurately.

The advantages of using the IIM to model systems are

multiple, among which: 1) the normalization of health in-

dicators to obtain inoperability allows modeling systems

with heterogeneous components (different health indicators,

range values, degradation patterns and failure thresholds);

2) IIM describes a direct relationship between the mission

profile effects and the degradation evolution, which eases the

adaptation of the mission profile to extend the system life;

3) multiplying the inoperability by 100 gives a percentage of

the component degradation relative to its failure threshold,

which facilitates communication with the decision-makers.

III. UNCERTAINTY QUANTIFICATION IN SYSTEM-LEVEL

PROGNOSTICS

The methodology proposed in this paper, and illustrated

by Fig. 1, combines the estimated and the predicted system

inoperabilities to compute the SRUL. The computational

process requires the component-level degradation models, the

interactions between the components, the thresholds related

to each failure mode and the distributions associated to the

uncertainties. The details of the three main steps of the

proposed methodology is explained in the next subsections.

A. Inoperability uncertainty estimation

The objective of the first step of the methodology is to

estimate the inoperability posterior density of the M system

components at each time instant k given the observations

yk. To do that, the particle filtering, which is a popular

Fig. 1: Uncertainty quantification methodology for system-

level prognostics.

technique explored by several works in prognostics domain

[8], [9], is used. This tool can be applied to systems with non-

linear dynamics and non-Gaussian noise. However, contrary

to traditional utilization, in this paper a particle is considered

as a vector representing the state of health (inoperability)

of the system components. Thus, the weight associated to

a particle represents the approximation of the inoperability

probabilities of all the M components at the same time, as

shown in Fig. 2. The process of estimating the inoperability

state of a system at time k is explained below.

Firstly, using the IIM presented in Section II, the prior

probability density distributions PDFs of the system compo-

nents inoperabilities p(qk|qk−1) at time k are predicted based

on the ones at the previous time k−1:

p(qk|qk−1)∼ IIM(qk−1) (2)

Next, given new observations yk
i

at time k for a component

i, i ∈ {0,1, ...,M}, the system posterior PDFs inoperabilities

are updated by the particle filtering. In detail, considering a

set of N particles {q(l)}l=1,...,N , their associated normalized

weights {w(l)}l=1,...,N are evaluated by the likelihood func-

tions p(yk
i
|qk

i
) using the importance distribution functions

π(qk
i
|qk−1

i
,y1:k

i
):

w
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k ∝ w
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(3)

Finally, to overcome the degeneracy problem, a resampling

Fig. 2: Inoperability PDFs of a system with 3 components.



process is applied in each time step to replace particles

having low importance weights with particles that have

higher importance weights.

The posterior PDFs of the system inoperability at time k

(Fig. 1) can be approximated before the resampling step by:

p(qk|y0:k)≈
N

∑
l=1

w
(l)
k δ

(l)
qk
(qk) (4)

where δ (·) denotes the Dirac delta function.

The estimation procedure is repeated at every instant k, k ∈
{1,2, ...,kp}, where kp is the starting time of the prediction

step presented in the next subsection.

B. Inoperability uncertainty prediction

Prognostics, and thus generation of long-term predictions,

is a problem that goes beyond the scope of filtering problem,

since it involves future time horizons in which no mea-

surements are available for the Bayesian updating through

the equation (3). Thus, the particle filtering, which is more

suitable for estimation problems, needs to be adapted to use

it for predictions.

In this work, to reduce the computation requirement,

we suggest to follow the procedure proposed in [10] and

which is based on the assumption that the particle weights

are constant from time kp to time k. According to this

procedure, the predicted PDF of the inoperability of the

system’s components at time k (i.e., p(qk|y1:kp
)) can be

obtained by applying recursively (2) to q
(l)
kp

.

Once the prediction of the future system inoperability is

done, it will be used to determine the system remaining

useful life (SRUL), as explained in the next subsection.

C. SRUL determination

The SRUL provides information related to the time when

the whole system fails (i.e., when the combined failures

of individual components lead to system failure) [2] or

when a system reaches performance level that is considered

unacceptable. However, the consequence of the degradation

of one or more components depends on the considered

architecture (e.g. parallel or series). Therefore, the SRUL

must be calculated according to system configuration.

Assuming that the system is healthy at time kp − th,

moment when the prediction algorithm is launched, the

SRUL can be computed as follows:

SRUL = τF − kp (5)

with τF is the system time-of-failure ToF (or the system

end-of-life (EOL)). ToF is chosen in this work because it

is a more general concept which can be used in multiple

applications [11].

τF = in f (k ∈ N : system f ailure at k) (6)

In practice, and given the complexity of industrial systems,

it is important to consider the uncertainty associated with

the ToF. To do this, the notations and the new paradigms

proposed in [8], [11] are used in the remainder of this paper.

Let’s denote a healthy system (with no occurrence of

catastrophic failure) and a faulty system (with occurrence

of catastrophic failure) at k− th by Hk and Fk, respectively.

Let’s also consider Hkp:k = (Hkp
,Hkp

+ 1, · · · ,Hk) as the

sample space that determines all possible sequences where a

system has not catastrophically failed until the time k. Then,

according to the definition of the conditional probability, the

failure probability at k− th is given by:

P(Fk) =
P(Fk,Hkp:k−1)

P(Hkp:k−1|Fk)
(7)

As the system can only fail once (without maintenance),

given that the failure has occurred at time k, the probability

of staying healthy until time k−1 is P(Hkp:k−1|Fk) = 1.

P(Fk) = P(Fk,Hkp:k−1) = P(Fk|Hkp:k−1)p(Hkp:k−1);∀k > kp

(8)

where P(Fk|Hkp:k−1) is given by:

P(Fk|Hkp:k−1) =
∫

Rnq

p( f ailure|qk)p(qk|y1:kp
)dqk

(9)

The second term of (8), p(Hkp:k−1), stands for the prob-

ability that one component is healthy from kp-th until time

(k−1)− th, which can be expressed as:

p(Hkp:k−1) =
k−1

∏
h=kp+1

p(Hh|hkp:h−1) (10)

As Fk and Hk are exclusive events, the failure event

can be modeled through a Bernoulli stochastic process:

p(H j|Hkp: j−1) = 1− p(Fj|Hkp: j−1). It follows that:

p(Hkp: j−1) =
k−1

∏
h=kp+1

(1− p(Fh|Hkp:h−1)) (11)

The expressions presented in (8) and (11) are valid

whether for prognostics of a single component or complex

systems. However, when considering a multi-components

system, the way of characterizing p(Fk|Hkp:k−1) will change

according to the system configuration.

For exemple, in series configuration of M components, the

probability that a system will fail at time k, conditional that

it is healthy at k − 1, is a finite union of the components

failure events. As only one component failure can appear

at an instantaneous moment, the components failure events

can be considered as incompatible. Then, the system failure

probability can be written as:

p(Fk|Hkp:k−1) =
M

∑
i=1

p(F
ik
|Hkp:k−1) (12)

where p(F
ik
|Hkp:k−1) is the probability that component i will

fail at time k, conditional that the system is healthy at k−1.

Then:

p(Fk|Hkp:k−1) =
M

∑
i=1

∫

qk∈Rnq

p( f ailurei|qik)p(q
ik
|y

i
1:kp

)dqk

(13)



Fig. 3: P&ID of the Tennessee Eastman Process [12].

IV. TENNESSEE EASTMAN PROCESS

In this section, the proposed methodology is applied to

solve the failure prognostics issue of the Tennessee Eastman

Process (TEP).

A. Process description

The Tennessee Eastman Process built by Eastman Chemi-

cal Company has been widely used as a realistic benchmark

for process control optimization, fault diagnostics and, to a

lesser extent, for component-level prognostics. Downs and

Vogel [12] described it in detail and provided its simulation

where the components, kinetics, and operating conditions

have been modified for proprietary reasons. The TEP in-

volves five major units (working in open-loop) including a

two-phase reactor, a partial condenser, a separator, a stripper,

and a compressor. The schematic piping and instrumentation

diagram (P&ID) of the TEP is shown in Fig. 3.

In the TEP, the gaseous reactants {A,C,D,E} are fed to the

reactor where the liquid products {G,H} and the byproduct

{F} are formed through the following exothermic reactions:



















A(g)+C(g)+D(g)→ G(l),

A(g)+C(g)+E(g)→ H(l),

A(g)+E(g)→ F(l),

3D(g)→ 2F(g).

The process has a total of 53 measured variables, of

which 22 variables are continuous process measurements

(such as: temperatures, pressures, flow rates, levels), 19

variables are composition measurements and remaining 12

are manipulated variables. 28 faults can be injected in the

process [13], which can be related to step changes, drifts,

and random variation of variables, etc.

B. Problem Statement

In this case study, we consider a failure as interruption

of the operational continuity resulting from violation of the

variables shutdown limits. Therefore, only components with

shutdown constraints are considered, i.e. reactor, stripper

and separator. Each of these components is monitored by

a single parameter: pressure for the reactor, and level for the

stripper and the separator. Table I lists the specific operational

constraints related to the system parameters that the control

system should respect.

TABLE I: Process operating constraints [12].

Normal operating limits Shut down limits
Process variables Low limit High limit Low limit High limit

Reactor pressure none 2895 kPa none 3000 kPa
Separator level 3.3 m 9.0 m 1.0 m 12 m
Stripper level 3.5 m 6.6 m 1.0 m 8.0 m

In Matlab R© simulations of the TEP [14], three distur-

bances predefined in [13] were injected. Two disturbances

are deviations in the reactor and the stripper parameters

that are, respectively: deviation in the reactor cooling water

flow (c1(t)) and deviation in the heat transfer of the heat

exchanger of the stripper (c2(t)). These deviations c1(t)
and c2(t) are assumed to follow equations (14) and (15),

respectively.

c1(t) = α.c1(t −1)+β (14)

c2(t) = γ.c2(t −1) (15)

with α , β and γ are the parameter of the two models.

As shown in Fig. 4, when these two faults are injected,

the system shuts down at 0.8 hour.

The third injected fault is a random variation of the reactor

cooling water inlet temperature and can be considered as

process noise.

The purpose, here, is to estimate the SRUL when taking

into account the process uncertainty, which is characterized

by a random variation of the reactor cooling water inlet

temperature. To do this, the proposed IIM, Eq.(1) where c(t)
is given by Eq.(14) and (15), is used to model the system

degradation. The IIM parameters are estimated and adjusted

thanks to data collected from the TEP simulation. In the next

subsection, construction of the IIM is detailed.

C. Inoperability input-output model of TEP

The raw data acquired from the TEP simulation are

normalized to the initial state and the failure threshold, as

Fig. 4: Components inoperabilities evolution when consider-

ing two faults.



shown in Fig. 4. They represent the inoperability of the three

components: reactor q1(t), stripper q2(t) and separator q3(t).
Their initial states correspond to the parameters base value

[12] and the failure thresholds to the shutdown limits values

(Table I).

The IIM of the TEP is built from data obtained after

injection of these faults. It should be noted here that the IIM

model does not model the physical phenomena operating in

the process, but is more used to fit the actual data of the

process. For this case study, the interdependence matrix (A)

is estimated and adjusted to make the proposed model better

fit the process data. Then, we obtain the following result:

A =





0 0.1 0

10−5 0 0

0.4 0.3 0



 (16)

Regarding the matrix K, it has been assumed that the

environmental conditions have no effects on the evolution

of the components inoperabilities. Therefore, its diagonal is

equal to 1.

D. Inoperability estimation and prediction

After application of the random variation of the reactor

cooling water inlet temperature, the data obtained from the

process and the built IIM are used in the particle filtering to

estimate the components inoperabilities. To evaluate the in-

operabilities densities, 200 particles were used with the initial

distributions of the components inoperabilities considered as

Gaussian. The selection of the particles to be retained after

each filtering step was done by using residual resampling.

When the inoperability of one component exceeds the nor-

mal operating limits (as indicated in Table I), the prediction

step will be launched (at time kp).

The results of the estimation and prediction of the inoper-

abilities uncertainty of the system components are shown

in Fig. 5. The reactor is the first component to go out

of its normal operating limits after 0.34 hour. This time

corresponds to the time where the long-term inoperability

prediction is launched. Also, it is the reactor pressure, that

triggers the system shutdown (system failure) at 0.44 hour.

From these results, we can highlight the power of estima-

tion and prediction of the proposed methodology. Indeed,

before the adding of the random variation (the process

noise), the system shuts down at 0.8 hour and after the

fault injection, it shuts down at 0.44 hour. Despite this high

process variability, the particle filtering was able to estimate

the actual inoperability of the system (as shown in Fig.

5). Also, one can notice that the uncertainty related to the

predicted inoperability increases for k > kp. This is due to the

fact that no measurements were received and, therefore, there

is neither updating of the particle weights nor resampling.

E. SRUL determination

For this case study, the operability of the studied system

depends on the operability of its components since they all

contribute to realization of the system function (G and H

production). Therefore, one can conclude that the system

has a series architecture. Consequently, the system ToF

probability will be determined using the equation (13).

Fig. 6 shows the PMF of the SRUL. The mean value of

the SRUL is equal to 0.1 hour. The true SRUL, which is

equal to 0.102 hour, is within the 95% confidence interval

of the predicted SRUL distribution. We can conclude that

Fig. 5: Components real and predicted inoperabilities evolution when considering three faults.



Fig. 6: SRUL probability distribution of the system.

the predicted SRUL is close to reality and is slightly pes-

simistic, which does not put the system, its operators and

the environment in danger.

In order to discuss the results of the proposed method-

ology, a study of the impact of the prognostics horizon

on uncertainty intervals is performed by considering the

α-accuracy metric, which determines whether a prediction

falls within an α% interval. In fact, α-accuracy is a useful

metric to judge if one prognostics algorithm converges to

the true value as more information are accumulated over

time. Indeed, a faster convergence is desired to achieve a

high confidence, keeping the prediction horizon as large as

possible. To that end, in this study, the prognostics time

has been varied within the interval shown in Fig. 7 and

the accuracy is defined with α = 10%. The figure shows

the mean values and uncertainties of the predicted SRUL

distributions compared with the true SRUL. As it can be seen,

the prediction of the SRUL becomes more accurate each

time the measurements are obtained. One can also notice

that for t ≤ 0.6, the SRUL remains almost constant because

the values of the monitored parameters do not change a lot,

as it can be seen in Fig. 4.

V. CONCLUSION

A methodology for the uncertainty quantification at

system-level prognostics is proposed in this paper. This

methodology results in three main contributions. The first

concerns the modeling of the system degradation by using the

Fig. 7: SRUL prediction performance with α = 0.1.

inoperability input-output model. The second deals with the

health state estimation based on an adapted particle filtering.

Finally, the third contribution is related to the calculation

of the system remaining useful life, based on the recent

developments and achievements proposed at component-

level prognostics and generalized in this paper to system-

level prognostics.

The proposed methodology was applied on the Tennessee

Eastman process in order to predict the shutdown time caused

by violation of the process constraints. The obtained results

show the effectiveness of the methodology in estimating and

predicting the system remaining useful life and characteriza-

tion of uncertainty.

For future work, a systematic method to determine the IIM

parameters from a real data will be proposed. Also, it would

be worthwhile to apply the other predefined disturbances in

the TEP in order to test the robustness of the methodology.
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