A. N. Alonso, K. J. Perry, J. M. Regeimbal, P. M. Regan, and D. E. Higgins, Identification of Listeria monocytogenes determinants required for biofilm formation, PLoS One, vol.9, p.1133696, 2014.

S. Andrews, FastQC A Quality Control Tool for High Throughput Sequence Data, 2010.

J. Augustin, V. Zuliani, M. Cornu, and L. Guillier, Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions, J. Appl. Microbiol, vol.99, pp.1019-1042, 2005.

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin et al., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol, vol.19, pp.455-477, 2012.

M. Begley, C. G. Gahan, and C. Hill, Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance, Appl. Environ. Microbiol, vol.68, pp.6005-6012, 2002.

M. R. Beresford, P. W. Andrew, and G. Shama, Listeria monocytogenes adheres to many materials found in food-processing environments, J. Appl. Microbiol, vol.90, pp.1000-1005, 2001.

T. M. Bergholz, B. Bowen, M. Wiedmann, and K. J. Boor, Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses, Appl. Environ. Microbiol, vol.78, pp.2602-2612, 2012.

M. K. Borucki, J. D. Peppin, D. White, F. Loge, and D. R. Call, Variation in biofilm formation among strains of Listeria monocytogenes, 2003.

, Appl. Environ. Microbiol, vol.69, pp.7336-7342

A. Bridier, R. Briandet, V. Thomas, and F. Dubois-brissonnet, Resistance of bacterial biofilms to disinfectants: a review, Biofouling, vol.27, pp.1017-1032, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001460

O. Brynildsrud, J. Bohlin, L. Scheffer, and V. Eldholm, Rapid scoring of genes in microbial pan-genome-wide association studies with scoary, Genome Biol, vol.17, p.238, 2016.

T. Cantinelli, V. Chenal-francisque, L. Diancourt, L. Frezal, A. Leclercq et al., Epidemic clones" of Listeria monocytogenes are widespread and ancient clonal groups, J. Clin. Microbiol, vol.51, pp.3770-3779, 2013.

M. Carrolo, M. J. Frias, F. R. Pinto, J. Melo-cristino, and M. Ramirez, Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae, PLoS One, vol.5, p.15678, 2010.

M. Carrolo, F. R. Pinto, J. Melo-cristino, and M. Ramirez, Pherotype influences biofilm growth and recombination in Streptococcus pneumoniae, PLoS One, vol.9, p.92138, 2014.

Y. Chang, W. Gu, N. Fischer, and L. Mclandsborough, Identification of genes involved in Listeria monocytogenes biofilm formation by marinerbased transposon mutagenesis, Appl. Microbiol. Biotechnol, vol.93, pp.2051-2062, 2012.

P. Chavant, B. Gaillard-martinie, R. Talon, M. Hébraud, and T. Bernardi, A new device for rapid evaluation of biofilm formation potential by bacteria, J. Microbiol. Methods, vol.68, pp.605-612, 2007.

P. Chavant, B. Martinie, T. Meylheuc, M. Bellon-fontaine, and M. Hebraud, Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases, Appl. Environ. Microbiol, vol.68, pp.728-737, 2002.

R. A. Chmielewski and J. F. Frank, Biofilm formation and control in food processing facilities, Compr. Rev. Food Sci. Food Saf, vol.2, pp.22-32, 2003.

A. Colagiorgi, I. Bruini, P. A. Di-ciccio, E. Zanardi, S. Ghidini et al., Listeria monocytogenes biofilms in the wonderland of food industry, Pathogens, vol.6, p.41, 2017.

D. Bonaventura, G. Piccolomini, R. Paludi, D. D'orio, V. Vergara et al., Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity, J. Appl. Microbiol, vol.104, pp.1552-1561, 2008.

D. Djordjevic, M. Wiedmann, and L. A. Mclandsborough, Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation, Appl. Environ. Microbiol, vol.68, pp.2950-2958, 2002.

S. P. Doijad, S. B. Barbuddhe, S. Garg, K. V. Poharkar, D. R. Kalorey et al., Biofilm-forming abilities of Listeria monocytogenes serotypes isolated from different sources, PLoS One, vol.10, p.137046, 2015.

M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, M. et al., Differentiation of the major Listeria monocytogenes serovars by multiplex PCR, J. Clin. Microbiol, vol.42, pp.3819-3822, 2004.

E. and E. , The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017, EFSA J, vol.16, p.5500, 2018.

J. Esbelin, T. Santos, and M. Hébraud, Desiccation: an environmental and food industry stress that bacteria commonly face, Food Microbiol, vol.69, pp.82-88, 2018.

D. Falush, Bacterial genomics: microbial GWAS coming of age, Nat. Microbiol, vol.1, p.16059, 2016.

D. Falush and R. Bowden, Genome-wide association mapping in bacteria?, Trends Microbiol, vol.14, pp.353-355, 2006.

B. Félix, C. Danan, I. Van-walle, R. Lailler, T. Texier et al., Building a molecular Listeria monocytogenes database to centralize and share PFGE typing data from food, environmental and animal strains throughout Europe, J. Microbiol. Methods, vol.104, pp.1-8, 2014.

B. Félix, C. Feurer, A. Maillet, L. Guillier, E. Boscher et al., Population genetic structure of Listeria monocytogenes strains isolated from the pig and pork production chain in France, Front. Microbiol, vol.9, p.684, 2018.

A. Felten, M. Vila-nova, K. Durimel, L. Guillier, M. Mistou et al., First gene-ontology enrichment analysis based on bacterial coregenome variants: insights into adaptations of Salmonella serovars to mammalian-and avian-hosts, BMC Microbiol, vol.17, p.222, 2017.

G. Franciosa, A. Maugliani, C. Scalfaro, F. Floridi, A. et al., Expression of internalin a and biofilm formation among Listeria monocytogenes clinical isolates, Int. J. Immunopathol. Pharmacol, vol.22, pp.183-193, 2009.

L. Fritsch, A. Felten, F. Palma, J. Mariet, N. Radomski et al., Insights from genome-wide approaches to identify variants associated to phenotypes at pan-genome scale: application to L. monocytogenes' ability to grow in cold conditions, Int. J. Food Microbiol, vol.291, pp.181-188, 2019.

N. Garrec, F. Picard-bonnaud, and A. M. Pourcher, Occurrence of Listeria sp. and L. monocytogenes in sewage sludge used for land application: effect of dewatering, liming and storage in tank on survival of Listeria species, FEMS Immunol. Med. Microbiol, vol.35, pp.275-283, 2003.

E. Giaouris, N. Chorianopoulos, A. Doulgeraki, and G. Nychas, Coculture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride, PLoS One, vol.8, p.77276, 2013.

E. Giaouris, E. Heir, M. Hébraud, N. Chorianopoulos, S. Langsrud et al., Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods, Meat Sci, vol.97, pp.298-309, 2014.

L. M. Graves and B. Swaminathan, PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis, Int. J. Food Microbiol, vol.65, pp.501-509, 2001.

M. Guilbaud, P. Piveteau, M. Desvaux, S. Brisse, and R. Briandet, Exploring the diversity of Listeria monocytogenes biofilm architecture by highthroughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype, Appl. Environ. Microbiol, vol.81, pp.1813-1819, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204409

M. Harmsen, M. Lappann, S. Knøchel, and S. Molin, Role of extracellular DNA during biofilm formation by Listeria monocytogenes, Appl. Env. Microbiol, vol.76, pp.2271-2279, 2010.

R. Hengge, A. Gründling, U. Jenal, R. Ryan, Y. et al., Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers, J. Bacteriol, vol.198, pp.15-26, 2016.

C. Henri, B. Félix, L. Guillier, P. Leekitcharoenphon, D. Michelon et al., Population genetic structure of Listeria monocytogenes strains determined by pulsed-field gel electrophoresis and multilocus sequence typing, Appl. Environ. Microbiol, vol.82, pp.5720-5728, 2016.

P. Hingston, J. Chen, B. K. Dhillon, C. Laing, C. Bertelli et al., Genotypes associated with Listeria monocytogenes isolates displaying impaired or enhanced tolerances to cold, salt, acid, or desiccation stress, Front. Microbiol, vol.8, p.369, 2017.

A. L. Ibáñez-de-aldecoa, O. Zafra, and J. E. González-pastor, Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities, Front. Microbiol, vol.8, p.1390, 2017.

, Strategies to reduce sodium intake in the United States, " in Preservation and Physical Property Roles of Sodium in Foods, 2010.

A. Jensen, M. H. Larsen, H. Ingmer, B. F. Vogel, and L. Gram, Sodium chloride enhances adherence and aggregation and strain variation influences invasiveness of Listeria monocytogenes strains, J. Food Prot, vol.70, pp.592-599, 2007.

S. J. Jordan, S. Perni, S. Glenn, I. Fernandes, M. Barbosa et al., Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates, Appl. Environ. Microbiol, vol.74, pp.5451-5456, 2008.

J. R. Junttila, S. I. Niemelä, and J. Hirn, Minimum growth temperatures of Listeria monocytogenes and non-haemolytic Listeria, J. Appl. Bacteriol, vol.65, pp.321-327, 2008.

S. R. Kadam, H. M. Den-besten, S. Van-der-veen, M. H. Zwietering, R. Moezelaar et al., Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin, Int. J. Food Microbiol, vol.165, pp.259-264, 2013.

M. L. Kalmokoff, J. W. Austin, X. D. Wan, G. Sanders, S. Banerjee et al., Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions, J. Appl. Microbiol, vol.91, pp.725-734, 2001.

V. K. Köseoglu, C. Heiss, P. Azadi, E. Topchiy, Z. T. Güvener et al., Listeria monocytogenes exopolysaccharide: origin, structure, biosynthetic machinery and c-di-GMP-dependent regulation, Mol. Microbiol, vol.96, pp.728-743, 2015.

K. P. Koutsoumanis, P. A. Kendall, and J. N. Sofos, Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes, Appl. Environ. Microbiol, vol.69, pp.7514-7516, 2003.

B. Lee, M. Hébraud, and T. Bernardi, Increased adhesion of Listeria monocytogenes strains to abiotic surfaces under cold stress, Front. Microbiol, vol.8, p.2221, 2017.

K. Linke, I. Rückerl, K. Brugger, R. Karpiskova, J. Walland et al., Reservoirs of Listeria species in three environmental ecosystems, Appl. Environ. Microbiol, vol.80, pp.5583-5592, 2014.

D. Liu, M. L. Lawrence, A. J. Ainsworth, A. , and F. W. , Comparative assessment of acid, alkali and salt tolerance in Listeria monocytogenes virulent and avirulent strains, FEMS Microbiol. Lett, vol.243, pp.373-378, 2005.

J. S. Madsen, M. Burmølle, L. H. Hansen, and S. J. Sørensen, The interconnection between biofilm formation and horizontal gene transfer, FEMS Immunol. Med. Microbiol, vol.65, pp.183-195, 2012.

A. A. Mafu, D. Roy, J. Goulet, and P. Magny, Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times, J. Food Prot, vol.53, pp.742-746, 1990.

L. R. Marks, R. M. Reddinger, and A. P. Hakansson, High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae, mBio, vol.3, pp.200-212, 2012.

M. M. Maury, H. Bracq-dieye, L. Huang, G. Vales, M. Lavina et al., Hypervirulent Listeria monocytogenes clones' adaption to mammalian gut accounts for their association with dairy products, Nat. Commun, vol.10, p.2488, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02170796

M. M. Maury, Y. Tsai, C. Charlier, M. Touchon, V. Chenal-francisque et al., Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity, Nat. Genet, vol.48, pp.308-313, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02170775

J. T. Mccollum, A. B. Cronquist, B. J. Silk, K. A. Jackson, K. A. O'connor et al., Multistate outbreak of listeriosis associated with cantaloupe, N. Engl. J. Med, vol.369, pp.944-953, 2013.

M. V. Navarro, P. D. Newell, P. V. Krasteva, D. Chatterjee, D. R. Madden et al., Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis, PLoS Biol, vol.9, p.1000588, 2011.

P. D. Newell, C. D. Boyd, H. Sondermann, and G. A. Toole, A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage, PLoS Biol, vol.9, p.1000587, 2011.

K. Nicaogáin and C. P. Byrne, The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain, Front. Microbiol, vol.7, p.1865, 2016.

R. E. Nilsson, T. Ross, and J. P. Bowman, Variability in biofilm production by Listeria monocytogenes correlated to strain origin and growth conditions, Int. J. Food Microbiol, vol.150, pp.14-24, 2011.

D. A. Nolan, D. C. Chamblin, J. A. Troller, A. J. Page, C. A. Cummins et al., Minimal water activity levels for growth and survival of Listeria monocytogenes and Listeria innocua, Int. J. Food Microbiol, vol.16, pp.3691-3693, 1992.

A. Painset, J. T. Björkman, K. Kiil, L. Guillier, J. Mariet et al., LiSEQ -whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in, Europe. Microb. Genomics, vol.5, p.257, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02139091

Y. Pan, F. Breidt, and L. Gorski, Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes serotype 1/2a and 4b strains, Appl. Environ. Microbiol, vol.76, pp.1433-1441, 2010.

F. Pérez-rodríguez, A. Valero, E. Carrasco, R. M. García, and G. Zurera, Understanding and modelling bacterial transfer to foods: a review, Trends Food Sci. Technol, vol.19, pp.131-144, 2008.

M. J. Piercey, P. A. Hingston, T. Hansen, and L. , Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 ? C, Int. J. Food Microbiol, vol.223, pp.63-74, 2016.

M. Popowska, A. Krawczyk-balska, R. Ostrowski, and M. Desvaux, InlL from Listeria monocytogenes is involved in biofilm formation and adhesion to mucin, Front. Microbiol, vol.8, p.660, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602737

C. H. Puga, E. Dahdouh, C. Sanjose, and B. Orgaz, Listeria monocytogenes colonizes Pseudomonas fluorescens biofilms and induces matrix over-production, Front. Microbiol, vol.9, p.1706, 2018.

L. D. Renner and D. B. Weibel, Physicochemical regulation of biofilm formation, MRS Bull. Mater. Res. Soc, vol.36, pp.347-355, 2011.

A. Rieu, R. Briandet, O. Habimana, D. Garmyn, J. Guzzo et al., Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains, Appl. Environ. Microbiol, vol.74, pp.4491-4497, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00453479

D. A. Rodrigues, M. A. Almeida, P. A. Teixeira, R. T. Oliveira, and J. C. Azeredo, Effect of batch and fed-batch growth modes on biofilm formation by Listeria monocytogenes at different temperatures, Curr. Microbiol, vol.59, pp.457-462, 2009.

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics, vol.30, pp.2068-2069, 2014.

L. Shabala, S. H. Lee, P. Cannesson, R. , and T. , Acid and NaCl limits to growth of Listeria monocytogenes and influence of sequence of inimical acid and NaCl levels on inactivation kinetics, J. Food Prot, vol.71, pp.1169-1177, 2008.

Q. Shen, P. Pandare, K. A. Soni, R. Nannapaneni, B. S. Mahmoud et al., Influence of temperature on alkali stress adaptation in Listeria monocytogenes, Food Control, vol.62, pp.74-80, 2016.

S. K. Sheppard, X. Didelot, G. Meric, A. Torralbo, K. A. Jolley et al., Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter, Proc. Natl. Acad. Sci. U S A, vol.110, pp.11923-11927, 2013.

R. D. Sleator, C. G. Gahan, and C. Hill, A postgenomic appraisal of osmotolerance in Listeria monocytogenes, Appl. Environ. Microbiol, vol.69, pp.1-9, 2003.

R. D. Sleator and C. Hill, Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence, FEMS Microbiol. Rev, vol.26, pp.49-71, 2002.

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, pp.1312-1313, 2014.

N. R. Stanley, R. A. Britton, A. D. Grossman, and B. A. Lazazzera, Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays, J. Bacteriol, vol.185, pp.1951-1957, 2003.

B. Stessl, I. Rückerl, and M. Wagner, Multilocus sequence typing (MLST) of Listeria monocytogenes, Methods Mol. Biol, vol.1157, pp.73-83, 2014.

T. Takahashi, I. Tadokoro, A. , and S. , An L-form of Staphylococcus aureus adapted to a brain heart infusion medium without osmotic stabilizers, Microbiol. Immunol, vol.25, pp.871-886, 1981.

P. S. Tirumalai and S. Prakash, Time-dependent gene expression pattern of Listeria monocytogenes J0161 in biofilms, Adv. Genomics Genet, vol.2, pp.1-18, 2012.

M. Valentini and A. Filloux, Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria, J. Biol. Chem, vol.291, pp.12547-12555, 2016.

A. Vivant, D. Garmyn, and P. Piveteau, Listeria monocytogenes, a downto-earth pathogen, Front. Cell. Infect. Microbiol, vol.3, p.87, 2013.

H. J. Welshimer and J. Donker-voet, Listeria monocytogenes in nature, Appl. Microbiol, vol.21, pp.516-519, 1971.

R. Yamamoto, Y. Noiri, M. Yamaguchi, Y. Asahi, H. Maezono et al., Time course of gene expression during Porphyromonas gingivalis strain ATCC 33277 biofilm formation, Appl. Environ. Microbiol, vol.77, pp.6733-6736, 2011.

O. Yong, L. Jing, D. Yuqing, V. B. Lauren, M. et al., Genomewide screening of genes required for Listeria monocytogenes biofilm formation, J. Biotech Res, vol.4, pp.13-25, 2012.

F. Zameer, S. Gopal, G. Krohne, and J. Kreft, Development of a biofilm model for Listeria monocytogenes EGD-e, World J. Microbiol. Biotechnol, vol.26, pp.1143-1147, 2010.