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Abstract: Sparse linear regression methods generally have a free hyper-
parameter which controls the amount of sparsity, and is subject to a bias-
variance tradeoff. This article considers the use of Aggregated hold-out to
aggregate over values of this hyperparameter, in the context of linear re-
gression with the Huber loss function. Aggregated hold-out (Agghoo) is a
procedure which averages estimators selected by hold-out (cross-validation
with a single split). In the theoretical part of the article, it is proved that
Agghoo satisfies a non-asymptotic oracle inequality when it is applied to
sparse estimators which are parametrized by their zero-norm. In particular,
this includes a variant of the Lasso introduced by Zou, Hastié and Tibshi-
rani [49]. Simulations are used to compare Agghoo with cross-validation.
They show that Agghoo performs better than CV when the intrinsic dimen-
sion is high and when there are confounders correlated with the predictive
covariates.
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1. Introduction

From the statistical learning point of view, linear regression is a risk-minimization
problem wherein the aim is to minimize the average prediction error ¢(Y —
67 X) on a new, independent data-point (X,Y), as measured by a loss func-
tion ¢. When ¢(z) = 22, this yields classical least-squares regression; however,
Lipschitz-continuous loss functions have better robustness properties and are
therefore preferred in the presence of heavy-tailed noise, since they require fewer
moment assumptions on Y [8, 20]. Similarly to the L? norm in the least-squares
case, measures of performance for estimators can be derived from robust loss
functions by substracting the risk of the (distribution-dependent) optimal pre-
dictor, yielding the so-called excess risk.

In the high-dimensional setting, where X € R? with potentially d > n, full lin-
ear regression cannot be achieved in general: the minimax excess risk is bounded
below by a positive function of % (proposition 2.2). Stronger assumptions on
the regression coeflicient 6 are needed in order to estimate it consistently.

A popular approach is to suppose that only a small number k, of covariates
are relevant to the prediction of Y, so that # may be sought among the sparse
vectors with less than k, non-zero components. Estimators which target such
problems include the Lasso [36], least-angle regression [11] (a similar, but not
identical method [16, Section 3.4.4]), and stepwise regression [16, Section 3.3.2].
In the robust setting, variants of the Lasso with robust loss functions have been
investigated by a number of authors [22, 34, 6, 44].

Such methods generally introduce a free hyperparameter which regulates the
”sparsity” of the estimator; sometimes this is directly the number of non-zero
components, as in stepwise procedures, sometimes not, as in the case of the
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Lasso, which uses a regularization parameter A. In any case, the user is left with
the problem of calibrating this hyperparameter.

Several goals are conceivable for a hyperparameter selection method, such
as support recovery - finding the ”predictive” covariates - or estimation of a
"true” underlying regression coefficient with respect to some norm on R%. From
a prediction perspective, hyperparameters should be chosen so as to minimize
the risk, and a good method should approach this minimum. As a consequence,
the proposed data-driven choice of hyperparameter should allow the estimator
to attain all known convergence rates without any a priori knowledge, effectively
adapting to the difficulty of the problem.

For the Lasso and some variants, such as the fused Lasso, Zou, Wang, Tib-
shirani and coauthors have proposed [49] and investigated [43, 38] a method
based on Mallow’s C}, and estimation of the ”degrees of freedom of the Lasso”.
However, consistency of this method has only been proven [43] in an asymptotic
setting where the dimension is fixed while n grows, hence not the setting con-
sidered here. Moreover, the method depends on specific properties of the Lasso,
and may not be readily applicable to other sparse regression procedures.

A much more widely applicable procedure is to choose the hyperparameter
by cross-validation. For the Lasso, this approach has been recommended by
Tibshirani [37], van de Geer and Lederer [39] and Greenshtein [13], among many
others. More generally, cross-validation is the default method for calibrating
hyperparameters in practice. For exemple, R implementations of the elastic net
[12] (package glmnet), LARS [11] (package lars) and the huberized lasso [48]
(package hqreg) all incorporate a cross-validation subroutine to automatically
choose the hyperparameter.

Theoretically, cross-validation has been shown to perform well in a variety of
settings [1]. For cross-validation with one split, also known as the hold-out, and
for a bagged variant of v-fold cross-validation [23], some general oracle inequali-
ties are available in least squares regression [26, Corollary 8.8] [46] [23]. However,
they rely on uniform boundedness assumptions on the estimators which may not
hold in high-dimensional linear regression. For the more popular V-fold proce-
dure, results are only available in specific settings. Of particular interest here
is the article [32] which proves oracle inequalities for linear model selection in
least squares regression, since linear model selection is very similar to sparse
regression (the main difference being that in sparse regression, the ”models” are
not fixed a priori but depend on the data). This suggests that similar results
could hold for sparse regression.

However, in the case of the Lasso at least, no such theoretical guarantees
exist, to the best of our knowledge. Some oracle inequalities [23, 30] and also
fast rates [17, Theorem 1] have been obtained, but only under very strong as-
sumptions: [23] assumes that X has a log-concave distribution, [30] that X is
a gaussian vector, and [17, Theorem 1] assumes that there is a true model and
that the variance-covariance matrix is diagonal dominant. In contrast, there are
also theorems [5, 7] [17, Theorem 2] which make much weaker distributional
assumptions but only prove convergence of the (in-sample) error at the ”slow”


https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/lars/index.html
https://cran.r-project.org/web/packages/hqreg/index.html
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rate O(r/'2%) or slower. Though this rate is basically minimax [33, 7] for the

model
Y = (X,0.) +¢,E[¢|X] = 0,E[?|X] < 1, X € R ||| <, (1.1)

a hyperparameter selection method should adapt also to the favorable cases
where the Lasso converges faster ([21, Theorem 14]); these results do not show
that CV has this property.

Thus, the theoretical justification for the use of standard CV, which selects a
single hyperparameter by minimizing the CV risk estimator, is somewhat lack-
ing. In fact, two of the articles mentioned above introduce variants of CV which
modify the final hyperparameter selection step; a bagged CV in [23] and the
aggregation of two hold-out predictors in [5]. In practice too, there is reason
to consider alternatives to hyperparameter selection in sparse regression: sparse
estimators are unstable, and selecting only one estimator can result in arbitrar-
ily ignoring certain variables among a correlated group with similar predictive
power [47]. For the Lasso, these difficulties have motivated researchers to in-
troduce several aggregation schemes, such as the Bolasso [3], stability selection
[27], the lasso-zero [9] and the random lasso [45], which are shown to have some
better properties than the standard Lasso.

Since aggregating the Lasso seems to be advantageous, it seems logical to
consider aggregation rather than selection to handle the free hyperparameters.
In this article, We consider the application to sparse regression of the aggre-
gated hold-out procedure. Aggregated hold-out (agghoo) is a general aggre-
gation method which mixes cross-validation with bagging. It is an alternative
to cross-validation, with a comparable level of generality. In a previous article
with Sylvain Arlot and Matthieu Lerasle [25], we formally defined and studied
Agghoo, and showed empirically that it can improve on cross-validation when
calibrating the level of regularization for kernel regression. Though we came up
with the name and the general mathematical definition, Agghoo has already
appeared in the applied litterature in combination with sparse regression pro-
cedures [18], among others [42], under the name ”CV + averaging” in this case.

In the present article, the aim is to study the application of Agghoo to sparse
regression with a robust loss function. Theoretically, assuming an L® — L? norm
inequality to hold on the set of sparse linear predictors, it is proven that Agghoo
satisfies an asymptotically optimal oracle inequality. This result applies also to
cross-validation with one split (the so-called hold-out), yielding a new oracle
inequality which allows norms of the sparse linear predictors to grow polynomi-
ally with the sample size. Empirically, Agghoo is compared to cross-validation
in a number of simulations, which investigate the impact of correlations in the
design matrix and sparsity of the ground truth on the performance of aggre-
gated hold-out and cross-validation. Agghoo appears to perform better than
cross-validation when the number of non-zero coefficients to be estimated is not
much smaller than the sample size. The presence of confounders correlated to
the predictive variables also favours Agghoo relative to cross-validation.
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2. Setting and Definitions

The problem of non-parametric regression is to infer a predictor ¢t : X — R
from a dataset (X;,Y;)1<i<n of pairs, where X; € X and Y; € R. The pairs will
be assumed to be i.i.d, with joint distribution P. The prediction error made
at a point (z,y) € X x R is measured using a non-negative function of the
residual ¢(y — t(z)). The global performance of a predictor is assessed on a
new, independent data point (X,Y") drawn from the same distribution P using
the risk £(t) = E[¢(Y — t(X))]. The optimal predictors s are characterized by
s(z) € argmin,, F[¢p(Y — u)|X = z] a.s. The risk of any optimal predictor is (in
general) a non-zero quantity which characterizes the intrinsic amount of “noise”
in Y unaccounted for by the knowledge of X. A predictor ¢ can be compared
with this benchmark by using the excess risk £(s,t) = L(t) — L(s). Taking
¢(x) = x? yields the usual least-squares regression, where s(r) = E[Y|X = x]
and £(s,t) = ||(s — t)(X)||iz However, the least-squares approach is known to
suffer from a lack of robustness [20, Chapter 7]. For this reason, in the field of
robust statistics, a number of alternative loss functions are used. One popular
choice was introduced by Huber [19].

Definition 2.1. Let ¢ > 0. Huber’s loss function is ¢.(u) = “;]IMSC—FC (Jul = £) Ljuj>e-

When ¢ — +00, ¢. converges to the least-squares loss. When ¢ — 0, %qbc
converges to the absolute value loss * — |z| of median regression. Thus, the ¢
parameter allows a trade-off between robustness and approximation of the least
squares loss.

The rest of the article will focus on sparse linear regression with the loss
function ¢.. Thus, notations s, £(s,t) and L are to be understood with respect

to ¢c.

2.1. Sparse linear regression

With finite data, it is impossible to solve the optimization problem min £(t)
over the set of all predictors t. Some modeling assumptions must be made to
make the problem tractable. A popular approach is to build a finite set of
features (1);(X))1<;j<a and consider predictors that are linear in these features:
30 € RY Vo € X t(x) = Z?:l 0;1;(z). This is equivalent to replacing X € X
with X = (¢;(X))1<j<a € R? and regressing Y on X. For theoretical purposes,
it is thus equivalent to assume that X = R for some d and predictors are linear:
t(x) =0Tx.

As the aim is to reduce the risk £(t), a logical way to choose 6 is by empirical
risk minimization: N

6 e argmin 1 Z b.(Y; — 07 X;).
gerd T i

Empirical risk minimization works well when n > d but will lead to overfitting
in large dimensions [41]. Indeed, if d is too large, no estimator can succeed at
minimizing the risk over R?, as the following proposition shows.
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Proposition 2.2. Let o0 > 0 and ¥ be a positive definite matriz of dimension
d. For any 0 € RY, let Py denote the distribution such that (X,Y) ~ Py iff
almost surely, Y = (0, X) + oe, where X ~ N(0,%), € ~ N(0,1) and &, X are
independent. Then for any n > d,

. A . 2d
H;f esgﬂsd Ep, ~pgn [K(QT,G(DH)T)] > E[min(c?e?, cole|)] (\/ 1+ P 1> ,

where inf, denotes the infimum over all estimators and 0T denotes the linear
functional © — (0, ).

Proposition 2.2 is proved in appendix A. With respect to o, the lower bound
of proposition 2.2 scales as 02 when ¢ < ¢ and as co when o >> ¢, as could
be expected from the definition of the Huber loss (Definition 2.1). With respect
to d and n, it scales as % when d < n. Moreover, there is a positive lower
bound on the minimax risk when d is of order n. Thus, for such large values of
d, consistent risk minimization cannot be achieved uniformly over the whole of
R,

Sparse regression attempts instead to locate a “good” subset of variables in
order to optimize risk for a given model dimension. The Lasso [37] is now a
standard method of achieving sparsity. The specific version of the Lasso which
we consider here is given by the following definition.

Definition 2.3. Let n € N and let D,, = (X;,Y;)1<i<n be a dataset such that
X; € R and Y; € R for alli € [|1;n]] and some d € N. Let ¢ be the Huber loss
defined in Definition 2.1. For any r > 0, let

A 1 <&
C(r)= argmin =D 6. (Y, —qg—07X;) and
(g.0)€RI+ 1|0, <r T ; oA )
A 1 <&
(d4(r),0(r)) € argmin [g+ <6, ~> " X; >|. (2.1)
(g,0)€C(r) ni3

Now let A
Alesso(r)(D,) =z — G(r) + 6(r) T x.

The intercept ¢ is left unconstrained in definition 2.3, as is usually the case in
practice [48]. Equation (2.1) is a tiebreaking rule which simplifies the theoretical
analysis.

2.2. Hyperparameter tuning

The zero-norm of a vector 6 is the integer 6|, = |[{i : 6; # 0}|. Many sparse
estimators, such as best subset or forward stepwise [16, Section 3.3], are directly
parametrized by their desired zero-norm, which must be chosen by the practi-
tioner. It controls the “complexity” of the estimator, and hence the bias-variance
tradeoff. In the case of the standard Lasso (Definition 2.3 with ¢(x) = 2?), Zou,
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Hastie and Tibshirani [49] showed that ‘

the “degrees of freedom” of the estimator A(X). As a consequence, [49] sug-
gests reparametrizing the lasso by its zero-norm. Applying their definition to
the present setting yields the following.

é()\)HO is an unbiased estimator of

Definition 2.4. For any dataset D, let (g,0) be given by Definition 2.3, equa-
tion (2.1) . Let M € N and (rm)1<m<m be the finite increasing sequence at

which the sets {i : é(r)i # 0} change. Let ro = 0. For any k € N let
mﬁf% = max {m € N|Hé(rm)H0 =k and ry, < R} ,

with the convention max () = 0. Let then

A530(Dy) = A (11 ) (D). (2.2)
Let Alasso = A%’fgo denote the unconstrained sequence (corresponding to [49]’s

original definition).

The (optional) constraint Hé(rm)’

" < rm,m < R has some potential practical

and theoretical benefits. From the practical viewpoint, it allows to reduce the
computational complexity by excluding lasso solutions with excessively large
¢! norm, which may be expected to perform poorly anyway. From a theoretical
viewpoint, it helps control the L? norms of the predictor (8(rp, ), X), thus avoid-
ing inconsistency issues encountered by the empirical risk minimizer for some
pathological designs [31] .

More generally, consider any sequence (A ), oy of learning rules which output
linear predictors Ag(Dy) : & — x(Dyp) + (0x(Dy), ). To prove the main theo-
retical result of this article (Theorem 3.2), we make the following assumptions
on the collection (A ) cy-

Hypothesis 2.1. For any n € N, let D,, ~ P®" denote a dataset of size n.
Assume that

1. Almost surely, for all k € [|1;n|], ||0x(Dy)

‘ng‘.

2. For allk € [[1;nl], 44(Dy) € argmingcg(p, 4, (.. ‘q + (0k(Dn), L0 X,
where Q(Dy,, 0) = argmingep + 1, ¢ (Vi — (0, Xi) — q) -

For the reparametrized Lasso given by definition 2.3 and 2.4, hypothesis 2.1
holds by construction.

Moreover, condition 1 is naturally satisfied by such sparse regression methods
as forward stepwise and best subset [16, Section 3.3]. Condition 3 states that the
intercept ¢ is chosen by empirical risk minimization, with a specific tie-breaking
rule in case the minimum is not unique.

2.8. Aggregated hold out applied to the zero-norm parameter

The tuning of the zero-norm k is important to ensure good prediction perfor-
mance by optimizing the bias-variance tradeoff. Depending on the application,
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practicioners may want more or less sparsity, depending on their requirements in
terms of computational load or interpretability. For this reason, we consider the
problem of selecting the zero-norm among the set {1,..., K}, for some K € N
which may depend on the sample size. This article investigates the use of Ag-
ghoo in this context, as an alternative to cross-validation. Agghoo is a general
hyperparameter aggregation method which was defined in [25], in a general
statistical learning context. Let us briefly recall its definition in the present set-
ting. For a more detailed introductory discussion of this procedure, we refer the
reader to [25]. To simplify notations, fix a collection (g, ék)lgkg x of linear re-
gression estimators. First, we need to define hold-out selection of the zero-norm
parameter.

Definition 2.5. Let D,, = (X;,Y;)1<i<n be a dataset. For any T C {1,...,n},
denote DI = (X;,Y;)ier. Let then

A N P
kT(Dn)—mln?iiggllT'Z@(z D)~ (0(DE), X2 ) -

Using the hyperparameter l%T(Dn) together with the dataset DI to train a linear
regressor yields the hold-out predictor

7°(Dn) 2 — q;;T(Dn)(DZ:) + <9AET(D”)(DZ)’$>-
Aggregation of hold-out predictors is performed in the following manner.

Definition 2.6. Let T = (T1,...,Tv) be a collection of subsets of {1,...,n},
where V. = |T|. Let:

v
N A -
97_9 = V Z@kTi(D")(Dnl)
i=1
LV
~AQ A Ti
07 =5 D iy, (0, (D7)
i1

Agghoo outputs the linear predictor:
[75(Dy) : @ = G579 + (077, x).

Thus, Agghoo also yields a linear predictor, which means that it can be
efficiently evaluated on new data. If the HkT p,) have similar support, 0 will
also be sparse: this will happen if the hold-out rehably identifies a true model
On the other hand, if the supports have little overlap, the Agghoo coefficient will
lose sparsity, but it can be expected to be more stable and to perform better.

The linear predictors z — ‘jchi(Dn)(Dr{i) + (é,;Ti(Dn)(DZ"), x) aggregated by
Agghoo are only trained on part of the data. This subsampling (typically) de-
creases the performance of each individual estimator, but combined with ag-
gregation, it may stabilize an unstable procedure and improve its performance,
similarly to bagging.
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An alternative would be to retrain each regressor on the whole data-set D,,,

yielding the following procedure, which we call ” Aggregated cross-validation”
(Agev).

Definition 2.7. Let T = (11,..
where V = |T|. Let:

., Tv) be a collection of subsets of {1,...,n},

Vv
acv 1 )
facv = v Z Oz, (D) (D)
=1
1 \4
i = v Z‘fén(Dn)(Dn)'

The output of Agcv is the linear predictor:
FEor(Da) s = @50+ (057 ),

Agghoo is easier to study theoretically than Agcv due to the conditional

independence: (ék (DT)>1 hen 1 ch( n) ‘DT For this reason, the theoretical

section will focus on Agghoo, Whlle in the simulation study, both Agghoo and
Agcv will be considered.

In comparison to Agghoo and Agcv, consider the following definition of a
general cross-validation method.

Definition 2.8. Let T = (T1,...,Tv) be a collection of subsets of {1,...,n},
where V = |T|. Let

v
kS (D min argmin —
7 (Dn) = 1<k<K g

Z ( — G ( T)—(ék(fo),XZ)),

Let then

CV outputs the linear predictor

JF(Dn) s @ = G5 + (05, ).

This makes clear the difference between cross-validation and Agghoo (or
Agcv): cross-validation averages the hold-out risk estimates (and selects a sin-
gle linear predictor) whereas Agghoo and Agcv aggregate the selected predictors
(4. » ‘ng.) If the parameter k is used instead of the kg, in Definition 2.6, this
yiel&s the bagged CV method of Lecué and Mitchell [23]. This method applies
bagging to individual estimators ¢y, ék, whereas Agghoo also bags the estimator
selection step. When there is a single, clearly established optimal model of small
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dimension, the advantages of a more accurate model selection step (as in CV
and its bagged version) may outweigh the gains due to aggregation. In contrast,
when there are many different sparse linear predictors with close to optimal
performance, model selection will be unstable and aggregation should provide
benefits relative to selection of a single parameter k.

2.4. Computational complexity

There are two types of computational costs to take into account when consid-
ering a (sparse) linear predictor such as f7*(Dy): the cost of calculating the
parameters §37(D,,), 05 (D) at training time and the cost of making a predic-
tion on new data, i.e computing f;g(Dn)(x) for some z. In this section, Agghoo,
Agcv and cross-validation are compared with respect to these two types of com-
plexity.

Let (Qk,ékhgkg x be some finite collection of sparse linear regression esti-
mators. Let S(n) = E [maxlSkSK Hék(Dn)

number of non-zero coefficients. In particular, under point 1 of hypothesis 2.1,
S(n) < K.Let V =|T| and n, = n — ns, where n; is given by hypothesis 3.1.

] denote the expected maximal
0

Computational complexity at training time Agghoo, Agcv and cross-
validation must all compute the hold-out risk estimator for each subset in 7
and each k € {1,..., K}. Let Chos denote the number of operations needed for
this.

For a given subset T}, the estimators g (D7), 0, (DY) must be computed for
all k, which may be more or less expensive depending on the method. In the case
of the Lasso, the whole path can be computed efficiently using the LARS-Lasso
algorithm [11].

Then, the empirical risk of all estimators must be calculated on the test
set. On average, this takes at least S(n;)n, operations to compute the risk
of the least sparse 0 (n, scalar products involving an average of S(n;) non-
zero coefficients) and at most O(K S(ny)n,) operations in general. In particular,
E[Chos] = VS (ng)n,,.

In a next step, Agghoo and agcv compute the minima of V' vectors of length
K, whereas cross-validation averages these vectors and calculates the argmin of
the average. Both operations have complexity of order V K.

It is in their final step that the three methods differ slightly. Agghoo uses
the ékT (DI%) which have been computed in a previous step, whereas Agcv and
cross-validation must compute the éich (D) and é}}gv (Dy,), respectively. The
complexity of this depends on the metlhod7 but can be expected to be small
compared to C’hos, as there is only one estimator to fit instead of K.

Finally, Agghoo and Agev must aggregate V vectors drawn from the 6y (DZL)
and 0 (D,,), with respective complexity O(VS(n;)) and O(VS(n)), provided
that a suitably "sparse” representation is used for the 0. Assuming S(n) =~
S(ny), this is negligible compared to E[Chos)-



G. Maillard/Agghoo in sparse, robust regression 11

All in all, Agghoo, Agcv and cross-validation have a similar complexity at
training time, of order ]E[Chos] + VK, with E[Chos] most likely being the domi-
nant term.

Evaluation on new data Given new data z, the complexity of evaluating
q+ (0, ) is proportional to ||6||,. If the sparse estimators 6, perform as intended
and consistently identify similar subsets of predictive variables, then Agghoo and
Agcv sould not lose much sparsity compared to CV, as the Gfm (DI, Hfm (D)
and 0¥ should all have similar supports.

At worst, if the supports of the éch. (DL¥) may be as much
s = [P0, (22)

should heuristically be of the same order as Héle ( Dg;l)Ho — as both 1%31’ and

as V times greater than HékT (D)
1

‘ . In contrast,
0

IQ;T1 optimize the same bias-variance tradeoff with respect to the ”complexity
parameter” k . However, this situation is one in which the hold-out is very un-
stable, so Agghoo can be expected to yield significant improvements in exchange
for the increased computational cost. The same argument applies to agcv.

3. Theoretical results

Let n € N and D,, = (X;,Y;)1<i<n denote an i.i.d dataset with common distri-

bution P. Let (dk, ék> . be a collection of linear regressors which satisfies
1

assumption 2.1. Let 7 be a collection of subsets of {1,...,n}. In this section,
we give bounds for the risk of the Agghoo estimator f;g (Definition 2.6) built

from the collection (cjk, ék> .
1<k<K

3.1. Hypotheses

To state and prove our theoretical results, a number of hypotheses are required.
First, the collection of subsets 7 - chosen by the practitioner - should satisfy
the following two conditions.

Reg—T7 There exists an integer n; such that max(3, §) < n; <n and

Tc{Tc{1,...,n}:|T|=n:}
T is independent from D,

Let also n, = n — n; denote the size of the validation sets.

Independence of T from D,, ensures that for T € T, DI is also iid with
distribution P. The assumption that 7 = (T1,...,Ty) contains sets of equal
size ensures that the pairs QQT.(DH)(DE}), QIET.(DH)(D?) are equidistributed for
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i€ {1,...,V}. Most of the data partitioning procedures used for cross-validation
satisfy hypothesis (3.1), including leave-p-out, V-fold cross-validation (with n —
ny = n, = n/V) and Monte-Carlo cross-validation [1].

To state an upper bound for £(s, f:ﬁg), we also need to quantify the amount
of noise in the distribution of Y given X, in a way appropriate to the Huber
loss ¢.. That is the purpose of the following assumption.

(Les) Let (X,Y) ~ P. Let s denote an optimal predictor, i.e a measurable
function R? — R such that s(z) € argmin, g E[¢.(Y —u)|X = 2] for almost all
x € R?. Assume that there exists s and a positive real number 7 such that

P [|Y —s(X)| < g ’X] > as, (3.2)
where ¢ denotes the parameter of the Huber loss.

Equation (3.2) is specific to the Huber loss: it requires the conditional dis-
tribution of the residual Y — s(X) to put sufficient mass in a region where the
Huber function ¢, is quadratic. For example, assume that Y = s(X) + ce where
¢ is independent from X and has a continuous, positive density ¢ in a neighbour-
hood of 0. If the Huber parameter c is proportional to or larger than o, then
a constant value of ) can be chosen, independently of o. On the other hand, if
¢ < o, the optimal value of 7 satisfies n = n(0) ~<_o %.

Finally, some hypotheses are needed to deal with pathological design distri-
butions which can in general lead to inconsistency of empirical risk minimization
[31]. To illustrate the problem as it applies to the hold-out, consider a distribu-
tion P such that 0 < P(X € H) < 1 for some vector subspace H, as in [31].
Assume to simplify that Y = (6., X) + . Let py denote the orthogonal projec-
tion on H. With small, but positive probability, X; € H for alli € {1,...,n}. On
this event, it is clearly impossible to estimate 6, —pgr (6, ). Likewise, the hold-out
cannot correctly assess the impact of the orthogonal components 0, — pH(ék) of
the estimators 6 on the risk, since (ék, X;) only depends on p H(ék), whereas out
of sample predictions (A, X) may depend on 0y —pg (0x) (since P(X € H) < 1)
. This means that the hold-out-selected predictors fﬂo may be arbitrarily far
from optimal in general.

To avoid this issue, two sets of assumptions have been made in the litterature.
First, there are boundedness assumptions: for example, if the predictors ¢ +
<ék, X) and the variable Y are uniformly bounded, this clearly limits the impact
of low-probability events such as {Vi € {1,...,n},X; € H} on the risk. Such
hypotheses have been used to prove general oracle inequalities for the hold-
out [14, Chapter 8] [26, Corollary 8.8] and cross-validation [40]. Alternatively,
pathological designs can be excluded from consideration by assuming an LP — L4
norm inequality or ”small ball” type condition [28, 29]: this has been used to
study empirical risk minimization over linear models [31, 2].

In this article, a combination of both approaches is used. First, we assume a
weak uniform upper bound on L! norms of the predictors (hypothesis (Uub)).
The bound is allowed to grow with n; at an arbitrary polynomial rate.
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(Uub) Let (X;,Y;)1<i<n, = Dy, be iid with distribution P, where n; is given
by hypothesis Reg-T7. Let X ~ X; be independent from D,,,. There exist real
numbers L, a such that

1. ]E[maxlgkgm maXlgignt|<ék(Dnt)7Xi - EX>’i| S Ln?
2. E[maxlgkgm E [[(ék(Dm),X - EX>‘|DWH < Lng.

For the Lasso, if R < ng' in Definition 2.3, then hypothesis (Uub) holds
if in addition F[||X — EX|| ] < ny~ 2. This is the case if the components of
X have variance 1 and d is polynomial in n, or if the components of X are
sub-exponential with constant 1 and log p is polynomial in n.

Hypothesis (Uub) is much weaker than boundedness assumptions usually
made in the litterature, where typically the L° norm is used instead of the
L' norm, and the bound is a constant rather than a polynomial function of
ng. Point 1 of Hypothesis (Uub) is natural in the sense that an estimator 6y
which violates it cannot perform well anyway: assuming that P(]Y]) < +oo ,
by definition of ¢.., for any (q,0),

2

E[pe(Y —q—(0,X))] > cE[|Y —q— (6, X)|] - %
2 e [Ja-+(0,X)[] = eBIY] - 5
> S0 X —EX)] —eBIY] -G (33

Thus, if E U (0r(D,,), X — PX) }} grows faster than n{', then so do the expected
risk and expected excess risk of Ag(D,,). Point 2 of Hypothesis (Uub) can
be seen as an ”"empirical version” of point 1, wherein the independent vari-
able X is replaced by the elements of D,,. The lack of independence between
0, and X; makes this condition less straightforward than 1. However, by the
Cauchy-Schwarz inequality, it is always the case that E “(ék,XZ — PXQ” <
\/&E[(ék, X—PX>2]%. Thus, it is enough to suppose that d and E[(ék, X—-PX)?
are bounded by Ln{ for some a > 0.

Together with the weak uniform bound (Uub), we assume that for sparse
linear predictors z — (0, — EX) with ||0]|, < K, the L? norm is equivalent to
the stronger ”Orlicz norm” defined below.

Definition 3.1. Let Z be a real random variable. Let 1, : x — e* — 1. The
v1—norm of Z is defined by the formula

12l e =inf{u 0.8 [wl (f)} < 1},

with the convention inf ) = +oo. We say that Z € LY if || Z|| v, < +00.
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Plainly, Z € LY if and only if Z is sub-exponential; it can be shown that
||+, is indeed a norm.

The constant relating ||-||,», and ||-||,2 is allowed to depend on n; in the
following way.

(Ni) Let (X,Y)~ P and X = X — PX. For any m € N, let

(X 0] o, 1
= = \ . 3.4
) o200l <om [[(X,0)]|,.  log2 (34)

There exists a constant vy such that

k(K)log k(K) < vy, /bg(nriiv\/[()' (3.5)

The interpretation of this hypothesis is not obvious. Note first that x(K) is
a non-decreasing function of K, and in particular,

k(K) < k(d) = sup 7||<X_’ 0>||Lwl .
020 [|(X,0)]]

Unlike x(K), x(d) is invariant under linear transformations of X: in other words,
it only depends on the linear space V' spanned by the columns of X . In particular,
k(d) does not depend on the covariance matrix of X, provided that it is non-
degenerate. The inequality |[(X,6)|,,, < x(d)[|(X,0)],. can be interpreted
as an effective, scale invariant version of sub-exponentiality: it states that the
tail of (X,6) is sub-exponential with a scale parameter which isn’t too large
compared to its standard deviation. In sections 3.3 , 3.4 and 3.5, we shall give
examples where simple bounds can be proved for x(K) or x(d).

3.2. Main Theorem

When Agghoo is used on a collection (Ag)i<p<xk of linear regression estimators
satisfying Hypothesis (2.1), such as the Lasso parametrized by the number of
non-zero coefficients, as in Definition 2.4, the following Theorem applies.

Theorem 3.2. Let X € R? and Y € R be random variables with joint distri-
bution P such that hypothesis (Les) holds. Let D, = (X;,Y;)1<i<n ~ P®" be a
dataset of size n. Let n, = n — ny, where n; is given by assumption (Reg-T ).
Let ¢ denote the Huber loss parameter from Definition 2.1.

Let K be an integer such that 3 < K < eV™ and (Ag)1<k<k be a collec-
tion of linear regression estimators which satisfies hypothesis (2.1). Assume that
hypotheses (Ni) and (Uub) hold.

There exist numerical constants py > 0, uo > 1 such that, for any 0 € R such

that Vo + 3820 < 6 < 1,

~ 2log(K Vny) TuiLelog K
_ agy | : C t 1
(1 G)E[ﬁ(s,fT )] < (1+9)EL£]1€1§11K€(8,A;€(DM)) +54(a+3) o, + AN
(3.6)
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Theorem 3.2 is proved in appendix B. Theorem 3.2 compares the excess risk
of Agghoo to that of the best linear predictor in the collection Ax(D,, ), trained
on a subset of the data of size n;. Taking |7| = 1 in Theorem 3.2 yields an oracle
inequality for the hold-out, which is also cross-validation with one split. It is,
to the best of our knowledge, the first theoretical guarantee on hyperparameter
aggregation (or selection) for the huberized Lasso. That n; appears in the oracle
instead of n is a limitation, but it is logical, since estimators aggregated by
Agghoo are only trained on samples of size n;. Typically, the excess risk increases
at most by a constant factor when a dataset of size n is replaced by a subset of
size Tn, and this constant tends to 1 as 7 — 1. This allows to take n, of order
n (ny, = (1 — 7)n), while losing only a constant factor in the oracle term.

In addition to the oracle, E{minlngK 0(s, Ar(Dy,)) |, the right hand side

of equation (3.6) contains two remainder terms. Since K < n;, the second of
these terms is always negligible with respect to the first as n,,n; — +oo for
fixed L, c. Assuming that n,,n; are both of order n, the first remainder term is
O(lc’%) with respect to n. In comparison, the minimax risk for prediction in the
model Y = (0., X) +¢, |6,y < ks« < n,e ~N(0,1) is greater than a constant
times %* by proposition 2.2. Thus, if more than logn independent components
of X are required for prediction of Y, the remainder term can be expected to
be negligible compared to the oracle as a function of n.

As a function of a scale parameter ¢ in a model Y = s(X) + o, where ¢ is
distributed symmetrically around 0, the remainder term scales as i, where 7
depends only on o and on the fixed distribution of e. When ¢ is lower bounded
and if ¢ is sufficiently regular, then % = O(co) (see the discussion of hypothesis
(Lcs)). In that case, the rate co is the same as in the minimax lower bounds of

Proposition 3.2, and can therefore be considered correct. When < — 0, % ~ c?

is suboptimal for Gaussian distributions e, where the correct scaling is o2 (by
Proposition 2.2 and a simple comparison with least squares). However, Theorem
3.2 makes no moment assumptions whatsoever on the residual Y — s(X) - thus,
it is logical that the parameter ¢, which controls the robustness of the Huber
loss, should appear in the bound.

In equation (3.6), there is a tradeoff between the oracle and the remainder
terms, governed by the tuning parameter 6 € (0;1]. # must be larger than a
positive constant depending on «, 1y and 7; as a result, Theorem 3.2 only yields
a nontrivial result when vy < ﬁ Note that hypothesis (Ni), which defines

logn
n

vy, allows vy to decrease with n as fast as , in case k(K) is a constant - as

when X is gaussian (see section 3.3 below). Assuming only that vy = vo(n) — 0
and that the remainder term is negligible compared to the oracle, equation (3.6)

proves that E[ﬁ(s,fﬁg)} ~ E[minlSkSK K(S,Ak(Dnt))] by taking § = 6, — 0
slowly enough - an ”optimal” oracle inequality.
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3.3. Gaussian design

In the case where X € R is a Gaussian vector, (§, X — EX) follows a centered
normal distribution. As a result, x(K) - defined in equation (3.4) - is a fixed
numerical constant, equal to max(||Z|| v, , @), where Z ~ N(0,1). It follows
that for any fixed vg, hypothesis (Ni) holds as soon as 10"% is large enough.

Moreover, for Gaussian design, it is possible to show that the Lasso estimators
of Definition 2.4 satisfy hypothesis (Uub) for any R > 0 (including R = +00),
as long as Y has some moments and K isn’t too large. More precisely, hypothesis
(Uub) holds with L, & independent from R. This leads to the following corollary.

Corollary 3.3. Assume that X € R? is a Gaussian vector, that for some
u € (0,1], Y € L'*“ and that hypothesis (Les) holds. Let R € R U {+oo}

and let f;g be the Agghoo estimator built from the collection (A%TSRSO)K;KK'

Assume that ny > 13 + % and

. Ty g 2(nt — ].)
3<K <L , . 3.7
=0 = mn (lognt’logd 5 ) (37)

There exist numerical constants us, ug such that for all 6 € {%\/105%, 1}
and all g € R,

2
Tag ; 1
(1-0)E {E(s, f;g)} <(1+0E LQQK K(SaAZ‘f?f”(Dnt))] L 943 losme

Hsc

Ongr/Ty

Corollary 3.3 allows to take  — 0 at any rate slower than 4/ %, so that the

asymptotic constant in front of the oracle is 1. The constraint (3.7) imposed on K
by Corollary 3.3 is mild, since there are strong practical and theoretical reasons
to take k£ much smaller than logfm anyway: this enforces sparsity — minimizing
computational complexity and improving interpretability — and allows better
control of the minimax risk (Proposition 2.2). Equation (3.7) serves only to
prove that éfc‘f}s%so satisfies hypothesis (Uub), hence it could be replaced by a
polynomial bound on R and on X — FX, as explained in the discussion of

hypothesis (Uub).

Onn.,
+ eV I[IY1 —dqllpisa)

3.4. Nonparametric bases

Given real random variables U € [a,b],Y € R, a linear model may be a poor
approximation to the actual regression function so(U). A popular technique to
obtain a more flexible model is to replace the one-dimensional variable U with
a vector X = 9;(U)1<j<a,, where (1;)1<j<aq, spans a space of functions W,
known for its good approximation properties, such as trigonometric polynomials,
wavelets or splines ([16, Chapter 5]). d,, is practically always allowed to tend to
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400 as n grows to make sure that the approximation error of s by functions in
Wa, = ((¢j)1<j<a,) converges to 0. In this section, we discuss conditions under
which Theorem 3.2 applies to such models.

It turns out that most of the classical function spaces satisfy an equation of
the form

Vf € Wa,, [[fllo < 1@, )V do [ fll 12 (o) »

where p(a, b) is some constant independent of d,, [4, Section 3.1]. By replacing

Y;j(x), defined on [a; b], by 1;(7=2) defined on [0; 1], we can see that the correct

scaling with respect to a,b is u(a,b) = %. Thus, if the distribution of U
dominates the uniform measure on [a, ], in the sense that for some py > 0 and

any measurable A C [a,b], P(U € A) > £ [, dz, then

0,1
VF € W (U)o < “(fp)ﬁ 1O o

In particular, if W,  contains the constant functions - which is the case with
splines, wavelets and trigonometric polynomials - then equation (3.4) holds with
#(dy) of order \/d,. Thus, equation (3.5) of hypothesis (INi) holds under the
assumption that d,, < urg 1022 - for some constant p. Assuming that n, and n,
are both of order n (for example, a V—fold split with fixed V'), this assumption
is mild: as a consequence of [14, Theorem 11.3] and approximation-theoretic

properties of the spaces Wy, [10], taking d,, < log%n, for example, is sufficient

to attain minimax convergence rates [35] [14, Theorem 3.2] over standard classes
of smooth functions.

Note that even though x(d,) ~ v/d,, this does not in general imply that
k(K) = O(VK): for example, in the case of regular histograms on [0, 1], Y =

\/dnﬂ[d.i if1] 80 l‘ll;ﬁ;ll“ﬁ = V/d,, and when U ~ Unif([0;1]), (1) ~d, 400 Vn-
n’ dn L

The property x(K) = O(VK) does, however, hold in the case of the Fourier
basis: as a result, d,, may be arbitrarily large, and only bounds on K (the
maximal zero-norm of the estimators) are required. We examine this case in

detail in the following section.

3.5. The Fourier basis

Suppose that real variables (U,Y) are given, and that we wish to find the best
predictor of Y among 1—periodic functions of U. Let sy, denote the minimizer
of the risk F[¢.(Y — t(U))] among all measurable 1—periodic functions on R.
For all k € N, let hop(z) = V2cos(2mkx) and o1 (z) = /2sin(27kx). Let
X = (¢;(U))1<j<d, where d € N and d > 2. One can easily show that spe,(U) =
$(X), where s minimizes P[¢.(Y — t(X))] among measurable functions ¢ on
R¢. By taking d large and using sparse methods, it is possible to approximate
functions sy, which have only a small number of non-zero Fourier coeflicients,
but potentially at high frequencies, as is commonly the case in practice [15].
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Let (g, ék)1§k§ x be a collection of sparse linear regression estimators sat-
isfying hypothesis 2.1 and let f, denote the predictor fy : x — Gr(Dyn,) +
(01(D»,), ). Given this initial collection, Definition 3.4 below constructs a sec-
ond collection (qk,ék)1§k§ x which also satisfies hypothesis (Uub) under an
appropriate distributional assumption (Corollary 3.6, equation (3.11)).

Definition 3.4. Let (cjk,ék)lngK be defined by
R R 3
. G, 00) if |6 , </
(Gk, Ok) = ( ) et (3-8)
(G,0) otherwise,
where

q(Dy,) € argmin |q|
qu(Dnt)

Q(D,,) = argmin ¥ 6.(Y; — q).

a€R

For any k, let ty : ¥ — Gp(Dy,) + <9~k.(Dm),x>.

By construction, ((jk,ék) also satisfies hypothesis 2.1. Replacing ((jk,ék) by
(qk, 9% ) may improve performance and cannot significantly degrade it, as propo-
sition 3.5 below makes clear.

Proposition 3.5. Assume that Y € L* for some o € (0,1] and let q. € R. If
16 4
Ny > max (aang»c+10||5(X)_Q*Ll>v (3.9)
for some numerical constant p19 > 0,

: - . . HioC 2 4
< — o — . .
E Lg}l&l}(ﬁ(s,tk)} <E |:1£IIICI<HK€(S,tk):| + o (c\/ 2« Y CI*HLa) (3.10)

Theorem 3.2 can be applied to the collection (g, ék)1gkg i, which yields the
following Corollary.

Corollary 3.6. Assume that U has a density py such that

inf t4 i) >y > 0. 3.11
tel[%g);pl]( 7) > po (3.11)

Assume that there exists n > 0 such that almost surely,
P <|Y — sper(U)| < g) >1.

There exists a constant pg > \/8 such that, if

977>2 Ny
K< — 3.12
=P (ug log® ny ( )
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for some 6 € (0;1], then

c?logn;  5picKlog K

Onn, On2\/n,
(3.13)

(14)1@[@(5,]?7%%)} < (14 0E| min e(s,fk)] +270

1<k<K

If the 1—periodicity of sy, represents (say) a yearly cycle, then Equation
(3.11) states that each ”time of year” u € [0; 1] is sampled with a positive density,
i.e that the density of U — |U] is lower bounded by a positive constant py on

[0;1]. This ensures that equation (3.4) holds with x(K) of order ,/p%, so that

2
hypothesis (Ni) reduces to K < pg (0—"> ne_ T particular, if 6 is constant

Ho log ny
n

and n, is of order n, then K is allowed to grow with n at rate Toan” This is
a reasonable restriction, as by Proposition 2.2, one cannot expect to estimate

more than & coefficients with reasonable accuracy (a ﬁ convergence rate

gn
being too slow for most practical purposes).
Corollary 3.6 then deduces an oracle inequality with leading constant %g

(arbitrarily close to 1) and remainder term of order @7 which is typically

negligible in the non-parametric setting of this corollary. For this reason, Corol-
lary 3.6 can be said to be optimal, at least up to constants.

3.6. Effect of V

The upper bound given by Theorem 3.2 only depends on 7 through n, and n;.
The purpose of this section is to show that for a given value of n,, increasing
V = |T] always decreases the risk. This is proved in the case of monte carlo
subset generation defined below.

Definition 3.7. ForT € [%, 1} and V' € N*, let T''i7 be generated independently
of the data D,, by drawing V' elements independently and uniformly in the set

{T ] |T| = [rn]}-

For fixed 7, the excess risk of Agghoo is a non-increasing function of V.

Proposition 3.8. Let U <V be two non-zero integers. Let T € [%, 1]. Then:

B|e(s F7%)] <E [t 73]



G. Maillard/Agghoo in sparse, robust regression 20

Proof. Let (1;)i=1,...v = T5. Let Z={I C [[1; V] : [I| = U}. Then

Zho
T;

f e

||
<~

N
Il
—

a<
==

) /;}11.0
o)

\%
1 Z Z[EIL‘EI Zho
=1

u(

Il
M:

1

.
Il

o

Q \

R PMONE

IeT el

It follows by convexity of f +— £(s, f) that

E s, F5,)] < mZE

Iez

(5: 5 ZfT‘:O)] .

i€l

For any I € Z, (T;)ier ~ T, and is independent of D,,, therefore 2 T Dicl fT
fﬁ%bc. This yields the result. O

It can be seen from the proof that the proposition also holds for Agcv. Thus,
increasing V' can only improve the performance of these methods. The same
argument does not apply to CV, because CV takes an argmin after averaging,
and the argmin operation is neither linear nor convex. Indeed, no comparable
theoretical guarantee has been proven for CV, to the best of our knowledge,
even though increasing the number of CV splits (for given 7) generally improves
performance in practice.

Proposition 3.8 does not quantify the gain due to aggregation. This gain
depends on the properties of the convex functional ¢ — £(s,t), in particular on
its modulus of strong convexity in a neighbourhood of the target s (assuming
that at least some estimators in the collection are close to s). Moreover, as for
any loss function, the gain due to aggregation depends on the diversity of the
collection ( fT )i<i<v: the more the hold-out estimators f; fho vary with respect
to T, the greater the effect of aggregation.

More precisely, under hypothesis (Lcs), we can prove the following improve-
ment to Proposition 3.8.

Proposition 3.9. Let (X,Y) ~ P is independent from D,,. Assume that P
satisfies hypothesis (Les). For any i € {1,...,V}, let E;(c) denote the event
|(f£° —s)(X)| < §. Then for any V €N,

[ (s mec)} [E(S,J?T}io)} - UV4V {(f J?ﬂo)2 (X)g, (0)lEy ()
(3.14)
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When £(s, Ajblo) is small enough, the event E1(c) occurs with high probability. As

a consequence, if E [ﬁ(s,f}‘l")} < 776—22, then

B (605, F78)] < B [t 7] - wigp e | (e - i) (0] 39

where Med[Y] denotes the largest median of a random variable Y.

Proposition 3.9 is proved in appendix C.3. It quantifies the gain due to ag-
gregation in terms of the parameter ¢ of the Huber loss, the constant 1 given
by hypothesis (Les) and the distance between two hold-out estimators that are
close enough to s. Taking ¢ — +00 recovers the least-squares case, where n =1
and there are no constraints on fqli‘o — 5. Only two indices 1,2 appear in the
right-hand side of equation (3.14): that is a consequence of the exchangeability
of the collection (A}‘io)lgigv for Monte-Carlo subset generation. The same result
also applies to V —fold Agghoo, since it also yields an exchangeable collection.
For arbitrary 7T, all distinct pairs of indices would have to be considered.

Going beyQond proposition 3.9 requires giving nontrivial lower bounds on
(fThlo — fﬁo) (X)), which is no easy task, given the complex dependencies in-
volved. Results in this direction have only recently been obtained in the setting
of least-squares density estimation [24, Chapters 5-6]. A few general heuristics
apply: first, if there is one learning rule Ay, in the collection which is much
better than the others, the hold-out can be expected to select it most of the
time: in that case, Agghoo reduces to bagging, and potential gains depend on
the stability of Ay, . In contrast, if there are many rules Ay which are close to
optimal, while being distant from each other, then the gains of aggregation can
be expected to be large, even if the individual rules Aj are stable.

4. Simulation study

This section focuses on hyperparameter selection for the Lasso with Huber loss,
either using a fixed grid or using the reparametrization from Definition 2.4. The
methods considered for this task are Aggregated hold-out given by Definition
2.6, Aggregated cross-validation given by Definition 2.7 and standard cross-
validation. In all cases, the subsamples are generated independently from the
data and uniformly among subsets of a given size 7n, as in Definition 3.7. Thus,
all three methods share the same two hyperparameters: 7, the fraction of data
used for training the Lasso, and V| the number of subsets used by the method.

For the huberized Lasso with a fixed grid, the hqreg_raw function from the
R package hqreg [48] is used with a fixed grid designed to emulate the default
choice: a geometrically decreasing sequence of length 100, with maximum value
Amaz and minimum value \,,;n, = 0.05\,,,4- The fixed value of A4z is obtained
by averaging the (data-dependent) default value chosen by hqreg raw over 10
independent datasets. To compute the reparametrization given by Definition


https://cran.r-project.org/web/packages/hqreg/index.html
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2.4, we implemented the LARS-based algorithm described by Rosset and Zhu
[34], which allows to compute the whole regularization path.

Li.d training samples of size n = 100 are generated according to a distribution
(X,Y), where X € R190 and Y = w! X +¢, with € independent from X. To illus-
trate the robustness of the estimators, Cauchy noise is used: € ~ Cauchy(0, o).
The performance of Agghoo and cross-validation may depend on the presence
of correlations between the covariates X and the sparsity of the ground truth
wy. To investigate these effects, three parametric families of distribution are
considered for X, in sections 4.1, 4.2 and 4.3.

The risk of each method is evaluated on an independent training set of size
500, and results are averaged over 1000 repetitions of the simulation. More
precisely, 1000 training sets D; of size n = 100 are generated, along with 1000
test sets (Xl(,j,}/iij)lgi§5()0, each of size 500. For each simulation j and any
learning rule A,y among the six obtained by combining Agghoo, monte carlo
CV and AGCV with either a fixed grid or the zero-norm parametrization, the
average excess risk

500
Ry(ATV) = —— > e (V7 = Arv(D)(X] ) — ¢e (Y1, — s(X1 )]

500 £

is computed on the test set for all values of V' € {1,2,5,10} and 7 € {11*0 1< < 9}.

4.1. Experimental setup 1

X is generated using the formula X; = m Z?:l u;—;Zj, where Z; are indepen-
2.2
dent standard Gaussian random variables, u; = ngwre*% and cor € Nis a
parameter regulating the strength of the correlations. The regression coefficient
has a support of size r = 3xk drawn at random from [|1; 1000|], and is defined by
Wy j = Uy g(j), Where g is a uniform random permutation, u.; =bif 1 <j <k
and uy j = % if 2k +1 < j < 3k, with b calibrated so that || Xw.| . = 1. The
noise parameter is o = 0.08, while the Huber loss parameter ¢ is set to 2 — a
suboptimal choice in this setting, but convenient for computing the huberized

Lasso regularization path.

Choice of 7 parameter For all methods, in most cases the optimal value of
7 is 0.8 or 0.9, similarly to what was observed in the rkhs case, where 7 = 0.8
was recommended. Table 1 displays the quantity

Mean [(RJ (A7, V)~ Rj (A, 7, V))lgjgl()()()]
Sd |:(Rj(-’47 T,V)— Rj(A 7'*7V))1§j§1000}

G(A,T,V) =

b

where Sd denotes the (empirical) standard deviation and 7, the optimal choice

of 7, 7. = argmin,cgo1, 0.9y Mean {(Rj(A, T, V))lgjglooo} . Thus, values of



G. Maillard/Agghoo in sparse, robust regression 23

G’(.A7 7, V) bigger than a few units suggest that 7 is suboptimal to a statistically
significant degree. When .. = 0.9, G((A,0.8,V) is displayed in black on table
1. When 7, = 0.8, G(A,0.9,V) is displayed in blue on table 1. Exceptions where

T« ¢ {0.8,0.9} are highlighted in red, with the value min (G'(A, 0.8,V),G(A,0.9, V)) .

r = 150 r = 60 r=24

method 15 1 15 1 15 1
1 grid agghoo 22 27|30 2705 5.6
2 grid agghoo 25 21131 14|10 79
3 grid agghoo 25 68135 06|06 119
4  grid agghoo 07 72|37 11| 45 16.7
5 grid cv 1.0 39|16 0.1 |12 1.5
6  grid cv 0.8 50|26 05|14 1.1
7  grid cv 14 28|15 08|05 37
8  grid cv 20 26|29 11|16 59
9 grid agev 1.0 39|16 01|12 1.5

03 20|14 19 03 0.8
03 22|05 07105 1.1
05 04|00 03] 038 1.0
1.3 4.1 |20 03] 05 5.6
30 14|32 13|19 9.2
40 6.7 | 5.1 33| 40 13.7
46 73 |70 37|52 185
43 94 |43 1.1 | 20 3.9
1.9 7.2 1.8 4.4 | 4.8 2.7
27 531|124 33|15 0.7
6.1 46 | 54 35| 0.6 0.1
4.3 94 | 4.3 1.1 | 2.0 3.9
1.9 58|24 45 | 59 3.5
2.1 1.9 1.0 4.0 | 5.7 3.7
45 1.0 | 33 36| 73 3.9
TABLE 1
G(.A, 7, V) for sub-optimal 7 € {0.8,0.9} and various distributions. Colours show optimal
T« blue for 7« = 0.8, black for 0.9, red when 7 ¢ {0.8,0.9}.

10  grid agcv

11  grid agev

12 grid agev

13 O0—norm agghoo
14  O—norm agghoo
15 O—norm agghoo
16  O—norm agghoo
17 O—norm cv

18 O—norm cv

19 O—norm cv

20 O—norm cv

21  O0—norm agcv
22  O0—norm agcv
23  O0—norm agcv
24  O0—norm agcv

= = = = — =
DU ONRSON RSO RS NS o =<

Most of the exceptions 7. ¢ {0.8,0.9} occur on the column r = 150, cor = 1,
while most of the others are of low statistical significance, with values less than
1.1 on the fourth column (r = 60 and cor = 1). Thus, table 1 confirms the claim
that 7. € {0.8,0.9} for all methods, in most cases. For grid agghoo, 0—norm
agghoo, grid agev and V' > 5, 7. € {0.8,0.9} for all simulations. Comparing
now 7 = 0.8 and 7 = 0.9, grid agghoo and 0—norm agghoo with V' > 5 show
a clear pattern: 7 = 0.9 is better or as good as 7 = 0.8 in all cases except
r = 150,cor = 1 where 7 = 0.8 is significantly better. For other methods,
results are not so clear and the difference in risk between the two values of 7 is
often insignificant.

Choice of V' For all methods considered, performance is expected to improve
when V is increased, but by how much? If the performance increase is too slight,
it may not be worth the additional computational cost. In figure 1, the mean
excess risk for the optimal value of 7 is displayed as a function of V| with error
bars corresponding to one standard deviation. The scale used for the vertical
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axis in each graph is the average excess risk of the oracle with respect to the
fixed grid over the A parameter. Quantifying performance as a percentage of
the oracle risk, when cor = 15, Agghoo improves by roughly 20% from V =1
to V = 2, by roughly 10% from V = 2 to V = 5 and by a few percent more
from V =5 to V = 10. CV with the standard grid behaves similarly in these
two simulations, while CV with the zero-norm parametrization shows much
less improvement when V is increased. Thus, taking V' > 5 is advantageous,
but there are clearly diminishing returns to choosing V' much larger than this.
For CV with the zero-norm parametrization, V' = 2 seems sufficient in these
simulations .

Comparison between methods From figure 1, it appears that grid agcv is
a very poor choice, being worse than both grid agghoo and grid cv for all values
of V when r = 150, cor = 15 , and being the worst of all the methods for V' > 2
when r = 24, as well as highly unstable, as the size of the error bars clearly
shows.

Interestingly, 0—norm agcv behaves much better, being the second best method
when cor = 1, and very close to the best when r = 24 and cor = 15.

Generally speaking, of the two types of parametrization of the Lasso, the
zero-norm parametrization appears to perform better than the standard grid
when correlations are small (cor = 1), while the performance is significantly
worse when r = 150 and cor = 15.

Comparing now Agghoo and CV, Agghoo appears to be better than CV when
V > 2 in situations where r is larger (r = 150). This seems to hold for both
the standard parametrization (grid agghoo) and the zero-norm one (0—norm
agghoo). The relation is reversed for small r, with CV performing better than
Agghoo for all values of V' when r = 24.

Further studies The previous simulations suggest that Agghoo performs bet-
ter than CV in the case of high intrinsic dimension. This behaviour is logical,
since the cross-validated Lasso will ignore some predictive variables when there
are too many of them, and randomized aggregation may help recover more of
the support. However, the effect of correlations is unclear. Experimental setup 1
mixes different types of correlations: correlations between predictive variables,
correlations between predictive and non-predictive variables, and correlations
among non-predictive variables. It is possible that one type of correlation favours
Agghoo while another favours CV.

To gain a more accurate idea of when Agghoo is advantageous over CV, two
more settings are studied, considering separately correlations among predictive
variables, and between predictive and non-predictive variables. Since previous
simulations showed that 7 = 0.8,0.9 and V = 10 were the optimal parameters,
only those parameters will be considered in the following.

Since the choice of lasso parametrization did not seem to affect the relative
performance of Agghoo and CV, we only consider the standard parametrization,
as it is more popular and also easier to use in our simulations. Agcv is not con-
sidered either, since it was discovered to be unreliable in previous simulations.
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Performance as a function of V for r = 150, cor = 15
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4.2. Experimental setup 2: correlations between predictive and noise
variables

Let r be the number of predictive variables and let each predictive covariate have
s ”"noise” covariates which are correlated with it at level p = 0.8. Assume that
rs < d, where d is the total number of variables. Let (29)199, (Zij)i<i<ri<j<s
and (Wg)1<k<d—rs be independent standard gaussian variables. For any j € [|0 :
r —1|] and any i € [|1;s]], let X4 = \/@Z? ++0.2Z; j and for rs < i < d,

let X; = W;_,s. For the regression coefficient, choose w, = ﬁ
Ly

u = (Lyj—1lj<rs)1<j<a- Let then Y be distributed conditionnally on X as
Cauchy ({(wy, X),0.3). The loss function used here is ¢. with ¢ = 2.

, where

Results Figure 2 shows a bar plot of the average excess risk of CV and Agghoo
as a fraction of the average risk of the oracle. 90 % error bars were estimated
using a normal approximation. Parameters used for Agghoo and CV were 7 =
0.9 and V =10 (7 = 0.8 yields similar result).

Overall, Agghoo’s risk relative to the oracle significantly decreases as the
zero-norm of w, increases from r = 10 to r = 50 , as was observed in section 4.1
. For r = 25 and r = 50 separately, the risk relative to the oracle significantly
decreases as s increases from 2 to 10. For » = 10, this trend is unclear due to
the random errors.

In contrast, CV’s performance relative to the oracle shows no statistically
significant trend either as a function of r or as as function of s.

As a result of these trends, Agghoo performs significantly worse than CV
for » = 10 and significantly better when r = 50, especially when s > 5. When
r = 25, CV performs significantly better than Agghoo for s = 2 and s = 5 and
they perform similarly when s = 10 and s = 20.

4.3. Experimental setup 3: correlations between predictive variables

We consider now predictive covariates which are correlated between them, and
independent from the unpredictive covariates. As above, let r denote the number
of predictive variables and p > 0 be the level of correlations. Let Zy, (Z;)1<i<r
and (W;)1<i<4—r be standard Gaussian random variables. The random variable
X is then defined by X; = \/pZo + /1 —pZ; for 1 <i <r and X; = W;_,. for
r+1 < i <d. Asin section 4.2, the regression coefficient w, is a constant vector
of the form H)(?)u%’ where this time u = (Hléiér)lgigd'

Y is distributed conditionnally on X as Cauchy((X, w.),0.3) and the loss
function used is the Huber loss ¢s.

Results Figure 3 shows a barplot generated in the same way as in section 4.2.
Parameters used for Agghoo and CV were V' = 10 and 7 = 0.8, which is optimal
in this case for both Agghoo and CV.

As in previous simulations, Agghoo’s performance relative to the oracle im-
proves significantly when the intrinsic dimension r grows from 25 to 200, for a
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given value of p. The decrease in relative risk is faster for small values of p. As a
result, Agghoo performs best, relative to the oracle, when p = 0.2 for r = 200,
whereas best performance seems to occur at p = 0.5 for smaller values of r, up
to random errors.

For cross-validation, the relative risk seems more or less unaffected by the
dimension 7, but shows an increasing trend as a function of p for all values of r.

As a result, Agghoo performs better than CV for » = 200 and for » = 100
and p = 0.2,0.5. For » = 200 and p = 0.2, Agghoo even performs significantly
better than the oracle! This is possible, since the Agghoo regression coefficient
ég—g does not itself belong to the Lasso regularization path.

5. Conclusion

Aggregated hold-out (Agghoo) satisfies an oracle inequality (Theorem 3.2) in
sparse linear regression with the Huber loss. This oracle inequality is asymptot-
ically optimal in the non-parametric case where the intrinsic dimension tends to
+00 with the sample size n, provided that an L¥* — L? norm inequality holds on
the set of sparse linear predictors. The condition holds for gaussian vectors and
for classical approximation spaces in non-parametric regression. In the case of
the trigonometric basis, this approach yields an oracle inequality in which the
total dimension d does not appear.

When Monte-Carlo subsampling is used (Definition 3.7), Agghoo has two pa-
rameters, 7 and V. Theoretically, it is shown that Agghoo’s performance always
improves when V grows for a fixed 7. Simulations show a large improvement
from V =1 to V = 5 in some cases, but diminishing returns for V' > 5. With
respect to 7, simulations show that 7 = 0.8 or 7 = 0.9 is optimal or near op-
timal in most cases. In particular, a default choice of V' = 10, 7 = 0.8 seems
reasonable.

Compared to cross-validation with the same number of splits V', simulations
show that Agghoo performs better when the intrinsic dimension r is large enough
(r = 150 in section 4.1, r = 50 in section 4.2 and r = 100 in 4.3) for n = 100
observations and d = 1000 covariates. Correlations between predictive and non-
predictive covariates, which increase the number of covariates correlated with
the response Y, clearly favour Agghoo relative to CV and the oracle, whereas
the effect of correlations between predictive covariates is ambiguous.
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Appendix A: Proof of Proposition 2.2

The proof follows the same lines as the proof of [31, Theorem 1], with some
differences due to the non-quadratic risk.
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Since 6 is allowed to depend on ¥, which is positive definite by assumption,
1
we can always replace the X; by 372 X;. Thus, it can be assumed without loss
of generality that > = I,,. Using the notation of Proposition 2.2

U8, 07) = Elpc(oe + (0 — 0, X)) — ¢c(oe)],

where ¢, X are assumed to be independent from the sample D,,. Since €, X are
independent, centered normal variables, oe + (f. — 0, X) is centered normal,
. . 2 2
with variance o + [|6, — 6]]5.
It follows that

007,07) = g.(\/ o2 + [|0x — 0]3)—ge(0), where g.(z) := E[¢o(xZ)] for Z ~ N(0,1).

Let also g0 (r) = ge(V1r? + 02) — g.(0), so that £(67,07) = g. (|0 — 0]],).

Consider the prior ITy = N(0, %Id) on 6,. Then a classical computation [31]
shows that the posterior 7, = II\(:|D,,) is gaussian and centered at the ridge
estimator

R . 1 <&
Orn=(Sn+Ma)™ =Y Vi,
i=1

where 3, is the empirical covariance matrix. Fix a sample D,, and let 6 ~ 7y,
be independent from e, X. Notice that
E[Val(07,07)] = E[X¢/.(0e + (0 — 0, X))]
- B [XE[gb;(ae - 9,X>)|X]} :

Set now 0 = GA,\JL. Since 0 ~ #,, knowing X, (é—éA,n, X) is centered normal and
independent from e, which is also centered normal. It follows that ]E[QS’C(Js +

-0, X))|X] =0, since ¢/, is an odd function. This shows that 0. is a Bayes
estimator with respect to the prior Il and the loss function £.
Thus, for any estimator 6,

S Ep, g [A0(D)7.00)] = o, [Ep, pon [065.67(D)]]

*

> By, [Ep,pen [€07, 07 ,(D0))]]

= By, |PE" [0(%= 4T (D, }
Q*H[%[(ﬁ Ayn( ))}

00T, 07) = geo(||0 — 0]|5), so by convexity of £(7,), g., must be convex.
Hence, by Jensen’s inequality,
2D '

E[07,0% ()] 2 g (E[|0. = 01 n(D2)
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_ /0 . .
Under P%, Y, = <W’X1> + og;, 80O

R . 1 & 6 0
Orm — 0= (S, + M) =Y Xi X = 406 X; | — —
S (Z VA ) VA

0 (7 0 -
* 4= HOMNSY AR ¢
+ n;s( + Ag)

= (Sn+ M) 'S,

S
S

= VA + M) 0+ T ei(Sn + M) X
n i=1

Since d < n, ¥, is almost surely non-degenerate. It follows that

o n

~> b X
i=1

1 n
=3 e, ' X,
ni=
Let i, = 251", ;2,1 X;. By the dominated convergence theorem,

SWEp, _pgn (07,07 (Dn))] > ger (B[ ],)

lim H%\m — 0,
A—0

YA € (0,1],{|0r.n — 0.

< [zt

+

Since the ¢; are iid normal A/(0,1) and independent from the X;, conditionnally
on Xq,...,X,, 7, is centered normal, with covariance matrix

o’ Zn S—1 Teo1 _ 00y
ﬁ £ Zn XZXZ En — ;En .
It follows by lemma A.1 that

Bl ((K0hzicn) 2 2T\ fTr5)

By convexity of the function M — /Tr(M~1) on the positive definite matrices

(lemma A.2),
E[[[7]l,] > %%, [r (E[S.]1) = a\/z\/z.

Since g, is non-decreasing and convex,

. 2 [d
 [0OT, 07 > \/>
SUpEp, ~pp 467,07 (D)) = 9o (q/w .
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By definition, g.(z) = E[¢.(2Z)], where Z ~ N (0, 1), so
ogl(0) = 0E[Z¢.(0Z)] = o E[min(cZ?, c|Z])].
This proves the proposition.

Lemma A.1. Let Y ~ N(0,%) be a gaussian vector, where Y. is positive defi-

nite. Then
2
E[[[Y]y] > \/;\/TT(E)-
Proof. Let Yy = %72Y ~ N(0,1;). Then

£, = £ |2ty

[ o)

Let ¥y = % Let 39 = QT DQ, where D is diagonal and @ is orthogonal.

Let A1,...,Aq be the diagonal coefficients of D (that is to say, the eigenvalues

of $o). Then
E [\/YOTZOYO} =FE { (QYO)TD(QYO)] .

As @Q is orthogonal, QYy ~ N (0, 1), so

o[- ] -

The coefficients \; are positive (since X is positive definite) and sum to 1 (since
Tr(Xo) = 1 by construction). It follows by Jensen’s inequality that

d
E {\/M} > E > AilYoil
=1

d
= E[lYoul] > i
i=1

= E[|Yo1]

2
=4/ = since Yo ~ N(0,1).
7

Thus, the lemma is equivalent to

by
Vi =Y

E Tr(%)

This proves the lemma. O
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Lemma A.2. The function f : M +— /Tr(M~1) is conver over the convex
cone of positive definite matries.

Proof. Let M be a positive definite matrix. Let H be a small, symmetric per-
turbation. Then

(M4+H) ' =T+ M 'H)*M~!
= (fa= M7 H + (M) 4 o(1H D)) M7
=M '~ M 'HM '+ (M TH?M ' +o(|H|]?).

Therefore,

Tr((M+H)™") =Tr(M ) =Tr(M*HM ) +Tr(M~"H)>*M ") +o(|H|]*).

For any positive real a > 0, va+ h = y/a + ﬁ - ;1 + o(h?). Tt follows that
a2

Tr(M-YHM™1)

2 /Tr(0Y)

Tr(M~'H?*M™Y)  Tr(M'HM™')?

2y/Tr(M-1) 8Tr(M-1)3

VTr(M + H)=Y) =\/Tr(M-1) —

+ol|[H|).
(A1)

For any two matrices A, B, let (4, B) := Tr(M*%ABTM’%). It is easy to see
that this defines a scalar product. Thus, by the Cauchy-Schwarz inequality,
Tr(M"HM ™) =Tr(M >M 2HM M 2)?

= (M~ HM2,1,)

< (Lo, Iy (M3 HM ™% M~ HM %)

=Tr(M "Tr (M '"HM 'HM™")

=Tr(M YHTr(M*H)*M™).
Thus,

Tr(M-'H*M™Y)  Tr(M 'HM')?
2y/Tr(M-1) 8Tr(M-1)%

>

—1 2 —1
%Tr((M HPMTY

Tr(M)

By equation (A.l), this proves that the Hessian of f at M is non-negative
definite. O

Appendix B: Proof of Theorem 3.2

The idea of the proof is to apply [25, Theorem A.3] using suitable functions

(Wi ), 5yef152}2-
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In this proof, we shall adopt the following notational conventions. The nota-
tion P, E will be reserved for probabilities and expectations which involve the
sample D,,, (or D,,). For a (possibly random) function f : R? x R — R, P(f) =
P(f(X,Y)) will denote the expectation taken with respect to (X,Y) ~ P only
(ignoring the potential randomness in the construction of f). The notation E
will be used for any other expectation. Moreover, for any measurable function
t: R4 — R, we denote

[tlla,p = [E(X) o, p 5= [H(X)[| o where (X,Y) ~ P
[ty p = Iy, p 5= NEX) ] v, where (X,Y) ~ P.

For a random function ¢ : w + (x — t(w)(x)), let

¢ o, P

E o p = = [Ea

with a similar definition for ||tA||w1 P

Fix a dataset D,,, K € {1,...,n;} and for any k € [|1;K|]?, let {;, =
Ak(Dy,) : © — G(Dy,) + (0k(Dn,), z). More precisely, to apply [25, Theo-
rem A.3], one must show inequalities of the form H (wy,ws, (fk)lgkg(): for all
r>2,

2

P<|</>c(fk(X) —Y) = ¢e(t(X)=Y) - Cﬂr> <! [w1(\/f(87fk)) + w1 ( Z(S»fl))}

= N r—2
x [wa (e, 1)) +wa (s, 00)]
(B.1)

where w1, wo are non-decreasing functions. Since ¢, is Lipschitz, it is enough to

control HtAk —1{ and HtA;c —4 by functions of £(s, ;) and £(s, ;).

tle,P HQ,P

B.1. A few lemmas

Lemma B.1. Let X be a non-negative random variable such that
Ve e R,P(X >1z) <ae™®,

where a > 1. Let g € L*(Ry,e~%dx) be an increasing, differentiable function.
Then for all b € Ry,

+oo
E [g(X)Lx>p] < a/b e Vg(v)dv.
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Proof.
“+ o0
E[g(X)Ix>p] = P (9(X)Ix>p > u)du
0
+oo
=g(b)P(X >0 +/ P(g(X)>u)du
g(b)

+oo
< g(b)P(X >b) + a/ e Vg’ (v)dv since g increases
b

+oo
< g(b)P(X > b) — ae "g(v) + a/b e Yg(v)dv

“+oo
< a/ e Yg(v)dv.
b

Lemma B.2. Let Z be a random variable. Then for all r > 2,

T 1

I E| 21

In particular, if |Z]|;» < & ||Z||;2 for some r > 2,k > 0, then ||Z]| -
ke 2]l

E[Z?| < E||Z

Proof. Let p = % > 1, % =1- %, o= %, then by Holder’s inequality,

E(Z?] = B[|Z|*|Z]*~°]

1
< EB(21) B || 211"

Now by definition, % = :%2, % =1- Tﬁf = Til,pa:px L'—1 and

r— p
9_1
g2 —a)=—%
1-1
P
r—2
_ 2 - r—1
- —2
1_:71
_2(r—1)—(r—2)
or—1-(r—2)
=r.

Assume now that || Z||;, < &k, ||Z]| 2. Then

1Z]7- = E[2°)
r-2 o1
< E[Z]|TE[|Z]"]

r—2 T T
r—1 .r—1 1
Lt K/T' || Z L2 .

<|z

IN
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It follows that L . o,

12l < ki 12050
which yields the result. U
Lemma B.3. Let Z € LY. Then for all € N,

1Z- < 2120

Proof. By definition of ||Z||,,, and Markov’s inequality

Z
P ( > :c) < 2e7 "
121 s

It follows by lemma B.1 that

Z " oo
FE {() ] < 2/ " e *dx
12| s 0

< 2rl(moment of an exponential distribution).

O

Lemma B.4. Let Z € LY be such that | Z| v, < K| Z| 2, where k > V2.
Then for all integers r > 2,

E[27) < r\B[Z%] (4 + 4log k) | Z]| )"

Proof. Since 2 > 1, the statement is true for r = 2. Consider now r > 3. Let
b > 1 be a real number to be determined later. Then

E[Z'|<E Zrl[zsz»nzum} +E {Zrﬂzzzauznm]

r— r—2 T Z "
<b QIIZIIME[ZQHIIZIIMEK )H . >b].

”Z”L’Pl T2T ey =
By definition of || Z|| +, and a Chernoff bound, the variable Y = I ZHZ ” satisfies
LY1

P(Y > z) < 2e7 for all z, therefore by lemma B.1,
2 oo
B2 <Y 215 B + 2020, [ e e
b

An easy induction argument shows that

+o0 LN I
/ tre tdt = Z ,—;bje_b
b =0

I 1
— plpTo—b
rlb"e E ek
=0
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It follows that

1
=i

E(Z7) <62 |Z) 0 EIZ%) + 2|1 2| e Y
j=0

Let b=4+4logk >4+ 2log?2. Then for all r > 3,

T T

1 1 1 1 1
Z Jlor=i o + pr—1 + opr—2 + Z Jlor=i
7=0 7j=3

1 1 1 1
< 44—

_b3+b2+2b+6 T\/4 sz'

Sl 1,1 +1+1 , 11
T €

6 b
< 0.36.

As a result, for all » > 3,
E[Z"] < b” 2| Z|1702 B[22 + 0.72|| Z][} 0y rib7e .

We now prove that for all t > b, t > 2logt + 2log k. For all ¢t > 4,

d 2 1
— 21 — 21 =1-- —
o —t ogt og K] ;2 2
therefore
t—4
t—210gt Z4—210g(4)+?
t—4
> —.
- 2

It follows that for all ¢ > 4 4 4log(k) = b, t > 2logt + 2log(k). In particular,
b2e=t < b? exp(—2log(b) — 2log(k)) < % therefore

< M- |
E[Z" < 6b 2||Z||L¢1 [ZQ]+O'72|‘ZHW1 b 2?

r . -, E[Z?

< M2 2172 Bl2?) + 012120 ry -2 ]

<5 121701
< PE[Z2)(b || Z)] o )2

O

Lemma B.5. There ezists a constant pg such that, for any sub-exponential
random variable Z and any k > /2,

120l por S Kl Z]2 = 1212 < porlog (|1 Z] s -
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Proof. By lemmas B.3 and B.2, for all r > 3,
1 _r_
121> < (27 wr)™== || Z]| s -
Remark that

1 el 1 T 2
(27 kr)T2 =27 2KkT2 X X2

and

— log

( 2 )_i[mogr]:?nzﬂl_ logr]so

e T drtyr—2 r o r—292
for r > 3 since logr > 1 and 15 > +. Let r = 3 + log(x) > 3. Thus, ree <
3572 =9 and

(2%117’)ﬁ <2X9XrrT2
< 18(3 + log(k))k x K TFoE

21og(k) >

< 18(3 + log(k))r exp <1—|—]0g(,‘{)

< 18¢*(3 + log(k)) k-

The conclusion follows since by assumption, log £ > log(v/2) > 0. O

B.2. Controlling the 91 norm ||fk — fl||¢1 P

First, let us bound the supremum norm by the L? norm.
Claim B.5.1. For any k € {1,..., K}, recall that tx = Ay(D,,). Then:

(k1) € {1, KV |[fk =i, p < V2R(K) ik — 1], p

a.s. .
Proof. Let X be independent from D,, and observe that for any k,

tk(X) = by + 6F (X — PX),
where by = G + 07 (PX) (using the notations of hypothesis 2.1). Note that
|1[],,, p Hence, by the triangle inequality,

~ ~ 1 ~ ~ ~ ~
[06) = Xy, < oz lon = Bl + |G = 87 (X — PX)|

¥1,P

By hypothesis 2.1, ék”o < k. Thus, if K > max(k, 1),
The definition of x (equation (3.4)) implies that

o, —élHO <k+l<2K.

[E:(X) = &(X)]],, p < @u}k — by| + K(K) H(ék —g)T(X — PX)’

L2

< #(0) [l il + 6~ 607 x ~ )]

< @-e(K)\/ by — b2 + | (0 — BT (X - PX)|
= V2k(K) ka(X) — I?I(X)HL2 .

2
L2
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A uniform bound on the Orlicz norm is also required.

Definition B.6. Let

= max |lix—&l,, p-
E[B] can be bounded as follows.

Claim B.6.1. Assume that hypotheses Reg-T, (Uub) hold and that for some
A >0, k(K)log(k(K)) < X\y/ng. Then

- 2 2po N
E[3] < + —Ho Lnlte.
log2  |loglog2|

Proof. Let (k,1) € {1,..., K}2. Defining X; = X; — n% >t X, and changing
variables in hypothesis 2.1 from (g, 8) to (b =g+ <0, n% o X >, 9), we can

rewrite fk as
. . X 1 &
b (x) = be(Dy,) + Ok (D))" <x T, ZXi>
t =1

where

bi(Dp,) € argmin |b|
b€Q’(Dn, 0k (Dny))

Q’(Dmﬁ) = argmln— Z¢C ( T —b— GTX)

beR Tt ©

Therefore, differentiating with respect to b,

thZd’ — by, — 0FX;) = 0.

Assume by contradiction that

3> 0,Vi € [|1;n4]], by + b+ 0F X; < by + 67 X, (B.2)
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Let b be such that (B.2) holds. Then by monotony of ¢, for all € in [0; 3],

0= > (¥~ b — 6 X)
=1

T
> LS (Vi by — e~ 0T X))
ti=1

Y

LNy Wi LR,
nt;qbc(n b — 5 — 05 X3)

Y

1 & A
E;¢;(m_bl+§_0in)

v

LN (- be - 07X
™

nt

> > ol (Vi- b - 6 )
=1

=0.

It follows that

T I N I VR
vse[0,2],nt;¢c(yl b — ¢ ekxl)_nt;@(m b +e—0lX;)=0.

(B.3)

By integration, this implies that for all € € [0; 2],
((;k + 5) S Ql (Dnmék(Dnt)> ) (B4)
(b~ 2) € Q' (D 01(Da,) ) - (B.5)

If b; > 0, then for small enough ¢, (B.5) contradicts the minimality of |b;|.
On the other hand, if b; < 0, then averaging (B.2) over i € {1,...,n} yields

Bk+b§85§0.

Then for € € [0; %], (B.4) contradicts the minimality of |bi|. Thus, (B.2) leads
to a contradiction. Let i be such that by + égXl > b+ élTX, Then

i)l - IA)}c < (ék — él)T)?i < _max |(ék — él)TXJ

T i=1,.,m

Exchanging k and [ yields

|l;l—i)k| S max ‘(ék—él)TXZ" §2 max |(ék—él)T(XZ—PX)‘

1<i<n, 1<i<ng
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Let X ~ X be independent from D,,. For any k, I,
A L L 1 & A
[t — £)(X)| < |br — be| + | (0 — 0)" (PX — -~ > X))+ |0k - 6)" (X — PX)]
ti=1

(6 = 0)" (X; = PX)| +] (0 = 0)" (X - PX)|.

<3 max
1<i<n,

As X is independent from D,,, conditionnally on D,,, by hypothesis 2,

max

. R 3 A A A ~
i =il < oz s, | B — 007 (X = PX) |+ | (B — 007 (X — PX)

P1, P

1
2

max

~ log2 1<i<n, (B — 00)" (X - PX)‘ + k(K)P (<ék — 0, X — PX>2)

Hence, by lemma B.5,

(0 — 8" (X, - PX)|

R . 3
Ik = ll,,,p < o5 max,

+ por(K)* 0g(k(K) P (|8 — 01, X — PX))

max

< 0, — 0T (X; — ‘
~ log2 1<i<n, (O = 00)7 (Xi = PX)

+ uon(K)QMP (|<ék 0, X - PX)]) :

Thus, by the hypotheses of claim B.6.1,

. 6L 2poN?
E [5} < ng Ho Ln,ﬁa
log 2 | log log 2|
The result follows since for all n; > 3, %nta < 15;2 n%+°‘

B.3. Proving hypotheses H (1271-,1,1271-,2, (fk)lngK)

The following lemmas will be useful.

Lemma B.7. For any (u,v,a,b) € R,

max(u(a + b),v(a + b)?) < (max(\/@, Vva) + max(vVub, \/Eb))2 .
Proof.

(max(\/@, Vva) + max(vVub, \/Eb))2 = max(ua,va?) + max(ub, vb?)
+ 2max(v/ua, voa) max(vub, /vb)

> max(u(a + b),v(a + b)?).
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Claim B.7.1. Let{x(u) = P [¢c.(Y —u) — ¢.(Y)|X]. Let s(X) € argmin, cp {x (u);
s is a risk minimizer. Under hypothesis (Les), almost surely, for any u € R,

d2

s(X) — g <u< S(X)+§ — lx(W) 2.
As a result, for any u € R,
() = x(s(X)) = = s(0) if |u— s(X)| <
> Plu = s(X)] if Ju— s(X)] > .

Proof. Recall that
x? c
¢¢($) = ?ngc + C(|$‘ - i)HIch

Then ¢ (x) = sgn(z)(|z| A c) and ¢ (z) = I5/<.. By differentiating under the
expectation, almost surely, for any u such that |u —s(X)| < §,
d2

sl (u) = 2P [(Y —u) — ¢ (V)| X]

= P¢ (Y —u)|X]
= P[IY —uf < ¢X]
> PIY = s(X)| + |u = s(X)] < ¢[X]

> P ||Y - s(X)| < 5|X]
> 1.

This proves the first equation. Since s(X) is a global minimum, it follows that,
for any u € [s(X) — ;s(X) + &,

(= 5(X))*

L) = L (5(X)) 2 T2

Because £x(-) is convex, for any u such that v > s(X) + §,

Similarly, for u < s(X) — §, £x(u) — x(s(X)) > % (s(X) — u). This proves the
lemma. O

We now relate the L? norm to the excess risk in the following Proposition.
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Proposition B.8. Let (X,Y) ~ P be random variables. Let ¢. be the Hu-
ber loss with parameter ¢ > 0. Assume that P satisfies hypothesis (Lcs). Let
(f1, f2) :+ X = R? be measurable functions. If for some r > 2, || f1 — Fell,p <

tr || f1 = fally p,s then

9 2
11 = Fl o < (w0 e, V/Es, 1) + wolr, v V/E(s F2))

T

r—1 I
2v2,. 8 9i=5 T2

_ 2
where wo(r, kr, ) = max ( T e , )

xT

In particular, there exists a constant us such that, whenever || f1 — fQle p <
k| f1 = fallyp for some k > 2,

i1~ Bl p < (a5 VTG ) 4 wae VI TD) 5 (BO)

where wy (K, x) = max (27\\/?,0% %Hlog(’f)mz). One can take iz = 162 x 25052 %

Supu23 exXp (%) .
Proof. Let f1, fo satisfy the hypotheses of proposition B.8. Let U = f1(X),V =
f2(X), S = s(X) where

s(X) € ar;gé%inP [PV —u) — o (V)| X].

Let
Z = P[¢C(Y_ U) +¢C(Y - V) - Qd)c(y - S)‘X]

Notice that in the notation of claim B.7.1, Z = {x (U) +{x (V) — 2(x(S) and in
particular, P[Z] = (s, f1)+£(s, f2). Define the event A = {|[U—-S| < §,[V-5| <
$}. By claim B.7.1,

(U—-V)Ia<2[(U—=8)?2+ (V-9 Tu_si<sLv_si<

<
—2

<31, (B.7)
"

Let r > 2. By lemma B.2,

P(U = V)2La] < P[U = V|ae] =2 P[U = V|'Txe] 71
r—2

(U = VL] =1 PU = V|7]7

IA

P
P

PU = VILae] = || fi = foll T 7

< P[|U—V|]IAC]%Zi mr%l I f1 _f2||£,%P1'

By definition, on A°¢, max(|U — S|,|V — S|) > §, therefore by lemma B.7.1,

U = V|Lse < 2max([U — S|, [V — §)Lae < %Z]IAC.
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It follows that

r—2
8 r—1 r—2 I _r_
Plw-viLe < (3)7 P T I - . B
From equations (B.7) and (B.8), it follows that
Ifs = fall3 p = P[(U=V)?]

=P[(U—-V)’I4] + P [(U—V)’L4]
<4piz1 8\ P2 T | 1
<5 [Z14] + e (Z] = ket I fy = fells p

8
nc

T—1 — _r_ —_r_
< 2max <;47P[Z],< ) P[Z)=i k0 ||f1—f2|2T,Pl> :

Therefore, either || f; — fQH;P < % [€(s, f1) + (s, f2)] or

8\ =2 I =
If1 = folls p < 2 () PIZ)= ki = follsp

nc

= [lfi = fallsp <2677 (TICP[Z]>

2 r—1 20 (8 2
— ||f1_f2||27p <4r=2pky %P[Z]

r—1 27

2
= U= Rl < 47T () s 1) 4 s o)

In either case,

27 2
1fr = £oll5,p < max (i [6(s, f1) + Us, f2)] AT 7 (j) [€(s, 1) + £(s, f2>12) :
Finally, by lemma B.7,

11 = follp < (w0l e, VI, ) + (e VI, ) 2 (B

re1 T
where wy(r, k-, ©) = max (%x, %23 K ? 12>. This proves the first equation.

Let now r = 3 + log(x) > 3. By lemma B.3,
r—1 L r—1 1 I "
22 7 < 2r2Q2r—2pT-2gT-2
2 2
< 8rkrr—2rr—2
2
< 8(3 +log Ii)li’l“% exp (log(m)HlogH>

< 72(3 + log k) ke?
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since 7 > 772 decreases on [r; +00[, as shown in the proof of lemma B.5. Let
113 = 576€% x (1 + ﬁ) . Then for all x > 2,

2%/@?%2 < %nlog(m).
It follows from equation (B.9) that

2 2 2
A fr = fall3 p < (wnle VB, ) + o, VG 1))

where wy (k, z) = max (2—\/‘[%%0 ﬁmlog(fs)ﬁ).
O

We are now ready to obtain functions (; ;) (; j)e{1;2}2 such that H (u?i,l, Wi 2, <£k>1§k§K>
holds. In the following, fix K € [|1;n;]] and write k = k(K for short. Because
the Huber loss ¢, is c—Lipschitz,
Vu,v € R, |¢e(Y —u) — ¢ (Y —0)| < clu —v].
Therefore, for all r > 2,
P [(¢e(Y = (X)) = 6c(Y — (X)))"] < ¢"P ([fu(X) = T(X)]") -
Let pg = @ + 4. By claim B.5.1, ||fk - leth <2k ||fk — tAlHQ,P, hence by

: 1
lemma B.4, since k > g3 = V2,

P [(¢e(Y — (X)) — ¢e(Y —£1(X)))"]
2 (metos (/30 [ =il )
<r! <02 | x — tAzH;p) (M4010g(\/§“)\/§“ [tk = tAlHQ,P)k72 '

<t (e lik

Using the notation of Proposition B.8, let

wa(z) = wy (V26(K), z) = max <2ﬁca§, fﬁmlog(ﬁn)ﬁ) . (B.10)

By Proposition B.§,
P (¢e(Y — i1(X)) = ¢e(Y — i1(X)))"]
2
< (wA( @(S,ik))ﬂ-w/l( g(sa{l))>

k—2
x(u4\f2mlog(\f2ﬁ)(w,4( (s, tx)) +wal( g(&ﬂ)))) )
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which proves H (wA,,u4\/§nlog(\/§n)wA,(fk)lskSK). Now by Definition B.6
and lemma B.3,

Pl(¢e(Y — (X)) — ¢e(Y —1(X)))"] < " P [|tx — 4]"]
< 2rle” || — t}H;l’P

<2rlc"p",

which proves H (f/—%, 62—3, (fk)lngK).

B.4. Conclusion of the proof

We have proved that H (wA, paV/2k1og(v2k)wa, ({k)lgkgK) and H (C—\/%, %’é, (fk)lgkgl()
hold, where w4 is defined in Proposition B.8. It remains to apply [25, Theorem

A.3] and to express the remainder term as a simple function of ¢, n,, n;, k, L, K

and a. We recall here the definition of the operator § used in the statement of

that theorem.

Definition B.9. For any function h: Ry — Ry and any € > 0, let
§(h, &) = inf{z € Ry : Vu > x, hu) < &u’}.

The following lemma will facilitate the computation of §(wa, -).

Lemma B.10. Letr > 0,5 > 0 and h, s(z) = (\/rz)Vsz?®. Then §(hy s, &) < 00
if and only if € > s and then §(hy.s,) = 4.

Proof. To find §(h, s, &), notice that given the definition of §(h, s, ), the condi-
tion s < £ is obviously necessary for the infimum to be finite. Assume now that

&> s. For any u > g, then &u? > /ru as well as u? > su? (since we assumed
¢ > s), therefore u® > h, s(u). Thus by definition, §(h, s, &) < % (in partic-
ular, d(h, s, §) is finite). Furthermore, by definition of §(h, s, &), /70 (hy s, &) <
€0(hy,s, €)%, that is 0(hy ., €) > ¥, O

The following claim can now be proved.

Claim B.10.1. Assume that hypotheses Reg-T and (Les) hold. If K € {3,...,ev™}
and b > 1 are such that

n Ny
V2k(K) log (\/in(K)) S TR / Tk (B.11)

then applying Agghoo to the collection (Aj), <<y Yyields the following oracle
inequality. -

AlogK  TlogK pycLn}™
NNy 0K\ /n,

(1—0)E[((s, [25)] < (1 + O)E[ min ((s, 1)) + 546
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Proof. Theorem [25, Theorem A.3] applies with w1 = %,wLQ = %,wm =

WA, W22 = pav/2k10g(vV2K)wa, x = (02— 1) log K and it remains to bound the
remainder terms (R2;)1<i<4. Now assume that equation (B.11) holds.

Bound on Ry (0) = v/20E [52 (wA7 %%)}

By (B.10), we can apply lemma B.10 with s = %\/5/{ log(v/2k), r = % and

¢ =1 [rig. By (B.11),
K3 Ty
-5 <./ = ¢
s p V2klog(V2k) < Blog K i3

It follows by lemma B.10 that
Ny 2v2¢ [4blog K
é WA, = .
4blog K N4 Ny

8c2 4blog K 2log K
Ry1(0) < \/ﬁgii < 460p 52081
n Ny Ny

Hence,

(B.12)

Bound on Ry 3(0) = %E [62 <u4\/§mlog(ﬁm)w,4, %azb’fﬁ)}
By (B.10), we can apply lemma B.10 with s = ”3“4(\@5;%(\@{))27 r o=
—8"562 (V2k log(v/2k))? and € = Wles- By (B.11) and since n < 1,

o — Hapa(V2rlog(v2r))?
7

<o (tVEs 1og<\/§ﬂ>)2

Ny

< — .
~ 4dblog K

Therefore,

2
5 (e Betog(VBR) . i) < 2\/52“4 Vartos(v2s) B by cmma .10

4 log K
< Mepa Jnblog Ky gy,
psV o\

0> L ublog K 2 log K
32,2(9)g§16c2” B gyt 28

Hence, since 6,7 € [0;1],

(B.13)

Ty Ty
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Bound on R;3(0) = Keglbfl <9 + Q[Hh;g(K)] > E [52(\07’%, \/ﬁ)}

T — jgx is non-increasing, therefore, 5(\0/—%, ,/nv) is the unique nonnegative
solution to the equation

It follows that

cb cb
2 (=, /ny) = . B.14
(\/5 \/7) /2'I'L7j ( )
Since K > 3 by assumption, log K > 1 and
04 2(1 +log K) < 5logK.
0 0
By equation (B.14),
4log K cE[]
Ro3(0) < —p———. B.15
23(0) < g N (B.15)
Bound on R274(6) = K921b71 (9 + 2(1+10g1;)+10g2 K) E [52(%377%)}
62(%B, nv) is the unique nonnegative solution to the equation
073 _ 2 2 _ CB
5 = ¥ S BET
which yields R R
cf cf
(=, ny) = .
(5o m) My
Moreover,
2(1+log K) + log® K log® K
0+ (1+1log K) + log §§logK+ og
0 0 0
log® K
< 6 Oi since K > 3.
Therefore, since by assumption K < n; < eV,
6log> K cE[3] _ 3logK cE[j
Ry4(0) < og K cEIf] _ 3log K cEJ (B.16)

=K1 2, — QKO-1 /n,

Conclusion Summing up equations (B.12), (B.13), (B.15) and (B.16), [25,
Theorem A.3] implies that assuming equation (B.11) holds for K, for all 6 €

#:1)

-~ - 2log K Tlog K cE[f]
_ a8\ < i ¢
(1—=0E[l(s, f[75)] < 1+ H)E[lér]lcléll{ﬁ(s,tk)] + 5460 o + et N

(B.17)
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By hypothesis (B.11) and since n; > n, by hypothesis Reg-T,

N
K,(K) log("{(K)) < 4(#3 v /~L4) < 4(/13 V ,le4)7

hence claim B.6.1 applies with A\ = m. Thus,

2 Ho

E[8] < p1Ln}t® wh = )
)< oLy where ju log2 8(us V pa)?|loglog 2|

It follows that

N . 2log K Tlog K pycLnit®
_ ag < . C 1 t
(1 — O)E[L(s, f77)] < (1 + O)E[ min, £(s, tx)] + 5460 o R

This proves Claim B.10.1. O

Theorem 3.2 can now be derived from claim B.10.1. Let 6 be such that 6 >
v a + 3"7—;’ for some numerical constant ps, to be determined later. Then vy <

/sz\%?’ so by hypothesis (Ni),

On Ty
() og(s(K)) < A [t

Letting b = 3;20‘ (log—m \Y, 1), we can rewrite the above equation as

log K
7 Ty
< — .
k(K)log(k(K)) < g / g KX

Since for any o > v/2, Y2REC) — \/5[14 9EY2] < 23, and w(K) 2 k5 >
V2 by definition,

V2r(K)log(V2k(K)) < 2‘5’7, /bIZgK.

Let now pe = 8(us V pa), so that equation (B.11) holds. By claim B.10.1,

log K Tlog K pyeLn}™
My OKO*b—1 VAL '

(1-0)E[((s, [25)] < (1+0)E[ min (s, i) +546

02 log K
which proves Theorem 3.2.

Since b = 242 (log”f Vv 1), K01 > p2+ and fblog K < 32 log(n, V K),



G. Maillard/Agghoo in sparse, robust regression 50
Appendix C: Applications of Theorem 3.2
C.1. Gaussian vectors

Proof. For any § € RY, Z = (9, X — PX) is a centered gaussian random variable.

121l vy

1212

parameter o; it is therefore a numerical constant; moreover one can check that
1|l

for Z ~ N(0;1), HZIILszl = ||Z| v, = V2log2 < @. Thus, we can choose

k(K) = L5 so that

log 2

By homogeneity of norms, the quotient does not depend on the scale

k(K)log(k(K)) < 0.6. (C.1)

It remains to prove point 2 of hypothesis 2.1 for some constant a. Let k €
{1, .. .,K}. Let Gk r,0% r be such that A%?O(Dnt)(x) = QxR + <9k,R7$>- By
the inequality c|u| < % + ¢c(u), for any g € R,

1o~ - 1 & 1 & ) ;
" Z |k, r — q + (Ok,r, Xi)| < " z Yi—ql+ - Z IYi = Gk,r — (Ok,r, Xi)|
=1 =1 =1

1 & c 1 & .
<=> Y- =+ —> (Vi = Gr.r — Ok, X3))-
= 2:1\ q|+2+cnt i:1¢>( dr,r — (Ok,Rr, Xi))

It follows by definition of g, r, ék, r that
1 &

. 1 c 1 &
_— N - c 1 -
§ |Gk,r — ¢ + (O, r, Xi)| < o ;:1 Y; —q| + 5 T o ;:1 6.(Yi —q)

n
ti=1

2 & c
<ZNi—ql+ < C.2
EINBEE ©2

On the other hand, letting X, = ;- >, X;,

1 ng A . 1 ng A .
o Z |dk,r — q + (Or,r, Xi)| = o Z |dk,r — q + (Ok,r, Xi)?
ti=1 t\ =1
SR A .
> — Z<9k,R7Xi - X5,)?
M\ iz
> 1 (O Xs — Xo0,) (C.3)
— max sy NG T Any )| .
T ongie{l,...,ne} kR

For all § € R?, let N(H) = maX;e(1,...n,} !(0,Xi — Xntﬂ. Clearly, N is a semi-
norm. Let ¥ = P[X XT] be the covariance matrix of X. For all I C {1,...,d},
let E; denote the vector space {§ € R%:Vi ¢ I,6; = 0}. Let

Y1 = min N(60).
n 0CE:0Ts0=1 ©)
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Let finally 4 = min;gy g 1< 2t 41. Since by construction,
sensd < i

|en] <k=r <2
o logd

it follows from equations (C.2), (C.3) and the definition of 4 that

- p 1 o ngc

0F R20kR < 3 (2 Vi —aql + 5) . (C.4)
=1

By Holder’s inequality, for any uw > 0,

ELQQ%EU@MLX—PXW]gEngkwﬂgzmﬁ}

1 c
<l Ly (1= dle +3).
Ifng >4+ %, then by lemma C.1 below,
E |:1I<I}€21<XKE[|<ék7R,X — PX>|]] < ,LL77lt(||Y1 - QHLHH \ C). (05)
for some numerical constant p7. For any ¢ € {1,...,n;}, the vector X; has

components X 1,...,X;,. For any J C {1,....d}Jet X;; = (X;;)jes € R’
and X5 = (3;/)jes;es- By the Cauchy-Schwarz inequality, equation (C.4)

and since Hek’R <K,
0

max max |<0Ak7R,Xi - PXM
1<k<K 1<i<ng

~ ~ 1
< max /0T ;30r g X max max HE 2(X, 7 — PX; H
= 1cker VR BT R O T, d <K s (Ko i) 2

1 o ngc _1
L oSy, g ™© =75 (Xis - PX; H.
ol ( ;' al+ 2 > % 122&, JC{l,.Ta}?f|.I|§K 27 (Xios ) 2

Letr:1+%,r’=1+%7p:ltuaplzl_l%Let

IN

=53 (s - PXi)| - (C.6)

Ry = max max
1<i<ng JC{1,...,d}:|J|<K

Then, by two applications of Holder’s inequality,

e |, o - P

2 nic .
< fZ|Yi*Q\+ QtA HRK‘ .
v =1 g Lr L
1 c R
cnft ] s el
Le'r
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By definition, pr = 1 + u,

’ T
pr= P
1_1+u
_ 1+3
= T
1_1+Z
C2(14+%)(1+w)
- u
2
<44 -.
u

Therefore, if ny > 13 + g, then by lemma C.1 below, for some constant pu7,

) .~ PX; < - & .
B | ms, max X = PX| < (3 =l v o) [ ]
(C.7)

Let us now bound HRKH ,» where we recall that Ry is given by equation (C.6).
LT‘

Since for any ¢ € {1,...,n}, J C {1,...,d}, ¥, 7 (X, — PX, s) is a standard
normal vector of size |.J|, by the gaussian concentration inequality, there exists
some constant g such that

2

. d
< max P [HEJJ (Xig — PXZ,J)HZ] + |u|logn; +log Y (3> + /!

L™ 7 Jc{1,.d}:|J|<K
A FJI< J<K

< VK + /plogn, + /u(1 + Klogd) + /p(1 + 2),

Since by assumption n; > 13 + % and K < l(:‘gtd and since logn; < ny,

. u+2
|B|, . < U+ Vi)V + Val ) + e
< (1+3yE) V.

From equation (C.7), we can conclude that for some constant p% > ur,

~ o . ’ _ %
B | o o [0, X~ PX)| <06 (1% = all e v ) 0d
Together with (C.5), this proves point 2. of hypothesis 2.1. with o = % and
L= p7(IY1 = qll prsu V).

By equation (C.1), hypothesis (Ni) holds with vy = 0.64/28%, Let us =

Ny

0.612v/45 > 0.6p5v/a+ 3, s0 that § > 42, /198 implies § > /o + 3422,
Then, by Theorem 3.2 and since K log K < n; (by equation (3.7)), we obtain
Corollary 3.3 with pg = 7y . O
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Lemma C.1. There exists a constant ug such that for any subset I such that
|I| < min ( ne_ 2(p, — 1)) and for all £ € (0;1],

logn:’ 5

ng—1

P(91 <e) < 2Ve(uee) 2

Moreover, if in addition |I| < l(gd, then for all e € (0;1],

ng—1

B(5 < ) < 23 (pe?e) 7

As a result, for any r € [07 n?l],

3=

gl

< 2uge? [2(1 + Qe%)]
L’I‘

Proof. By restricting to a subspace, we can always assume that M (6) = V026
is a norm. Let Sy, = {# € E; : V260 = 1} be the unit sphere in norm M. Let
e > 0. By changing coordinates, it is easy to see that the metric entropy of Sy
in norm M is the same as that of the euclidean sphere S in the euclidean norm.
Therefore, for any 6 > 0, there exists a finite set Sy, 5, of cardinality less than

(%)d and such that for any u € Sy, there exists v € Sy, 5 such that M (u—v) < g.

Therefore,

3 ~ 9
A < — = 1 < —

< IP( inf N() < 5> —HP’( sup  N(§) > ;) . (C8)

0€Sx s 0EE:M(0)<5

By definition,

sup  N(9) = sup max (0, X; — X,,,)|
1<i< t
QEE]:]\/I(Q)Sé 0cE;: /9T29§5 <1<ng¢
= (S max \/(Xi’[ — Xnt’I)TE;}(Xi’[ — Xnt,l)
1<i<ng ,

1

< T2(X; 1 — PX; ,

<20 max |3, 7 (Xirs PXz,z)H2

1 _1
As 27 (X;,1—PX, 1) is astandard normal vector, P {HZLIZ (Xi1 — PX“)‘

E

v/|1]- Hence, by the union bound and the Gaussian concentration inequality,

N _1
P sup  N@O)>Z)| <P (Hz, 2(X - PXZ-J)H > i)
9 Er:M(0)<6 2 : 2~ 46

< ngexp (;(45 - mﬁ) . (C.9)
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On the other hand, for any 6 € Sy, (9, X; — PX;) is standard normal, therefore

P (N(a) < a) - IP’( max (0, X; — Xn,| < e)

1<i<ng

<P ( inf max |(0,X; — PX;) —m| < E)
meR 1<i<ny
<P <1r<11£ix [0, X; — PX;) — (0, X1 — PX1)| < 25)

26 nyg—1

— A1 . C.10
B (x/ﬁ ) (610)
By the union bound, it follows from equations (C.8), (C.9) and (C.10) that

|1 nyg—1
€ 6 2e 1 2
<—)< (= — (& =/ .
Pr<3)<(5) (J=n1)  #mew (-6 - Vi)

. Then

A

Let now 6 = <
4(1/|1\+ 2(1ogm+mlogé))

n¢ €Xp (_;(466 _ \/m>2> < ght,

Moreover, there exists a constant p such that

|1 ng—1 1]
6 2e 1] 11| _1-
s BN < gyl /|1 /1 /n, log L ny—1-|1]
<5) (ﬁ ) 1 max( ], \/logns ,4/n¢log < €

I ng . . .
Because |I| < 2, \/|I|| I exp (5]1]log(|1])) < e . Using the inequality

log ny
logn; < /ng, it follows by the same argument that +/log ntm < e7. Since
log 2 < —,

o =

] 1 1 ne -
\/nelog L Sexp(§|l|lognt+1|l|logé)SeTET”.

It follows that
| ] ng—1
6 2e ng 5
- —A1 < ez pllgne—1=3lll,
<5) (\/27T > =

Finally, since |I| < 2(n, — 1),

©)" ()=

which yields the first inequality for some constant pg. The second inequality

4 ny—1

(ente) ™.

[SE
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then follows from the union bound:

Py <e) < Z P(yr <e¢)

Ic{1,...d}:|I|<K
K
k

k

ng—1

< 2\/5(1%5) 7 x

N

ng—1

< 2v/e(pee) 7 X

ISH

> 11>

-
Il
i
=

ng—

< 2ed®\/e(pee) * .

By assumption, d¥ = ef1°8d < e™t which yields the second equation. As a
result, for any r < ni—1

+oo
¥ 0 0l

+o0 1
< (ue?)" +/ P <A, > t> dt

(noez)r  \7"
) ) +oo 1
ey sy [ "o (s L
1 (nee)tr
. [t 1\ T
< (pee®)" + (uge?)” x 265/ <t1>
1 i

= (1 -+ 26%)(#662)Tﬁ1
2r

< 2(1 + 23 ) (uge?)".

C.2. Fourier series
C.2.1. Proof of Corollary 3.6
Let I C {1,...,d} and 6 € RL. Since ¥;(R) C [—v/2;V/2], for any = € R?, by

the Cauchy Schwarz inequality,

(0,2 — PX)| = | > 6;(w;(x) — Elu;(U)])

JeI

IN
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Therefore,

81|
~ log?2

1
16, X = PX)[| o < log2 5 140, X = PX)|| o < 1912 -

On the other hand, for all j, ;(U) = ¢;(U — |U]), where the variable U — |U
has density > .7 pu(- + j) on [0;1], which by assumption is greater than po.
Therefore, by orthonormality of the trigonometric basis,

2
1
P(OX=PXP) 20 [ [ S 00500) - Poy) | du
0\ jer
ZPOHHH?z-

Thus, for any I C {1,...,d} and § € R,

1 8|I\

160.X = PX)lp00 < o5

146, X = PX)| 2,

which proves that k(K) < ‘/SW Take pg = ‘;21(\)/; > 4 in equation (3.12),
so that, since n; > 3 and n, < ng,

20n  \/
Kk(K) < U Mo </, <1
,MQ\[log? Ny

Then equation (3.5) of Theorem 3.2 holds with vy = #2917/5.

Moreover, since the support [ of 05, has cardinality |I;| < K, by the Cauchy-
Schwarz inequality,

max (ék,X—PX>‘ < V8K max ’ék
1<k<K 1<k<K ¢

< VBEn}
< V8K max ’ék .

1<k<K
3
< V8Kn;.

Since by assumption (equation (3.12)), K <

Ok, Xi — PX;)

max max
1<k<K 1<i<n,

T < &, hypothesis (Uub)
ogny

holds with L = % and a = 2. As a result, applying Theorem 3.2 yields equation
(3.13).
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C.2.2. Proof of proposition 3.5
Let t, : & — Gy + <§;€,x> and ty, : x — i + <ék,x>. By lemma B.7.1,

~ 770 ~
U(s,ty) > P [Zﬂk(X) - S(X)|H|£k(x)fs(x)|zg}

2
7NC ||~ nc
ZZ tk(X)_S(X)HD—?
2
ne |y, - nec ~ ne
> i) — 0 — 2 ()~ dll e — e (c11)

Let I be the support of ék, and ék,j denote the j** component of the vector 0.
By the Cauchy-Schwarz inequality and orthogonality of the trigonometric basis,

|t — |, = sup |Ge — G+ Zékgwj(x)
zeR jel

~ 112
< \/@k — 9+ |0, v +1
< V2K +1 ||t — 4 .-

Since ||t — cj”iz <

ty — (jHoo th(X) — QHLI, it follows that

il [0

V2K +1 ~ V2K +1°

- 3
therefore by equation (3.12), on the event HekHZZ >ng,

Ek(X) - 5”L1 Z

3
2
~ nt

te(X) _(IHLl > W

Tt

2
n-
g T

3 4
2 Since ny > — by equation (3.9).
21 U

1
Nt

v

wleo

v

On the event Hék nZ, (s, tx) = £(s,G) < c||s(X) —ql| ., therefore by

equation (C.11),

02

A N 5 ~ ?
Us, ) = s, ) 2 =2 = 22 80X = @l - T
3en;  be 5c, . nc?
> - X)—qullpr — 0 — | — —=
> 3 ) a2
> o %\q — ¢«| by assumption (3.9).

4
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. . . 3
Let k € argming ;< £(s,tx). Thus, on the event that HQ’ACHW >ng,

. . . ~ N . cny  Oc
- > (s, 7)) > 25 .
1;1}1;;1}(5(3,@) 1£llcl§nK£(s’tk) > (s, t;) — L(s, tg) > 1 1 |d — g«

R 3 ..
On the other hand, if H%Hﬂ <n¢, t; = t; by definition, so

1;1%1%1[(6(5,%) — érilgan(s,tk) > (s, t;) — L(s, t;) > 0.

Let 6g =P (H@kH22 > nt%) By Holder’s inequality,

: iyl - - i e 5Csipia 3
ELglgan(s,tk)} E[lglclélKé(s,tk)} > 4o 1 450]E[(q ANE
cng  bc oz 471
> M 2S8R (G — q.)Y1.
—56%,1]5 1 1O El@ -

Hence, by lemma C.2 with a = % , there exists a constant p such that
E in {(s,tx)| —E in £(s, 1, —_—
[1?11@121( (s, k)} |:lgllcl<nK (5,t) n;
Moreover, by lemma C.3 below, for all n; > 1(1—6,
Ellg— g.|")F <c+14x 25 P(]Y — q.|%)=.

Thus, equation (3.10) follows from equation (C.12) and the additional assump-
tion that n; > %.

Lemma C.2. Let a,b be positive real numbers and let « € [0,1). Then

o -

aQl—«o

b=
inf ad — bo“ > |:a1_1a _ alfai|
6>0

Proof. The function f : § — ad — bd® is continuous, tends to +o0o at +o0o and
f(0) =0, so f reaches a global minimum d, on [0,+00). As f is differentiable,

Thus, for all § € [0, +00),

a6—b6a2a(ab) Ty O‘b> -
a a

_1 _a bl*o‘
Z |:a1—a foél—cx] .
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Lemma C.3. Let ny > 4 be an integer and Yi,...,Y,, be itd random variables
such that, for some q. € R and a € [%, 1] , E[|]Y1 — q«|*] < +00. Let

nt
g € argmin ) _ o (Y; — q).
R

Then for all r € [1, O‘Zf],

Ellg — q«["]" < ¢+ 2237 E[[Y1 — q.|*]=~.
Proof. Remark first that for any =z € R,
—cifz < —¢

d.(z) =S wif|z] <c
cifx > c.

For any ¢ € R, let I1(q) = {i : Yi > g+c}, [(q) = {i: Vi < ¢—c}and
Io(q) = {i:|Yi — ¢q| < c}. Thus,

D 0Yi—a) =g =@+ Y Yi-q,

i€lo(q)
so that
([ (@)] = H-(a)] = [Ho(q)]) < Zsbé(Yi —q) < c(I4(9)] + [Ho(a)] = [T-(a)]) -

Let g4 be such that [I,(qy)| > % and let gq be such that |I_(qq)]

> It
By monotony of ¢/, for all ¢ < g4, >t ¢L(Y; —q) > 0 and for all ¢ > qq,
Yot ¢L(Yi — q) < 0. Since by definition of g,

1 &
—> Y- ) =0,
ti—1

it follows that ¢ € [qq, qal-
Let o = E[|Y — q*|0‘}é. By the union bound and Markov’s inequality, for all
u >0,

P(|I+(q*—c—ua)| < %) :P(\{i:Yi > q. +ou}| > %)

IN

( ZH)“” > g+ ou)F

IN
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Symetrically,
Ty 2me
P <|L(q* +c+uo)| < 7) < —s
2 uz
so that one can take q; = ¢« — ¢ — uo and q4 = ¢« + ¢ + uo with probability
greater than 1 — 2 J:t It follows that, for any u > 0,
u 2
2nt+1
P(|§ — g«| > c+uo) < —1. (C.13)
u"2

1 1
Forany r > 1, E[|§ — ¢.|"]" < c+E[(|§— q.| — )], where

E[(1§-al-0}] <o A+WP<W>u>du

—+oo
SO’T/ ]P’((|(j—q*|20+au%)du
0

+oo 2nt+1
< ar/ min <1, am) by equation C.13
0

uzr

§2?UT—|—20T/2 — dv
z |y

r r +Oo d
§2%0T+2-2%ar/ &
1 €T 2r
2r 2 .
2r —1

This yields the result under the condition that r < <t. O

C.3. Proof of proposition 3.9
For any ¢ € {1,...,V}, denote fThO by f;(X) for simplicity. For any u € R, let

(x(u) = Plpe(Y —u) = ¢e(Y — s(X))|X].

Let also

I:{ie{l,...,V}:|(A£°—s)(X)|§%}.

By Jensen’s inequality,

(g S i) = Yo )+ (s

icl

Illgx(u| Zfl) sz(ﬁ-). (C.14)

icl z¢f
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Let now ff =3 icl ff}lo By claim B.7.1, for any ¢ € f,

T
ex(F) 2 tx(F) + G- P+ L (5 - 1)

Averaging over i € I yields

1 ) i Zho

iel iel jei

Combining this bound with equation (C.14) yields

Ly~ L 1 )
X(V;fi)ém Ix(f) 4‘/“22 _,_VZEX(fi)

iel iel jel i¢l

Z £) = g 2o 22U

= iel jel

I /\

Taking expectations yields equation (3.14) by exchangeability of the fl Assume
now that E[((s, f1)] <z "C . By claim B.7.1,

c? c nc?
> e - > -
E[l(s, f1)] = TP (|(fi = 9(X)] > §) = ZPB(Bi(0)).
It follows that P(E1(c)) < L. Since the f; have the same distribution, P(FEs(c)) <
% also. Thus, by definition of the median,
2 2 A p 1
P (E1(e) N Ba(e) 0 {(f1 = £2)2(X) = Med[(fy — £)2(X)]}) = 7.
Equation (3.15) then follows from equation (3.14).
%bibliographystyleplain
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