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Abstract

We propose a novel approach for comparing distributions whose supports do not necessarily lie
on the same metric space. Unlike Gromov-Wasserstein (GW) distance which compares pairwise
distances of elements from each distribution, we consider a method allowing to embed the metric
measure spaces in a common Euclidean space and compute an optimal transport (OT) on the
embedded distributions. This leads to what we call a sub-embedding robust Wasserstein (SERW)
distance. Under some conditions, SERW is a distance that considers an OT distance of the (low-
distorted) embedded distributions using a common metric. In addition to this novel proposal that
generalizes several recent OT works, our contributions stands on several theoretical analyses: (i) we
characterize the embedding spaces to define SERW distance for distribution alignment; (ii) we prove
that SERW mimics almost the same properties of GW distance, and we give a cost relation between
GW and SERW. The paper also provides some numerical illustrations of how SERW behaves on
matching problems.

1 Introduction

Many central tasks in machine learning often attempt to align or match real-world entities, based
on computing distance (or dissimilarity) between pairs of corresponding probability distributions.
Recently, optimal transport (OT) based data analysis has proven a significant usefulness to achieve
such tasks, arising from designing loss functions (Frogner et al., 2015), unsupervised learning (Arjovsky
et al., 2017), clustering (Ho et al., 2017), text classification (Kusner et al., 2015), domain adapta-
tion (Courty et al., 2017), computer vision (Bonneel et al., 2011; Solomon et al., 2015), among many
more applications (Kolouri et al., 2017; Peyré and Cuturi, 2019). Distances based on OT are referred
to as the Monge-Kantorovich or Wasserstein distance (Monge, 1781; Kantorovich, 1942; Villani, 2009).
OT tools allow for a natural geometric comparison of distributions, that takes into account the metric
of the underlying space to find the most cost-efficiency way to transport mass from a set of sources to
a set of targets. The success of machine learning algorithms based on Wasserstein distance is due to
its nice properties (Villani, 2009) and to recent development of efficient computations using entropic
regularization (Cuturi, 2013; Genevay et al., 2016; Altschuler et al., 2017; Alaya et al., 2019).
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Distribution alignment using Wasserstein distance relies on the assumption that the two sets of
entities in question belong to the same ground space, or at least pairwise distance between them
can be computed. To overcome such limitations, one seeks to compute Gromov-Wasserstein (GW)
distance (Sturm, 2006; Mémoli, 2011), which is a relaxation of Gromov-Hausdorff distance (Mémoli,
2008; Bronstein et al., 2010). GW distance allows for learning an optimal transport-like plan by
measuring how the distances between pairs of samples within each ground space are similar. The GW
framework has been used for solving alignment problems in several applications, for instance shape
matching (Mémoli, 2011), graph partitioning and matching (Xu et al., 2019), matching of vocabulary
sets between different languages (Alvarez-Melis and Jaakkola, 2018), generative models (Bunne et al.,
2019), or matching weighted networks (Chowdhury and Mémoli, 2018), to name a few. However,
computing GW distance induces a heavy computation burden as the underlying problem is a non-convex
quadratic program and NP-hard (Peyré and Cuturi, 2019). Peyré et al. (2016) propose an entropic
version called entropic GW discrepancy, that leads to approximate GW distance.

In this paper, we develop a distance, that similarly to Gromow-Wasserstein applies on sets of entities
from different spaces. Our proposal builds upon metric embedding that allows an approximation
of some “hard” problem with complex metric spaces into another one involving “simpler” metric
space (Matoušek, 2002) and upon Wasserstein OT cost on the embedding space. Hence, unlike GW
distance that compares pairwise distances of elements from each distribution, we consider a method
that embeds the metric measure spaces into a common Euclidean space and computes a Wasserstein
OT distance between the embedded distributions. In this context, we introduce a distance, robust
to isometry in the embedding space, that generalizes the “min-max” robust OT problem recently
introduced in Paty and Cuturi (2019), where the authors consider orthogonal projections as embedding
functions. Main contributions of this work are summarized in the following three points:

� We propose a framework for distribution alignment from different spaces using a sub-embedding
robust Wasserstein (SERW) distance. As central contribution, we develop the theoretical analysis
characterizing the embedding spaces so that SERW be a distance;

� We provide mathematical evidence on the relation between GW and our SERW distances.
We show for instance, that one key point for approximating GW is that the embeddings be
distance-preserving;

� We sketch a potential algorithm describing how our distance can be computed in practice and
present numerical illustrations on simulated and real datasets that support our theoretical results.

The remainder of the paper is organized as follows. In Section 2 we introduce the definitions of
Wasserstein and GW distances, and we set up the embedding spaces. In Section 3 we investigate
metric measure embedding for non-aligned distributions through an OT via SERW distance. Section 4
is dedicated to numerical experiments on matching tasks based on simulated and real data. The proofs
of the main results are postponed to the appendices in the supplementary materials.

2 Preliminaries

We start here by reviewing basic definitions of the materials needed to introduce the main results.
We consider two metric measure spaces (mm-space for short) (Gromov et al., 1999) (X, dX , µ) and
(Y, dY , ν), where (X, dX) is a compact metric space and µ is a probability measure with full support,
i.e. µ(X) = 1 and supp[µ] = X. We recall that the support of a measure supp[µ] is the minimal closed
subset X0 ⊂ X such that µ(X\X0) = 0. Similarly, we define the mm-space (Y, dY , ν). Let P(X)
be the set of probability measures in X and p ∈ {1, 2}. We define Pp(X) as its subset consisting of
measures with finite p-moment, i.e.,

Pp(X) =
{
η ∈P(X) : Mp(µ) <∞

}
,
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where Mp(µ) =
∫
X d

p
X(x, 0)dη(x). For µ ∈P(X) and ν ∈P(Y ), we write Π(µ, ν) ⊂P(X × Y ) for

the collection of probability measures (couplings) on X × Y as

Π(µ, ν) =
{
π ∈P(X × Y ) : ∀A ⊂ X,B ⊂ Y,
π(A× Y ) = µ(A) and π(X ×B) = ν(B)

}
.

Wasserstein distance. The Monge-Kantorovich or the 2-Wasserstein distance aims at finding an
optimal mass transportation plan π ∈P(X × Y ) such that the marginals of π are respectively µ and
ν, and these two distributions are supposed to be defined over the same ground space, i.e., X = Y . It
reads as

W2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
X×X

d2
X(x, x′)dπ(x, x′). (1)

The infimum in (1) is attained, and any probability π which realizes the minimum is called an optimal
transport plan.

Gromov-Wasserstein distance. In contrast to Wasserstein distance, GW one deals with measures
that do not necessarily belong to the same ground space. It learns an optimal transport-like plan
which transports samples from a source metric space X into a target metric space Y by measuring
how the distances between pairs of samples within each space are similar. Following the pioneering
work of Mémoli (2011), GW distance is defined as

GW2
2(µ, ν) =

1

2
inf

π∈Π(µ,ν)
Jπ(µ, ν), where

Jπ(µ, ν) =

∫∫
X×Y

`(dX(x, x′), dY (y, y′))dπ(x, y)dπ(x′, y′)

with a quadratic loss function `(a, b) = |a− b|2. Peyré et al. (2016) propose an entropic version called
entropic GW discrepancy, allowing to tackle more flexible losses `, such as mean-square-error or
Kullback-Leibler divergence. The latter version includes an entropic regularization of π in the GW
distance computation problem.

Metric embedding. Metric embedding consists in characterizing a new representation of the samples
based on the concept of distance preserving.

Definition 1. A mapping φ : (X, dX)→ (Z, dZ) is said an embedding with distortion τ , denoted as
τ -embedding, if the following holds: there exists a constant κ > 0 (“scaling factor”) such that for all
x, x′ ∈ X,

κ dX(x, x′) ≤ dZ(φ(x), φ(x′)) ≤ τκ dX(x, x′). (2)

The approximation factor in metric embedding depends on a distortion parameter of the φ
embedding. This distortion is defined as the infimum of all τ ≥ 1 such that the above condition (2)
holds. If no such τ exists, then the distortion of φ is infinity.

In this work we will focus on target spaces Z that are normed spaces endowed with Euclidean
distance. Especially, for some integer d to be precised later, we will consider the metric space
(Z = Rd, dZ = ‖ · ‖). Hence, one can always take the scaling factor κ to be equal to 1 (by replacing φ
by 1

κφ). Note that an embedding φ with distortion at most τ <∞ is necessarily one-to-one (injective).
Isometric embeddings are for instance embeddings with distortion 1. For more details about embeddings,
we invite the reader to look at the technical report of Matoušek (2013).

We suppose hereafter κ = 1 in (2) and we denote by Fd(X) and Fd(Y ) the set of τφ-embedding
φ : X → Rd and τψ-embedding ψ : Y → Rd, respectively. We further assume that φ(0) = ψ(0) = 0. It
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is worth noting that when X and Y are finite spaces, then they are non empty. Indeed, suppose we are
given a set of n data points {x1, x2, . . . , xn} = X, then Bourgain’s embedding theorem (Bourgain, 1985)
guarantees the existence of an embedding φ : X → (Rd, ‖ · ‖) with tight distortion at most O(log n),
i.e., τφ = O(log n)1, and the target dimension d = O(log2 n). We stress that d is independent of the
original dimensions of X and Y and depends only on the number of the given data points n and m
and the accuracy-embedding parameters τφ and τψ. Hence for data points {x1, x2, . . . , xn} = X and
{y1, y2, . . . , xm} = Y underlying the distributions of interest, one has

d = O(log2(max(n,m)). (3)

Let’s highlight all the above criteria characterizing the metric embeddings we will consider to define
our novel distance and that will help us shape some of its properties.

Assumption 1. Assume that (X, dX , µ) and (Y, dY , ν) are finite mm-spaces containing the origin
0, and endowed with measures µ and ν. Assume also that X and Y are of cardinalities n and
m, the target dimension d satisfies (3), Fd(X) = {φ : X → Rd, τφ-embedding, with φ(0) = 0} and
Fd(Y ) = {ψ : Y → Rd, τψ-embedding, with ψ(0) = 0}. The distortions parameters τφ ∈ Demb(X),
τψ ∈ Demb(Y ) where Demb(X) = [1,O(log(n))] and Demb(Y ) = [1,O(log(m))].

3 Metric measure embedding and OT for distribution alignment

Let us give first the overall structure of our approach of non-aligned distributions, which generalizes
recent works (Alvarez-Melis and Jaakkola, 2018; Paty and Cuturi, 2019). The generalization stands
on the fact that the two distributions lie on two different metric spaces and this fact raises several
challenging questions about the characterization of the embeddings for yielding a distance. In our
approach, we consider a general setup that relies on non-linear embeddings before aligning the measures.
Note, if the metric spaces coincide for both distributions and the embeddings are restricted to be linear
(subspace projection) then, our distance reduces to the one proposed by Paty and Cuturi (2019).

In this work, we aim at proposing a novel distance between two measures defined on different
mm-spaces. This distance will be defined as the optimal objective of some optimization problem, we
provide technical details and conditions ensuring its existence in the first part of this section. We then
present formally our novel distance and its properties including its cost relation with GW distance.

In a nutshell, our distribution alignment distance between µ and ν is obtained as a Wasserstein
distance between pushforwards (see Definition 2) of µ and ν w.r.t. some appropriate couple of
embeddings (φ, ψ) ∈ Fd(X)×Fd(Y ). Towards this end, we need to exhibit some topological properties
of the embeddings spaces, leading at first to the existence of the constructed OT approximate distances.

3.1 Topological properties of the embedding spaces

We may consider the function ΓX : Fd(X)×Fd(X) 7→ R+ such that ΓX(φ, φ′) = supx∈X ‖φ(x)−φ′(x)‖,
for each pair of embeddings φ, φ′ ∈ Fd(X). This function defines a proper metric on the space of
embeddings Fd(X) and it is referred to as the supremum metric on Fd(X). Indeed, ΓX satisfies all the
conditions that define a general metric. We analogously define the metric ΓY on Fd(Y ). With the
aforementioned preparations, the embeddings spaces satisfy the following topological property.

Proposition 1. (Fd(X),ΓX) and (Fd(Y ),ΓY ) are both compact metric spaces.

Endowing the embedding spaces with the supremum metrics is fruitful, since we get benefits from
some existing topological results, based on this functional space metric, to prove the statement in
Proposition 1.

1There exists an absolute constant C > 0 such that τφ ≤ C logn.
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To let it more readable, the proof of Proposition 1 is divided into 5 steps summarized as follows:
first step is for metric property of Fd(X); second one shows completeness of Fd(X); third establishes
the totally boundedness of Fd(X), namely that one can recover this space using balls centred on a finite
number of embedding points; the last is a conclusion using Arzela-Ascoli’s Theorem for characterizing
compactness of subsets of functional continuous space, see Appendix A.1 for all theses details and their
proofs.

Let us now give a definition of pushforward measures.

Definition 2. (Pushforward measure). Let (S,S ) and (T,T ) be two measurable spaces, f : S → T
be a mapping, and η be a measure on S. The pushforward of η by f , written f#η, is the measure on T
defined by f#η(A) = η(f−1(A)) for A ∈ T . If η is a measure and f is a measurable function, then
f#η is a measure.

3.2 Sub-Embedding OT

Let assume that Assumption 1 holds. Following Paty and Cuturi (2019), we define an embedding
robust version of Wasserstein distance between pushforwards φ#µ ∈Pp(Rd) and ψ#ν ∈Pp(Rd) for
some appropriate couple of embeddings (φ, ψ) ∈ Fd(X)×Fd(Y ). We then consider the worst possible
OT cost over all possible low-distortion embeddings. The notion of “robustness” in our distance stands
from the fact that we look for this worst embedding.

Definition 3. The d-dimensional embedding robust 2-Wasserstein distance (ERW) between µ and ν
reads as

E2
d (µ, ν) =

1

2
inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

W2
2

(
φ#µ, (r ◦ ψ)#ν

)
,

where Rd stands for the set of orthogonal mappings on Rd and ◦ denotes the composition operator
between functions.

The infimum over the orthogonal mappings on Rd corresponds to a classical orthogonal procrustes
problem (Gower, 1975; Grave et al., 2019). It learns the best rotation between the embedded points,
allowing for an accurate alignment. The orthogonality constraint ensures that the distances between
points are preserved by the transformation.

Note that E2
d (µ, ν) is finite since the considered embeddings are Lipschitz and both of the distribu-

tions µ and ν have finite 2-moment due to Assumption 1. Next, using results of pushforward measures,
for instance see Lemmas 7 and 8 in the supplementary materials, we explicit ERW in Lemma 1, whereas
Lemmas 2 and 4 establish the existence of embeddings that achieve the suprema defining both ERW
and SERW.

Lemma 1. For any (φ, ψ) ∈ Fd(X) × Fd(Y ) and r ∈ Rd, let Jφ,ψ,r,π(µ, ν) =
∫
X×Y ‖φ(x) −

r(ψ(y))‖2dπ(x, y). One has

E2
d (µ, ν) =

1

2
inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

inf
π∈Π(µ,ν)

Jφ,ψ,r,π(µ, ν).

By the compactness property of the embedding spaces (see Proposition 1), the set of optima defining
E2
d (µ, ν) is not empty.

Lemma 2. There exist a couple of embeddings (φ∗, ψ∗) ∈ Fd(X)×Fd(Y ) and r∗ ∈ Rd such that

E2
d (µ, ν) =

1

2
W2

2

(
φ∗#µ, (r

∗ ◦ ψ∗)#ν
)
.
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Clearly, the quantity E2
d (µ, ν) is difficult to compute, since an OT is a linear programming problem

that requires generally super cubic arithmetic operations. Based on this observation, we focus on the
corresponding “min-max” problem to define the d-dimensional sub-embedding robust 2-Wasserstein
distance (SERW). For the sake, we make the next definition.

Definition 4. The d-dimensional sub-embedding robust 2-Wasserstein distance (SERW) between µ
and ν is defined as

S2
d(µ, ν) =

1

2
inf

π∈Π(µ,ν,π)
inf
r∈Rd

sup
φ∈F(X),ψ∈Fd(Y )

Jφ,ψ,r,π(µ, ν).

Thanks to the minimax inequality, the following holds.

Lemma 3. E2
d (µ, ν) ≤ S2

d(µ, ν).

We emphasize that ERW and SERW quantities play a crucial role in our approach to match
distributions in the common space Rd regarding pushforwards of the measures µ and ν realized by a
couple of optimal embeddings and a rotation. Optimal solutions for S2

d(µ, ν) exist. Namely:

Lemma 4. There exist a couple of embeddings (φ?, ψ?) ∈ Fd(X)×Fd(Y ) and r? ∈ Rd such that

S2
d(µ, ν) =

1

2
inf

π∈Π(µ,ν)
Jφ?,ψ?,r?,π(µ, ν).

The proofs of Lemmas 2 and 4 rely on the continuity under integral sign Theorem (Schilling, 2005),
and the compactness property of the embedding spaces, the orthogonal mappings on Rd space and the
coupling transport plan Π(µ, ν), see Appendices A.5 and A.3 for more details.

Recall that we are interested in distribution alignment for measures coming from different mm-
spaces. One hence expects that SERW mimics some metric properties of GW distance. To proceed in
this direction, we first prove that SERW defines a proper metric on the set of all weakly isomorphism
classes of mm-spaces. In our setting the terminology of weakly isomorphism means that there exists a
pushforward mapping between mm-spaces. If such a pushforward is 1-embedding the class is called
strongly isomorphism.

Proposition 2. Let Assumption 1 holds and assume X ⊆ RD and Y ⊆ RD′ with D 6= D′. Then,
S2
d(µ, ν) = 0 happens if and only if the couple of embeddings (φ?, ψ?) and r? ∈ Rd optima of S2

d(µ, ν)
verify µ = (φ?−1 ◦ r? ◦ ψ?)#ν and ν = ((r? ◦ ψ?)−1 ◦ φ?)#µ.

Figure 1 illustrates the mappings between the embedding spaces and how they are assumed to
interact in order to satisfy condition in Proposition 2. In Mémoli (2011) (Theorem 5, property (a)),
it is shown that GW2

2(µ, ν) = 0 if and only if (X, dX , µ) and (Y, dY , ν) are strongly isomorphic. This
means that there exists a Borel measurable bijection ϕ : X → Y (with Borel measurable inverse
ϕ−1) such that ϕ is 1-embedding and ϕ#µ = ν. The statement in Proposition 2 is a weak version of
the aforementioned result, because neither φ?−1 ◦ ψ? nor (r? ◦ ψ?)−1 ◦ φ? are isometric embeddings.
However, we succeed to find a measure-preserving mapping relating µ and ν to each other via the given
pushforwards in Proposition 2. Note that r? ◦ ψ? maps from the Y space to Rd while φ? maps from
X to Rd. Our distance S2

d(µ, ν) vanishes if and only if µ and ν are mapped through the embeddings
φ?−1 and (r? ◦ ψ?)−1. With these elements, we can now prove that both ERW and SERW are further
distances.

Proposition 3. Assume that statement of Proposition 2 holds. Then, ERW and SERW define a proper
distance between weakly isomorphism mm-spaces.
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(X, dX , µ)
(Y, dY , ν)

(
Rd, ‖ · ‖, (r? ◦ ψ?)#ν

)
(
Rd, ‖ · ‖, φ?#µ

)φ?

φ?−1

(r? ◦ ψ?)−1

r? ◦ ψ?
µ = (φ?−1◦r? ◦ ψ?)#ν

ν = ((r? ◦ ψ)−1◦φ?)#µ

Figure 1: Illustration of the preserving measure mappings between the mm-spaces (X, dX , µ) and
(Y, dY , ν) given in Proposition 2. The embedding φ? maps from X to Rd while r? ◦ ψ? maps from Y to
Rd. Our distance S2

d(µ, ν) = 0 vanishes if and only if µ and ν are mapped through the embeddings
(φ?)−1 and (r? ◦ ψ?)−1.

3.3 Cost relation between GW and SERW

In addition to the afore theoretical properties of SERW, we establish a cost relation metric between
GW and SERW distances. The obtained upper and lower bounds depend on approximation constants
that are linked to the distortions of the embeddings.

Proposition 4. Let Assumption 1 holds. Then,

1

2
GW2

2(µ, ν) ≤ S2
d(µ, ν) + αMµ,ν

where α = 2 infτφ∈Demb(X),τψ∈Demb(Y )(τφτψ − 1) and Mµ,ν = 2(M1(µ) +M1(ν)).

Proposition 5. Let Assumption 1 holds. Then,

S2
d(µ, ν) ≤ βGW2

2(µ, ν) + 4βMµ,ν

where β = 2 supτφ∈Demb(X),τψ∈Demb(Y )(τ
2
φ+τ2

ψ) and Mµ,ν = (
√
M2(µ)+

√
M1(µ))(

√
M2(ν)+

√
M1(ν))+

M2(µ) +M2(ν).

Proofs of Propositions 4 and 5 are presented in Appendices A.9 and A.8. We use upper and lower
bounds of GW distance as provided in Mémoli (2008). The cost relation between SERW and GW
distances obtained in Propositions 4 and 5 are up to the constants α, β which are depending on the
distortion parameters of the embeddings, and up to an additive constant through the p-moments Mp

of the measures µ and ν. In the following we highlight some particular cases leading to closed form of
the upper and lower bounds for the cost relation between GW and SERW distances.

3.4 Fixed sub-embedding for distribution alignment

From the computational point of view, computing SERW distance seems a daunting task, since one
would have to optimize over the product of two huge embedding spaces Fd(X)×Fd(Y ). However in
some applications we may not require solving over Fd(X)×Fd(Y ) and rather have at disposal known
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embeddings in advance. For instance, for image-text alignment we may leverage on features extracted
from pre-trained deep architectures (VGG (Simonyan and Zisserman, 2015) for image embedding, and
Word2vec Mikolov et al. (2013) for projection the text). Roughly speaking, our SERW procedure with
respect to these fixed embeddings can be viewed as an embedding-dependent distribution alignment for
matching. More precisely, the alignment quality is strongly dependent on the given embeddings; the
lower distorted embeddings, the more accurate alignment.

Definition 5. For a fixed couple of embeddings (φf , ψf ) ∈ Fd(X) × Fd(Y ), we define the fixed
sub-embedding robust Wasserstein (FSERW) as

S̃2
d =

1

2
inf

π∈Π(µ,ν)
inf
r∈Rd

Jφf ,ψf ,r,π(µ, ν).

Lemma 5. S̃2
d defines a proper distance if and only if µ = (φf

−1 ◦ (rf ◦ψf ))#ν and ν = ((rf ◦ ψf )−1 ◦
φf )#µ, where rf = infr∈Rd Jφf ,ψf ,r,π(µ, ν).

The cost relation guarantees given in Propositions 3 and 4 are dependent on the distortions of the
fixed embeddings, i.e., the constants α and β become: αf = 2(τφf τψf − 1) and βf = 2(τ2

φf
+ τ2

ψf
). Then

the following holds

Lemma 6. One has 1
2GW2

2(µ, ν) ≤ S2
d(µ, ν) + αfMµ,ν and S2

d(µ, ν) ≤ βfGW2
2(µ, ν) + 4βfMµ,ν .

In a particular case of isometric embeddings, our procedure gives the following cost relation

1

2
GW2

2(µ, ν) ≤ S2
d(µ, ν) ≤ 4GW2

2(µ, ν) + 16Mµ,ν .

The additive constants Mµ,ν and Mµ,ν can be upper bounded in a setting of data preprocessing, for
instance in the case of a normalization preprocessing we have Mµ,ν ≤ 4 and Mµ,ν ≤ 6.

4 Numerical experiments

Here we illustrate how SERW distance behaves on numerical problems. We apply it on some toy
problems as well as on some problems usually addressed using GW distance.

Sketch of practical implementation. Based on the above presented theory, we have several
options for computing the distance between non-aligned measures and they all come with some
guarantees compared to a GW distance. In the simpler case of fixed embedding, if the original spaces
are subspaces of Rd, any distance preserving embedding can be a good option for having an embedding
with low distortion. Typically, methods like multidimensional scaling (MDS) (Kruskal and Wish, 1978),
Isomap (Tenenbaum et al., 2000) or Local linear embedding (LLE) (Roweis and Saul, 2000) can be
good candidates. One of the key advantages of SERW is that it considers non-linear embedding before
measure alignments. Hence, it has the ability of leveraging over the large zoo of recent embedding
methods that act on different data structures like text (Grave et al., 2018), graphs (Grover and Leskovec,
2016; Narayanan et al., 2017), images (Simonyan and Zisserman, 2015), or even histograms (Courty
et al., 2018).

In the general setting our theoretical results require computing S2
d(µ, ν) to solve the problem

given in the Definition (4). We sketch in Appendix B a practical procedure to learn from samples
X = {xi}ni=1 and Y = {yj}mj=1, non-linear neural-network based embedding functions φ and ψ that
maximize the Wasserstein distance between the embedded samples while minimizing the embedding
distortion.
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Figure 2: Plots of (left) the distortion rate; (middle) various bounds in Proposition 5; (right) GW cost
and the distance ratio of SERW between the data points; as a function of the target dimension of
embedded data d. The bold points in the right panel correspond to GW2(X,Y )/GW2(Y, Z) (red) and
GW2(X,Z)/GW2(Y,Z) (blue).

4.1 Toy example

In this example, we extracted randomly n = m = 1000 samples from MNIST, USPS and Fashion
MNIST data sets, denoted by X, Y and Z. We compare GW distances between three possible
matchings with the assorted SERW distances. We pre-process the data in order to fix the parameter
Mµ,ν and Mµ,ν as discussed previously. We then vary the dimension of the embedded points from
log(n)2 up to the smallest dimension of the original samples. We perform the embeddings by using LLE
followed by a non-linear embedding scheme aiming at minimizing the distance distortion as described
in Appendix B.

In Figure 2 we report plots of the distortion rate, the additive constant βMµ,ν in the upper bound
in Proposition 5, and the distance ratio of SERW for the three data sets X, Y and Z. As can be
seen the rates decrease as the embedding dimension increase. Note that to determine the distortion
coefficient for each given embedded dimension, we compute the quotient of the pairwise distances
both in the original and embedding spaces. Thus, this high magnitudes of the upper bounds are due
to a “crude” estimation of the distortion rate. One may investigate a better estimation to reach a
tighter upper bound. For this toy set, we investigate a useful property in our approach called proximity
preservation, a property stating that:

GW2(µ, ν) ≤ GW2(µ, η)⇒ Sd(µ, ν) ≤ Sd(µ, η).

In order to confirm this property, we compute the ratio between Sd(X,Y )/Sd(Y,Z) and Sd(X,Z)/Sd(Y,Z)
for various embeddings and compare the resulting order with GW2(X,Y )/GW2(Y, Z) and GW2(X,Z)/GW2(Y,Z).
As seen in Figure 2, while the ratios vary their order is often preserved for large embedding dimensions.

4.2 Meshes comparison

GW distance is frequently used in computer graphics for computing correspondence between meshes.
Those distances are then exploited for organizing shape collection, for instance for shape retrieval or
search. One of the useful key property of GW distance for those applications is that it is isometry-
invariant. In order to show that our proposed approach approximately satisfies this property, we
reproduce an experiment already considered by Solomon et al. (2016) and Vayer et al. (2019).

We have at our disposal a time-series of 45 meshes of galloping horses. When comparing all
meshes with the first one, the goal is to show that the distance presents a cyclic nature related to
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Figure 3: GW, SGW, and SERW distances between 3D meshes of galloping horses. We can note that
both SGW and SERW distances are able to retrieve the cyclic nature of the movement.

galop cycle. Each mesh is composed of 8400 samples and in our case, we have embedded them into a
2-dimensional space using a multi-dimensional scaling algorithm followed by a non-linear embedding
aiming at minimizing distortion as described in Appendix B.

Figure 3 shows the (centered and max-normalized) distances between meshes we obtain with SERW
and with a Sliced Gromov-Wasserstein (SGW) (Vayer et al., 2019) and a genuine Gromov-Wasserstein
distance. In both cases, due to the random aspect of the first two algorithms, distances are averaged
over 10 runs. We note that our approach is able to recover the cyclic nature of the galloping motion as
described by GW distance.

Time complexity. Calculating the exact complexity of SERW is difficult as it depends on the
embedding spaces. For fixed embeddings (LLE, Isomap, etc.), we may be able to provide complexity
analysis of FSERW: O(n3) for embedding + O(n3) for calculating the Wasserstein distance. However,
the GW distance has O(n4) complexity implied by fourth order tensor product. In this case, for the
Meshes experiments with 500 samples in the meshes (on average of 5 runs computed on 2 cores of a i7
cpu), SERW runs slower than GW (2.26± 0.1s vs 1.43± 0.4s). For 5000 samples, SERW is 3 times
faster than GW (220± 10s vs 610± 10s). We thus believe that SERW has more potential than GW for
handling large-scale problems.

4.3 Text-Image Alignment

To show that our proposed also provides relevant coupling when considering out-of-the-shelves em-
beddings, we present here results on aligning text and images distributions. The problem we address
is related to identifying different states of objects, scene and materials (Isola et al., 2015). We have
images labeled by some nouns modified by some adjectives describing state of the objects. In our
experiment, we want to show that our approach provides coupling between labels and images semanti-
cally meaningful as those obtained by a Gromov-Wasserstein approach. As for proof of concept, from
the 115 available adjectives, we have considered only three of them ruffled, weathered, engraved and
extracted all the classes associated with those adjectives. In total, we obtain 109 different classes of
objects and about 525 images in total (as each class contains at most 5 objects).
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The composed name (adjective + noun) of each label is embedded into R100 using a word vector
representation issued by fasttext model (Grave et al., 2018) trained on the first 1 billion bytes of
English Wikipedia according to Mikolov et al. (2018). The 256× 256 images have been embedded into
a vector of dimension 4096 using a pre-trained VGG-16 model (Simonyan and Zisserman, 2015). These
embeddings are extracted from the first dense layer of a VGG-16. The Gromov-Wasserstein distance of
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Figure 4: Coupling matrices between text and image embeddings. (top) Gromov-Wasserstein coupling
matrix obtained in the original embedding spaces (bottom) our SERW coupling matrix after projecting
embeddings into same dimension space.

those embeddings has been computed for coupling labels and images in the two different embedding
spaces. For our SERW approach, we have further reduce the dimension of the image embeddings using
Isomap with 100 dimensions. When computing the distance matrix, objects have been organized by
class of adjectives for an easy visual inspection.

Figure 4 presents coupling matrices obtained using GW and our SERW. Since in both cases, the
distance is not approximated by the Sinkhorn algorithm, the obtained matching is not smooth. Our
results show that both GW and SERW distances are able to retrieve the 3 classes of adjectives and
matches appropriate images with the relevant labels. Figure 5 illustrates the best matched images by
GW and SERW (according to the transportation map) to the texts Engraved Copper and Engraved
Metal. We can remark that in both cases GW and SERW do not suggest the same images. However,
the retrieved images are meaningful according to the text queries. We shall notice that the embeddings
used by SERW do not distort the discriminative information, leading to interesting matched images as
shown by the last row of Figure 5.
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Figure 5: Best matched images obtained through GW transportation plan, and our SERW distance.
The first block of images correspond to the class Engraved Copper and the second one to Engraved
Metal. Within each block, the top row shows the results of GW and the bottom row illustrates the
matching proposed by SERW.
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5 Conclusion

In this paper we introduced the SERW distance for distribution alignment lying in different mm-spaces.
It is based on metric measure embedding of the original mm-spaces into a common Euclidean space and
computes an optimal transport on the (low-distorted) embedded distributions. We prove that SERW
defines a proper distance behaving like GW distance and we further show a cost relation between
SERW and GW. Some of numerical experiments are tailored using a fully connected neural network to
learn the maximization problem defining SERW, while other ones are conducted with fixed embeddings.
In particular, SERW can be viewed as an embedding-dependent alignment for distributions coming
from different mm-spaces, that its quality is strongly dependent on the given embeddings.
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Kusner, M., Y. Sun, N. Kolkin, and K. Weinberger (2015, 07–09 Jul). From word embeddings to
document distances. In F. Bach and D. Blei (Eds.), Proceedings of the 32nd International Conference
on Machine Learning, Volume 37 of Proceedings of Machine Learning Research, Lille, France, pp.
957–966. PMLR.
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Monge, G. (1781). Mémoire sur la théotie des déblais et des remblais. Histoire de l’Académie Royale
des Sciences, 666–704.

Narayanan, A., M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal (2017). Graph2Vec:
Learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 .

O’Searcoid, M. (2006). Metric Spaces. Springer Undergraduate Mathematics Series. Springer London.

Paty, F.-P. and M. Cuturi (2019). Subspace robust Wasserstein distances. In K. Chaudhuri and
R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on Machine Learning,
Volume 97 of Proceedings of Machine Learning Research, Long Beach, California, USA, pp. 5072–5081.
PMLR.
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A Proofs

In the proofs, we frequently use the two following lemmas. Lemma 7 writes an integration result
using push-forward measures; it relates integrals with respect to a measure η and its push-forward
under a measurable map f : X → Y. Lemma 8 proves that the admissible set of couplings between
the embedded measures are exactly the embedded of the admissible couplings between the original
measures.

Lemma 7. Let f : S → T be a measurable mapping, let η be a measurable measure on S, and let g be
a measurable function on T . Then

∫
T gdf#η =

∫
S(g ◦ f)dη.

Lemma 8. For all φ ∈ Fd(X), ψ ∈ Fd(Y ), r ∈ Rd, and µ ∈P(X), ν ∈P(Y ), one has

Π(φ#µ, (r ◦ ψ)#ν) = {(φ⊗ (r ◦ ψ))#π s.t. π ∈ Π(µ, ν)}

where φ⊗ (r ◦ψ) : X × Y → X × Y such that (φ⊗ (r ◦ψ))(x, y) = (φ(x), r(ψ(y))) for all x, y ∈ X × Y.

Proof of Lemma 8. See Paty and Cuturi (2019).

A.1 Proof of Proposition 1

To let it more readable, the proof is divided into 5 steps summarized as follows: first step is for metric
property of Fd(X); second one shows completeness of Fd(X); third establishes the totally boundedness
of Fd(X), namely that one can recover this space using balls centred on a finite number of embedding
points; the last is a conclusion using Arzela-Ascoli’s Theorem for characterizing compactness of subsets
of functional continuous space.

Since the arguments of the proof are similar for the two spaces, we only focus on proving the
topological property of Fd(X). Let us refresh the memories by some results in topology: we denote
C(X,Rd) the set of all continuous mappings of X into (Rd, ‖ · ‖) and recall the notions of totally
boundedness in order to characterize the compactness of (Fd(X),ΓX). The material here is taken
from Kubrusly (2011) and O’Searcoid (2006).

Definition 6. i) (Totally bounded) Let A be a subset of a metric space (S, dS). A subset Aε of A is an
ε-net for A if for every point s of A there exists a point t in Aε such that d(s, t) < ε. A subset A of S is
totally bounded (precompact) in (S, dS) if for every real number ε > 0 there exists a finite ε-net for A.
ii) (Pointwise totally bounded) A subset S of C((S, dS), (T, dT )) is pointwise totally bounded if for each
s in S the set S(s) = {f(s) ∈ T : f ∈ S} is totally bounded in T.
iii) (Equicontinuous) A subset S of C(S, T ) is equicontinuous at a point s0 ∈ S if for each ε > 0 there
exists a δ > 0 such that dT (f(s), f(s0)) < ε whenever dS(s, s0) < δ for every f ∈ S

Proposition 6. If S is a metric space, then S is compact if and only if S is complete and totally
bounded.

Let C((S, dS), (T, dT )) consisting of all continuous bounded mappings of S into (T, dT ), endowed
with the supremum metric d∞(f, g) = sups∈S dT (f(s), g(s)). Proving the totally boundedness of some
topological spaces may need more technical tricks. Fortunately, in our case we use Arzelà–Ascoli
Theorem that gives compactness criteria for subspaces of C((S, dS), (T, dT )) in terms of pointwise
totally bounded and equicontinuous, namely they are a necessary and sufficient condition to guarantee
that the totally boundedness of a subset S in (C(S, T ), d∞).

Theorem 1. (Arzelà–Ascoli Theorem) If S is compact, then a subset of the metric space C((S, dS), (T, dT ))
is totally bounded if and only if it is pointwise totally bounded and equicontinuous.
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The proof is devided on 5 Steps:
• Step 1. (Fd(X),ΓX) is a metric space. It is clear that for all φ, φ′ ∈ Fd(X), ΓX(φ, φ′) ≥ 0

(nonegativeness) and ΓX(φ, φ′) = 0 if and only if φ = φ′. To verify the triangle inequality, we proceed
as follows. Take and arbitrary x ∈ X and note that, if φ, φ′, and φ′′ are embeddings in Fd(X) then by
triangle inequality in the Euclidean space Rd.

‖φ(x)− φ′(x)‖ ≤ ‖φ(x)− φ′′(x)‖+ ‖φ′′(x)− φ′(x)‖ ≤ ΓX(φ, φ′′) + ΓX(φ′′, φ′),

hence ΓX(φ, φ′) ≤ ΓX(φ, φ′′) + ΓX(φ′′, φ′), and therefore (Fd(X),ΓX) is a metric space.
• Step 2. Fd(X) ⊂ C(X,Rd). First recall that for each φ ∈ Fd(X) is a τφ-embedding then it is

Lipshitizian mapping. It is readily verified that every Lipshitizian mapping is uniformly continuous,
that is for each real number ε > 0 there exists a real number δ > 0 such that dX(x, x′) < δ implies
‖φ(x)− φ(x′)‖ < ε for all x, x′ ∈ X. So it is sufficient to take δ = ε

τφ
.

• Step 3. (Fd(X),ΓX) is complete. The proof of this step is classic in the topology literature of
the continuous space endowed with the supremum metric. For the sake of completeness, we adapt it in
our case. Let {φk}k≤1 be a Cauchy sequence in (Fd(X),ΓX). Thus {φk(x)}k≤1 is a Cauchy sequence
in (Rd, ‖ · ‖) for every x ∈ X. This can be as follows: ‖φk(x)− φk′‖(x)) ≤ supx∈X ‖φk(x)− φk′‖(x)) =
ΓX(φ, φ′) for each pair of integers k, k and every x ∈ X, and hence {φk(x)}k≤1 converges in Rd for
every x ∈ X (since Rd is complete). Let φ(x) = limk→∞ φk(x) for each x ∈ X (i.e., φk(x)→ φ(x)) in
Rd, which defines a a mapping φ of X into Rd. We shall show that φ ∈ Fd(X) and that {φk} converges
to φ in Fd(X), thus proving that (Fd(X),ΓX) is complete. Note that for any integer n and every pair
of points x, x′ in Fd(X), we have ‖φ(x)−φ(x′)‖ ≤ ‖φ(x)−φk(x)‖+‖φk(x)−φk(x′)‖+‖φk(x′)−φ(x′)‖
by the triangle inequality. Now take an arbitrary real number ε > 0. Since {φk(x)}k is a Cauchy
sequence in (Fd(X),ΓX), it follows that there exists a positive integer kε ∈ N such that Γ(φk, φk′) < ε,
and hence ‖φk(x)− φk′(x)‖ < ε for all x ∈ X, whenever k, k′ ≥ kε. Moreover, since φk(x)→ φ(x) in
Rd for every x ∈ X, and the Euclidean distance is a continuous function from the metric space Rd to
the metric space R for each y ∈ Rd, it also follows that ‖φ(x)− φk(x)‖ = ‖ limk′→∞ φk′(x)− φk(x)‖
for each positive integer k and every x ∈ X. Thus ‖φ(x) − φk(x)‖ ≤ ε for all x ∈ X whenever
k ≥ kε. Furthermore, since each φk lies in (Fd(X),ΓX), it follows that there exists a real number
γ(kε) such that sup d(φkε(s), φkε(x

′)) ≤ γ(kε), x, x
′ ∈ X. Therefore, for any ε > 0 there exists a

positive integer kε such that ‖φ(x) − φ(x′)‖ ≤ 2ε + γ(kε) for all x, x′ ∈ X so that φ ∈ (Fd(X),ΓX),
and ΓX(φ, φ′) = supx∈X ‖φ(x) − φ′(x)‖ ≤ ε, x ∈ X whenever k ≥ kε, so that φk converges to φ in
(Fd(X),ΓX).
• Step 4. Fd(X) is pointwise totally bounded and equicontinuous. From (iii) in Definition 6

and the details in Step 3, Fd(X) is readily equicontinous. Next we shall prove that the subset
{x̂} = {φ(x) ∈ Rd : φ ∈ Fd(X)} is totally bounded in Rd. To proceed we use another result
characterizing totally boundness that reads as:

(S, dS) is totally bounded metric space if and only if every sequence in S has a Cauchy subsequence.

Since for any φ ∈ Fd(X) is Lipshitizian then it is uniformly continuous as explained above. Furthermore
uniformly continuous functions have some very nice conserving properties. They map totally bounded
sets onto totally bounded sets and Cauchy sequences onto Cauchy sequences.

Now suppose that Suppose {yl}l≥1 is any sequence in {x̂} ⊂ φ(X) . For each l ∈ N, the subset
X ∩ φ−1({yl}) ⊂ X is non empty for each l ∈ N (Axiom of Countable Choice see O’Searcoid (2006)).
Then φ(xl) = yl for each l ∈ N. By the Cauchy criterion for total boundedness of X, the sequence {xl}l
has a Cauchy subsequence {xl}lj . Then, by what we have just proved, {φ(xl)}lj = {yl}lj is a Cauchy
subsequence of {yl}. Since {yl} is an arbitrary sequence in {x̂}, {x̂} satisfies the Cauchy criterion for
total boundedness and so is totally bounded.
• Step 5. Fd(X) is compact. Using Arzela-Ascoli Thereom 1 and Step 2 we conclude that

Fd(X) is totally bounded. Together with Step 3 Fd(X) is compact.
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A.2 Proof of Lemma 1

Notice that for µ ∈Pp(X), ν ∈Pp(Y ), and (φ, ψ) ∈ Fd(X)×Fd(Y ), r ∈ Rd one hasW 2
2

(
1√
2
φ#µ,

1√
2
(r◦

ψ)#ν
)
<∞. It can be seen easily using the facts that∫

Rd
‖u‖2d

1√
2
φ#µ(u) =

1

2

∫
X
‖φ(x)‖2dµ(x) ≤

τ2
φ

2
M2(µ)

and ∫
Rd
‖v‖2d

1√
2

(r ◦ ψ)#ν(u) =
1

2

∫
Y
‖r(ψ(y))‖2dν(y) =

1

2

∫
Y
‖ψ(y)‖2dν(y) ≤

τ2
ψ

2
M2(ν)

where M2(µ) =
∫
X ‖x‖2Xdµ(x) <∞ and M2(ν) =

∫
Y ‖y‖2Y dµ(y) <∞, by Assumption 1. Now, thanks

to Lemmas 7 and 8, we have

E2
d (µ, ν) = inf

r∈Rd
sup

φ∈Fd(X),ψ∈Fd(Y )
inf

γ∈Π( 1√
2
φ#µ,

1√
2

(r◦ψ)#ν)

∫
X×Y

‖u− v‖2dγ(u, v)

= inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

inf
π∈Π(µ,ν)

∫
X×X

‖u− v‖2d
( 1√

2
φ⊗ 1√

2
(r ◦ ψ)

)
#
π(u, v)

= inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

inf
π∈Π(µ,ν)

1

2

∫
X×Y

‖φ(x)− r(ψ(y))‖2dπ(x, y)

= inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

1

2
inf

π∈Π(µ,ν)
Jφ,ψ,r,π(µ, ν).

A.3 Proof of Lemma 2

In one hand, for any fixed π ∈ Π(µ, ν) the application hπ : (φ, ψ, r) 7→
∫
X×Y ‖φ(x)− r(ψ(y))‖2dπ(x, y)

is continuous. To show that, we use the continuity under integral sign Theorem. Indeed,

� for π-almost (x, y), the mapping (φ, ψ, r) 7→ ‖φ(x)−ψ(y)‖2 is continuous. To show that fix ε >
0, and φ, ψ, r, φ0, ψ0, r0 ∈ Fd(X)×Fd(Y )×Rd. We endow the product sapce Fd(X)×Fd(Y )×Rd
by the metric ΓX,Y defined as follows:

ΓX,Y ((φ, ψ), (φ′, ψ′), (r, r′)) = ΓX(φ, φ′) + ΓY (r ◦ ψ, r′ ◦ ψ′))

We have∣∣‖φ(x)− (r ◦ ψ)(y)‖2 − ‖φ0(x)− (r0 ◦ ψ0)(y)‖2
∣∣ ≤ ‖(φ(x)− φ0(x))− (r(ψ(y))− r0(ψ0(y)))‖2

≤ 2
(
‖φ(x)− φ0(x)‖2 + ‖r(ψ(y))− r0(ψ0(y))‖2

)
≤ 2
(
Γ2
X(φ, φ0) + Γ2

Y (r ◦ ψ, r0 ◦ ψ0)
)

≤ 2Γ2
X,Y ((φ, ψ), (φ0, ψ0), (r, r0)).

Letting δε =
√
ε/2, then if ΓX,Y ((φ, ψ), (φ0, ψ0), (r, r0)) < δε, one has

∣∣‖φ(x) − r(ψ(y))‖2 −
‖φ0(x) − r0(ψ0(y))‖2

∣∣ < ε. This yields that lim(φ,ψ,r)→(φ0,ψ0,r0) ‖φ(x) − r(ψ(y))‖2 = ‖φ0(x) −
r0(ψ0(y))‖2.

� for a fixed (φ, ψ, r) and (x, y) ∈ X × Y, we have ‖φ(x) − r(ψ(y))‖2 ≤ ‖φ(x)‖2 + ‖r(ψ(y))‖2 ≤
g(x, y) := τφ

2‖x‖2 +τψ
2‖y‖2 with

∫
X×Y g(x, y)dπ(x, y) = τφ

2
∫
X ‖x‖2dµ(x)+τψ

2
∫
Y ‖y‖2dν(x) <

∞.
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Therefore, the family (hπ)π∈Π(µ,ν) is continuous then it is upper semicontinuous. We know that the
pointwise infimum of a family of upper semicontinuous functions is upper semicontinuous (see Lemma
2.41 in Aliprantis and Border (2006)). This entails infπ∈Π(µ,ν) hπ is upper semicontinuous. Since the
product of compact sets is a compact set (Tychonoff Theorem), then Fd(X)×Fd(Y ) is compact, hence
supφ∈Fd(X),ψ∈Fd(Y ) infπ∈Π(µ,ν) hπ(φ, ψ, r) attains a maximum value (see Theorem 2.44 in Aliprantis
and Border (2006)). So, there exits a couple of embeddings (φ∗, ψ∗) ∈ Fd(X)×Fd(y) and π∗ ∈ Π(µ, ν)
such that supφ∈Fd(X),ψ∈Fd(Y ) infπ∈Π(µ,ν) hπ(φ, ψ, r) = hπ∗(φ

∗, ψ∗, r) for all r ∈ Rd. Finally, it is easy
to show that r 7→ hπ∗(φ

∗, ψ∗, r) is continuous, hence the infimum over the orthogonal mappings Rd
(compact) exits.

A.4 Proof of Lemma 3

Let us recall first the minimax inequality:

Lemma 9. (Minimax inequality) Let Ξ : U × V → R ∪ {±∞} be a function. Then

sup
v∈V

inf
u∈U

Ξ(u, v) ≤ inf
u∈U

sup
v∈V

Ξ(u, v).

Using minimax inequality, one has

E2
d (µ, ν) ≤ 1

2
inf
r∈Rd

inf
π∈Π(µ,ν)

sup
φ∈Fd(X),ψ∈Fd(Y )

Jφ,ψ,r,π(µ, ν).

Note that for a fixed π ∈ Π(µ, ν) and r ∈ Rd one has supφ∈Fd(X),ψ∈Fd(Y ) Jφ,ψ,r,π(µ, ν) exits (continuity
of π, r 7→ supφ∈Fd(X),ψ∈Fd(Y ) Jφ,ψ,r,π(µ, ν) + compact set as shown in Proof of Lemma 2). Then

inf
r∈Rd

inf
π∈Π(µ,ν)

sup
φ∈Fd(X),ψ∈Fd(Y )

Jφ,ψ,r,π(µ, ν) = inf
π∈Π(µ,ν)

inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

Jφ,ψ,r,π(µ, ν).

Thus E2
d (µ, ν) ≤ S2

d(µ, ν).

A.5 Proof of Lemma 4

As we proved in Lemma 2 that for any fixed π ∈ Π(µ, ν), hπ : (φ, ψ, r) 7→
∫
X×Y ‖φ(x)−r(ψ(y))‖2dπ(x, y)

is continuous, then it is lower semicontinous. The pointwise supremum of a family of lower semicon-
tinuous functions is lower semicontinuous (Lemma 2.41 in Aliprantis and Border (2006)) Moreover,
the pointwise infimum of a compact family of lower semicontinuous functions is lower semicontinuous
(here Rd is compact) then π 7→ infr∈Rd supφ∈Fd(X),ψ∈Fd(Y )

∫
X×Y ‖φ(x) − r(ψ(y))‖2dπ(x, y) is lower

semicontinuous Furthermore Π(µ, ν) is compact set with respect to the topology of narrow conver-
gence (Villani, 2003), then infπ∈Π(µ,ν) infr∈Rd supφ∈Fd(X),ψ∈Fd(Y )

∫
X×Y ‖φ(x)− ψ(y)‖2dπ(x, y) exists

(see Theorem 2.44 in Aliprantis and Border (2006)).

A.6 Proof of Proposition 2

• “⇒” Suppose that Sd(µ, ν) = 0 then Ed(µ, ν) = 0, that gives the Wasserstein distanceW2( 1√
2
φ#µ,

1√
2
(r◦

ψ)#ν) = 0 and hence φ#µ = (r ◦ ψ)#ν for any φ, ψ ∈ Fd(X) × Fd(Y ) and r ∈ Rd. Then for any
K ⊆ Rd Borel, we have µ(φ−1(K)) = ν((r ◦ ψ)−1(K)). Recall that X ⊆ RD and Y ⊆ RD′ , then
through the proof lines we regard to µ and ν as probability measures on RD and RD′ , allowing us to
use a the following key result of Cramér and Wold (1936).

Theorem 2. (Cramér and Wold, 1936) Let γ, β be Borel probability measures on RD and agree at
every open half-space of X. Then γ = β. In other words if, for ω ∈ SD = {x ∈ RD : ‖x‖ = 1} and
α ∈ R we write Hω,α = {x ∈ RD : 〈ω, x〉 < α} and if γ(Hω,α) = β(Hω,α), for all ω ∈ SD and α ∈ R
then one has γ = β.
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The fundamental Cramér-Wold theorem states that a Borel probability measure µ on RD is uniquely
determined by the values it gives to halfspaces Hω,α = {x ∈ RD : 〈ω, x〉 < α} for ω ∈ SD and α ∈ R.
Equivalently, γ is uniquely determined by its one-dimensional projections (∆ω)#µ, where ∆ω is the
projection x ∈ RD 7→ 〈x, ω〉 ∈ R for ω ∈ SD.

Straightforwardly, we have

φ−1
# ((r ◦ ψ)#ν)(Hω,α) = (r ◦ ψ)#ν

(
(φ−1)−1(Hω,α)

)
= (r ◦ ψ)#ν

(
{u ∈ X : φ−1(u) ∈ Hω,α}

)
= (r ◦ ψ)#ν

(
{u ∈ X : 〈w, φ−1(u)〉 < α}

)
= φ#µ

(
{u ∈ X : 〈w, φ−1(u)〉 < α}

)
( by hypothesis)

= µ
(
φ−1

(
{u ∈ X : 〈w, φ−1(u)〉 < α}

))
= µ

({
x ∈ X : φ(x) ∈ {u ∈ X : 〈w, φ−1(u)〉 < α}

})
= µ

(
{x ∈ X : 〈w, φ−1(φ(x))〉 < α}

)
= µ

(
{x ∈ X : 〈w, x〉 < α}

)
( since φ is one-to-one)

= µ(Hω,α).

Analogously, we prove that (r ◦ ψ)−1
# (φ#µ(Hω,α)) = ν(Hω,α). Therefore, for all A ⊆ X and B ⊆ Y

Borels, we have µ(A) = φ−1
# ((r ◦ ψ)#ν)(A) and ν(B) = (r ◦ ψ)−1

# (φ#µ)(B).
• “⇐” Thanks to Lemma 4 in the core of the paper, there exists a couple of embeddings (φ?, ψ?)

and r? ∈ Rd optimum for S2
d(µ, ν). We assume now that ν = ((r? ◦ ψ?)−1 ◦ φ?)#µ, then

S2
d(µ, ν) =

1

2
inf

π∈Π(µ,(r?◦ψ?)−1
# (φ?#µ))

∫
X×Y

‖φ?(x)− r?(ψ?(y))‖2dπ(x, y)

=
1

2
inf

π∈Π(µ,φ?#µ)

∫
X×Y

‖φ?(x)− r?(ψ?(y))‖2d(I ⊗ (r? ◦ ψ?)−1)#π(x, y)

=
1

2
inf

π∈Π(µ,µ)

∫
X×Y

‖φ?(x)− r?(ψ?(y))‖2d(I ⊗ φ?)#

(
(I ⊗ (r? ◦ ψ?)−1)#π(x, y)

)
.

On the other hand, it is clear that (I ⊗ φ?)#

(
(I ⊗ (r? ◦ ψ?)−1)#π

)
(·) =

(
I ⊗ φ? ◦ (r? ◦ ψ?)−1

)
#
π(·).

Using the fact that φ? is τφ?-embedding then we get

S2
d(µ, ν) =

1

2
inf

π∈Π(µ,µ)

∫
X×Y

‖φ?(x)− r?(ψ?(y))‖2d
(
I ⊗ φ? ◦ (r? ◦ ψ?)−1

)
#
π(x, y)

)
=

1

2
inf

π∈Π(µ,µ)

∫
X×X

‖φ?(x)− φ?(x′)‖2dπ(x, x′)

≤
τ2
φ?

2
inf

π∈Π(µ,µ)

∫
X×X

d2
X(x, x′)dπ(x, x′)

≤
τ2
φ?

2
W 2

2 (µ, µ)

= 0.

A.7 Proof of Proposition 3

Symmetry is clear for both objects. In order to prove the triangle inequality, we use a classic lemma
known as “gluing lemma” that allows to produce a sort of composition of two transport plans, as if
they are maps.
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Lemma 10. (Villani, 2003) Let X,Y, Z be three Polish spaces and let γ1 ∈P(X×Y ), γ2 ∈P(Y ×Z),
be such that ∆Y

#γ
1 = ∆Y

#γ
2 where ∆Y is the natural projection from X × Y (or Y × Z) onto Y . Then

there exists a measure γ ∈P(X × Y × Z) such that ∆X×Y
# γ = γ1 and ∆Y×Z

# γ = γ2.

Let η ∈P2(Z) and π1 ∈ Π(µ, ν) and π2 ∈ Π(ν, η). By the gluing lemma we know that there exists
γ ∈P2(X ×Y ×Z) such that ∆X×Y

# γ = π1 and ∆Y×Z
# γ = π2. Since ∆X

#γ = µ and ∆Z
#γ = η, we have

π = ∆X×Z
# γ ∈ Π(µ, η). On the other hand∫
X×Z
‖φ(x)− ϑ(ζ(z))‖2dπ(x, z)

=

∫
X×Y×Z

‖φ(x)− ϑ(ζ(z)))‖2dγ(x, y, z)

≤ 2

∫
X×Y×Z

(
‖(φ(x)− r(ψ(y))‖2 + ‖r(ψ(y))− ϑ(ζ(z))‖2

)
dγ(x, y, z)

≤ 2

∫
X×Y×Z

‖φ(x)− r(ψ(y))‖2dγ(x, y, z) + 2

∫
X×Y×Z

‖r(ψ(y))− ϑ(ζ(z))‖2dγ(x, y, z)

= 2

∫
X×Y

‖φ(x)− r(ψ(y))‖2dπ1(x, y) + 2

∫
Y×Z

‖ψ̃(y)− ϑ(ζ(z))‖2dπ2(y, z),

where ψ̃ = r ◦ ψ ∈ Fd(Y ) (‖r(ψ(y))‖2 = ‖ψ(y)‖2, ∀y). Hence, we end up with the desired result,
S2
d(µ, η) ≤ S2

d(µ, ν) + S2
d(ν, η).

A.8 Proof of Proposition 4

As the embedding φ is Lipschitizian then it is continuous. Since X is compact hence φ(X) is also
compact. Consequently supp[φ#µ] ⊂ φ(X) is compact (closed subset of a compact). The same
observation is fulfilled by supp[ψ#ν] ⊂ ψ(Y ). Letting Z = {supp[φ#µ]∪ supp[(r ◦ψ)#ν]} ⊆ Rd. Hence,
(Z, ‖ · ‖) is compact metric space and φ#µ and (r ◦ ψ)#ν are Borel probability measures on Z. Thanks
to Theorem 5 (property (c)) in Mémoli (2011), we have that

W2
2 (

1√
2
φ#µ,

1√
2

(r ◦ ψ)#ν) ≥ GW2
2(

1√
2
φ#µ,

1√
2

(r ◦ ψ)#ν), for any φ ∈ Fd(X), ψ ∈ Fd(Y ).

So

E2
d (µ, ν) ≥ inf

r∈Rd
sup

φ∈Fd(X),ψ∈Fd(Y )
GW2

2(
1√
2
φ#µ,

1√
2

(r ◦ ψ)#ν).
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Together with the minimax inequality we arrive at

S2
d(µ, ν)

≥ inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

GW2
2(

1√
2
φ#µ,

1√
2

(r ◦ ψ)#ν)

≥ inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

1

2
inf

γ∈Π( 1√
2
φ#,

1√
2

(r◦ψ)#)

∫∫
Z×Z

(‖u− u′‖2 − ‖v − v′‖2)2dγ(u, v)dγ(u′, v′)

≥ inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

1

4
inf

π∈Π(µ,ν)

∫∫
Z×Z

(‖u− u′‖2 − ‖v − v′‖2)2d(φ⊗ (r ◦ ψ))#π(u, v)d(φ⊗ (r ◦ ψ))#π(u′, v′)

≥ inf
r∈Rd

sup
φ∈Fd(X),ψ∈Fd(Y )

1

4
inf

π∈Π(µ,ν)

∫∫
X×Y

(‖φ(x)− φ(x′)‖2 − ‖r(ψ(y))− r(ψ(y′))‖2)2dπ(x, y)dπ(x′, y′)

= sup
φ∈Fd(X),ψ∈Fd(Y )

1

4
inf

π∈Π(µ,ν)

∫∫
X×Y

(‖φ(x)− φ(x′)‖2 − ‖ψ(y)− ψ(y′)‖2)2dπ(x, y)dπ(x′, y′)

≥ sup
φ∈Fd(X),ψ∈Fd(Y )

1

4
inf

π∈Π(µ,ν)

∫∫
X×Y

(
d2
X(x, x′) + d2

Y (y, y′)− 2τφτψdX(x, x′)dY (y, y′)
)
dπ(x, y)dπ(x′, y′)

≥ 1

2
GW2

2(µ, ν) +
1

2
sup

φ∈Fd(X),ψ∈Fd(Y )
(1− τφτψ) inf

π∈Π(µ,ν)

∫∫
X×Y

dX(x, x′)dY (y, y′)dπ(x, y)dπ(x′, y′).

Using the fact that − sup−x = inf x, we get

GW2
2(µ, ν) ≤ 2S2

d(µ, ν) + inf
φ∈Fd(X),ψ∈Fd(Y )

(τφτψ − 1)I(µ, ν),

where I1(µ, ν) := infπ∈Π(µ,ν)

∫∫
X×Y dX(x, x′)dY (y, y′)dπ(x, y)dπ(x′, y′). Using Bourgain’s embedding

theorem Bourgain (1985), τφ ∈ [1,O(log n)] and τψ ∈ [1,O(logm)], then

GW2
2(µ, ν) ≤ 2S2

d(µ, ν) + inf
τφ∈Demb(X),τψ∈Demb(Y )

(τφτψ − 1)I1(µ, ν).

In another hand, we have

I1(µ, ν) = inf
π∈Π(µ,ν)

∫∫
X×Y

dX(x, x′)dY (y, y′)dπ(x, y)dπ(x′, y′)

≤
∫∫

X×Y
dX(x, x′)dY (y, y′)dµ(x)dν(y)dµ(x′)dν(y′)

≤
∫
X×X

dX(x, x′)dµ(x)dµ(x′)

∫
Y×Y

dY (y, y′)dν(y)dν(y′)

≤ 4
(∫

X
dX(x, 0)dµ(x) +

∫
Y
dY (y, 0)dν(y)

)
≤ 4
(∫

X
‖x‖Xdµ(x) +

∫
Y
‖y‖Y dν(y)

)
≤ 4(M1(µ) +M1(ν)),

M1(µ) =
∫
X ‖x‖Xdµ(x) <∞. Hence,

1

2
GW2

2(µ, ν) ≤ S2
d(µ, ν) + 2 inf

τφ∈Demb(X),τψ∈Demb(Y )
(τφτψ − 1)(M1(µ) +M1(ν)).
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A.9 Proof of Proposition 5

The proof of this proposition is based on a lower bound for the Gromov-Wasserstein distance (Proposition
6.1 in Mémoli (2011)):

GW2
2(µ, ν) ≥ FLB2

2(µ, ν) :=
1

2
inf

π∈Π(µ,ν)

∫
X×Y

|sX,2(x)− sY,2(y)|2dπ(x, y),

where sX,2 : X → R+, sX,2(x′) =
( ∫

X d
2
X(x, x′)dµ(x′)

)1/2
defines an eccentricity function. Note that

FLB2
2 leads to a mass transportation problem for the cost c(x, y) := |sX,2(x)− sY,2(y|2.

Now, for any x, y ∈ X × Y , and φ, ψ ∈ Fd(X)×Fd(Y ), r ∈ Rd we have (by triangle inequality)

‖φ(x)− r(ψ(y))‖22
=

∫
X×Y

‖φ(x)− r(ψ(y))‖22dµ(x′)dν(y′)

≤ 4

∫
X
‖φ(x)− φ(x′)‖22dµ(x′) + 4

∫
Y
‖r(ψ(y))− r(ψ(y′))‖22dν(y′)

+ 2

∫
X×Y

‖φ(x′)− r(ψ(y′))‖22dµ(x′)dν(y′)

≤ 4τ2
φ

∫
X
d2
X(x, x′)dµ(x′) + 4τ2

ψ

∫
Y
d2
Y (y, y′)dν(y′) + 2

∫
X×Y

‖φ(x′)− r(ψ(y′))‖22dµ(x′)dν(y′)

≤ 4(τ2
φ + τ2

ψ)
(∫

X
d2
X(x, x′)dµ(x′) +

∫
Y
d2
Y (y, y′)dν(y′)

− 2
(∫

X
d2
X(x, x′)dµ(x′)

)1/2(∫
Y
d2
Y (y, y′)dν(y′)

)1/2)
+ (τ2

φ + τ2
ψ)
(∫

X
d2
X(x, x′)dµ(x′)

)1/2(∫
Y
dY (y, y′)2dν(y′)

)1/2

+ 2

∫
X×Y

‖φ(x′)− r(ψ(y′))‖22dµ(x′)dν(y′)

≤ 4(τ2
φ + τ2

ψ)
∣∣sX,2(x)− sY,2(y)|2 + 8(τ2

φ + τ2
ψ)
√
I2,x,y(µ, ν)

+ 2

∫
X×Y

‖φ(x′)− r(ψ(y′))‖22dµ(x′)dν(y′),

where

I2,x,y(µ, ν) :=
(∫

X
d2
X(x, x′)dµ(x′)

)(∫
X
Y d2

Y (y, y′)dν(y′)
)
.

We observe that

I2,x,y(µ, ν) ≤ 4(M2(µ) + d2
X(x, 0))(M2(ν) + d2

Y (y, 0)).

Moreover, ∫
X×Y

‖φ(x′)− r(ψ(y′))‖2dµ(x′)dν(y′) ≤ 2(τ2
φ + τ2

ψ)(M2(µ) +M2(ν)).
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Therefore, for any π ∈ Π(µ, ν)∫
X×Y
‖φ(x)− r(ψ(y))‖22dπ(x, y)

≤ 2(τ2
φ + τ2

ψ)

∫
X,Y

∣∣sX,2(x)− sY,2(y)|2dπ(x, y)

+ 8(τ2
φ + τ2

ψ)

∫
X×Y

√
4(M2(µ) + d2

X(x, 0))(M2(ν) + d2
Y (y, 0))dπ(x, y)

+ 2(τ2
φ + τ2

ψ)(M2(µ) +M2(ν))

≤ 4(τ2
φ + τ2

ψ)

∫
X,Y

∣∣sX,2(x)− sY,2(y)|2dπ(x, y)

+ 16(τ2
φ + τ2

ψ)

∫
X

√
(M2(µ) + d2

X(x, 0))dµ(x)

∫
Y

√
(M2(ν) + d2

Y (y, 0))dν(y)

+ 2(τ2
φ + τ2

ψ)(M2(µ) +M2(ν)).

Note that∫
X

√
M2(µ) + d2

X(x, 0)dµ(x) ≤
√
M2(µ) +

∫
X
dX(x, 0))dµ(x) ≤

√
M2(µ) +

√
M1(µ),

and ∫
Y

√
M2(ν) + d2

Y (y, 0)dν(y) ≤
√
M2(ν) +

∫
Y
dY (y, 0))dν(y) ≤

√
M2(ν) +

√
M1(ν).

So ∫
X×Y

‖φ(x)− r(ψ(y))‖22dπ(x, y) ≤ 4(τ2
φ + τ2

ψ)

∫
X,Y

∣∣sX,2(x)− sY,2(y)|2dπ(x, y)

+ 16(τ2
φ + τ2

ψ)(
√
M2(µ) +

√
M1(µ))(

√
M2(ν) +

√
M1(ν))

+ 2(τ2
φ + τ2

ψ)(M2(µ) +M2(ν)).

Finally,

S2
d(µ, ν) ≤ 2 sup

τφ∈Demb(X),τψ∈Demb(Y )
(τ2
φ + τ2

ψ)(GW2
2(µ, ν) +Mµ,ν),

where

Mµ,ν = 8(
√
M2(µ) +

√
M1(µ))(

√
M2(ν) +

√
M1(ν)) + (M2(µ) +M2(ν)).

This finishes the proof.

A.10 Proof of Lemma 5

Since Rd is compact set and the mapping r 7→ Jφf ,ψf ,r,π(µ, ν) is continuous, then there exists rf ∈ Rd
such that infr∈Rd Jφf ,ψf ,r,π(µ, ν) = Jφf ,ψf ,rf ,π(µ, ν). Using Lemma 8, we then get

S̃2
d(µ, ν) =

1

2
inf

π∈Π(µ,ν)
Jφf ,ψf ,rf ,π(µ, ν)

=
1

2
inf

π∈Π(µ,ν)

∫
X×Y

‖φf (x)− rf (ψf (y))‖2dπ(x, y)

= inf
γ∈Π( 1√

2
(φf )#µ, 1√

2
(rf◦ψf )#ν)

∫
Rd×Rd

‖u− v‖2dγ(u, v)

=W2
2 (µf , νf ),
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where µf = ( 1√
2
φf )#µ and νf = ( 1√

2
rf ◦ ψf )#ν. Therefore, S̃2

d(µ, ν) is the 2-Wasserstein distance

between µf and νf . Hence S̃2
d(µ, ν) = 0 if and only if µf = νf that is φf#µ = (rf ◦ ψf )#ν. On the

other hand, one has

µ = (φf
−1 ◦ φf )#µ = (φf

−1)#(φf#µ) = (φf
−1)#((rf ◦ ψf )#ν) = (φf

−1 ◦ (rf ◦ ψf ))#ν.

The triangle inequality follows the same lines as proof of Proposition 3.

B Implementation details on learning the embeddings

In practice, for computing S2
d(µ, ν), we need to solve the problem given in Equation (4). As stated

above in some practical situations, we leverage on existing embeddings and consider the problem
without the maximization over the embedings as the space is restricted to an unique singleton (e.g.,
a fasttext embedding). In some other cases, it is possible to learn the embedding that maximizes
the Wasserstein distance between embedded examples and that minimizes the distance distortion of
the embedding. In what follows, we detail how we have numerically implemented the computation of
S2
d(µ, ν) from samples {xi} and {yi} respectively sampled from X and Y according to µ and ν. The

problem we want to solve is

min
π∈Π(µ,ν)

min
r∈Rd

max
φ,ψ

{1

2

∑
i,j

‖φ(xi)− r(ψ(yj))‖22πi,j −
∑
i,j,i6=j

D(CXi,j , C
φ
i,j)−

∑
i,j,i6=j

D(CYi,j , C
ψ
i,j)
}

(4)

with Π(µ, ν) = {π ∈ Rn×m|π1m = µ, π>1n = ν}. In this equation, the first sum corresponds to the
optimal transport cost function and the other two sums compute the distortion between pairwise
distances in the input space and embedded space respectively for the x and the y. In the notation,
D(·, ·) is a loss function that penalizes the discrepancy between the input CXi,j and embedded Cφi,j
distances. This distance loss D has been designed so as to encourage the embedding to preserve
pairwise distance up to a τ̃ factor. Hence

D(CXi,j , C
φ
i,j) = 1

C
φ
i,j

CX
i,j

>τ̃

Cφi,j

CXi,j

with mini 6=j
Cφi,j
CXi,j
≤ τ̃ ≤ maxi 6=j

Cφi,j
CXi,j

and 1 denotes the indicator function. In the experiments τ̃ is fixed

as max(0.9 maxi 6=j
Cφi,j
CXi,j

,mini 6=j
Cφi,j
CXi,j

). It penalizes the embbeded couples of inputs whose embbeded

pairwise distances are the most dissimilar to the input pairwise distances. As these specific discrepancies
impact the estimation of the distorsion rate of the embedding, the designed loss has been tailored to
reduce the distorsion rate comparatively to those of the initial embeddings.

In practice, the embedding functions φ and ψ have been implemented in the following way

φ = (I + gθX ) ◦ h φ = (I + gθY ) ◦ hY (5)

where I is the identity matrix, gX : Rd → Rd and gY : Rd → Rd are trainable neural networks based
embeddings and hθX : X → Rd and hθY : Y → Rd are data-dependent low-dimensional projections
that preserves (local) distances. Typically, for the h functions, we have considered in our experiments
algorithms like MDS or LLE.

So the learning problem described in Equation (4) involves a max-min problem over the Wasserstein
distance of the mapped samples. For solving the problem, we have adopted an alternate optimization
strategy where for each mini-batch of samples from {xi} and {yj}, we first optimize r and π at fixed

27



φ and ψ and then optimize the embeddings for fixed optimal r and π. In practice, the sub-problem
with respects to r and π is an invariant OT problem and can be solved using the algorithm proposed
by Alvarez-Melis et al. (2019). gθX and gθY is implemented as two fully connected neural networks
with leaky ReLU activation functions and no bias. They are optimized using stochastic gradient using
Adam as optimizers. Some details of the algorithms is provided in (1).

Algorithm 1: Computing SERW with trained φ and ψ

Input: Source and target samples: (X,µ) and (Y, ν)
Input: the embedding φ = Id+ gθX and ψ = Id+ gθY
Input: Epoch
for k =1 to E do

for b = 1 to B do
sample batches x and y from the two input spaces
get xe ← φ(x) and ye ← ψ(y)
get r? and π? by minimizing Equation (4) with using xe and ye
update θX and θY by maximizing Equation (4) using r? and π?

end for
end for
Return: π(k);
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