D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00012648

, Molecular Nanomagnets and Related Phenomena -Structure and Bonding Series, vol.164, 2015.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace et al., Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets, Nature, vol.2010, issue.7322, pp.417-421

L. Malavolti, V. Lanzilotto, S. Ninova, L. Poggini, I. Cimatti et al., Magnetic bistability in a submonolayer of sublimated Fe4 single-molecule magnets, Nano Lett, vol.15, issue.1, pp.535-541, 2015.

C. Wäckerlin, F. Donati, A. Singha, R. Baltic, S. Rusponi et al., Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator, Adv. Mater, vol.28, issue.26, pp.5195-5199, 2016.

K. Katoh, T. Komeda, and M. Yamashita, The Frontier of Molecular Spintronics Based on Multiple

, Decker Phthalocyaninato Tb III Single-Molecule Magnets, Chem. Rec, vol.16, issue.2, pp.987-1016, 2016.

E. Moreno-pineda, C. Godfrin, F. Balestro, W. Wernsdorfer, and M. Ruben, Molecular spin qudits for quantum algorithms, Chem. Soc. Rev, vol.47, issue.2, pp.501-513, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01870132

A. Cornia, P. Seneor, and . Spintronics, The molecular way, Nat. Mater, vol.2017, issue.5, pp.505-506

A. Gaita-ariño, F. Luis, S. Hill, and E. Coronado, Molecular spins for quantum computation, Nat. Chem, vol.2019, issue.4, pp.301-309

S. Gómez-coca, D. Aravena, R. Morales, and E. Ruiz, Large magnetic anisotropy in mononuclear metal complexes, Coord. Chem. Rev, pp.379-392, 2015.

M. Atanasov, D. Aravena, E. Suturina, E. Bill, D. Maganas et al., First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets, Coord. Chem. Rev, pp.177-214, 2015.

S. Gómez-coca, A. Urtizberea, E. Cremades, P. J. Alonso, A. Camón et al., Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy, Nat. Commun, vol.5, issue.1, p.4300, 2014.

M. Feng and M. Tong, Single Ion Magnets from 3d to 5f: Developments and Strategies, Chem. Eur. J, vol.24, issue.30, pp.7574-7594, 2018.

A. Lunghi, F. Totti, R. Sessoli, and S. Sanvito, The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets, Nat. Commun, vol.8, p.14620, 2017.

L. Escalera-moreno, J. J. Baldoví, A. Gaita-ariño, and E. Coronado, Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective, Chem. Sci, vol.9, issue.13, pp.3265-3275, 2018.

P. C. Bunting, M. Atanasov, E. Damgaard-møller, M. Perfetti, I. Crassee et al., A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state. Science (80-. ), vol.362, p.7319, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02324555

A. K. Bar, P. Kalita, M. K. Singh, G. Rajaraman, and V. Chandrasekhar, Low-coordinate mononuclear lanthanide complexes as molecular nanomagnets, Coord. Chem. Rev, vol.367, pp.163-216, 2018.

S. K. Gupta and R. Murugavel, Enriching lanthanide single-ion magnetism through symmetry and axiality, Chem. Commun, vol.54, issue.30, pp.3685-3696, 2018.

J. Liu, Y. Chen, and M. Tong, Symmetry strategies for high performance lanthanide-based single-molecule magnets, Chem. Soc. Rev, vol.47, issue.7, pp.2431-2453, 2018.

Y. Ding, N. F. Chilton, R. E. Winpenny, and Y. Zheng, On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet, Angew. Chem. Int. Ed, vol.55, issue.52, pp.16071-16074, 2016.

N. F. Chilton, Design criteria for high-temperature single-molecule magnets, Inorg. Chem, vol.54, issue.5, pp.2097-2099, 2015.

F. Guo, B. M. Day, Y. Chen, M. Tong, A. Mansikkamäki et al., A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit, Angew. Chem. Int. Ed, vol.2017, issue.38, pp.11445-11449

C. A. Goodwin, F. Ortu, D. Reta, N. F. Chilton, and D. P. Mills, Molecular magnetic hysteresis at 60 kelvin in dysprosocenium, Nature, vol.2017, issue.7668, pp.439-442

F. Guo, B. M. Day, Y. Chen, M. Tong, A. Mansikkamäki et al., Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science (80-. ), pp.1400-1403, 2018.

R. Hernández-sánchez and T. A. Betley, Thermally Persistent High-Spin Ground States in Octahedral Iron Clusters, J. Am. Chem. Soc, vol.140, issue.48, pp.16792-16806, 2018.

M. Majumdar and J. K. Bera, Supramolecular and Self-Assembled Metal-Containing Materials, Macromolecules Containing Metal and Metal-like Elements, vol.9, pp.181-253, 2009.

J. F. Berry, Metal-Metal Bonds in Chains of Three or More Metal Atoms: From Homometallic to Heterometallic Chains, Struct. Bond, vol.136, pp.1-28, 2010.

S. Hua, M. Cheng, C. Chen, and S. Peng, From Homonuclear Metal String Complexes to Heteronuclear Metal String Complexes, Eur. J. Inorg. Chem, issue.15, pp.2510-2523, 2015.

P. Chen, M. Sigrist, E. Horng, G. Lin, G. Lee et al., A ligand design with a modified naphthyridylamide for achieving the longest EMACs: the 1st singlemolecule conductance of an undeca-nickel metal string, Chem. Commun, vol.2017, issue.34, pp.4673-4676

A. Srinivasan, M. Cortijo, V. Bulicanu, A. Naim, R. Clérac et al., Enantiomeric resolution and X-ray optical activity of a tricobalt extended metal atom chain, Chem. Sci, vol.9, issue.5, pp.1136-1143, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01714521

C. Yu, M. Kuo, C. Chuang, G. Lee, S. Hua et al., Chirality Control of Quadruple, p.39

, Helixes of Metal Strings by Peripheral Chiral Ligands, Chem. Asian J, vol.2014, issue.11, pp.3111-3115

A. Nicolini, R. Galavotti, A. Barra, M. Borsari, M. Caleffi et al., Filling the Gap in Extended Metal Atom Chains: Ferromagnetic Interactions in a Tetrairon(II) String Supported by Oligo-?pyridylamido Ligands, Inorg. Chem, vol.57, issue.9, pp.5438-5448, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01877824

R. Clérac, F. A. Cotton, L. M. Daniels, K. R. Dunbar, and C. A. Murillo, , vol.4, p.2

, Cores. Inorg. Chem, vol.39, issue.4, pp.748-751, 2000.

H. Chang, J. Li, C. Wang, T. Lin, H. Lee et al., Linear Five-Centred Chromium Multiple Bonds Bridged by Four tpda 2-Ligands [tpda 2-= tripyridyldiamido dianion] -Synthesis and Structural Studies, Eur. J. Inorg. Chem, issue.8, pp.1243-1251, 1999.

A. Cornia, L. Rigamonti, S. Boccedi, R. Clérac, M. Rouzières et al., Magnetic blocking in extended metal atom chains: A pentachromium(II) complex behaving as a single-molecule magnet, Chem. Commun, vol.50, issue.96, pp.15191-15194, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01085959

J. H. Christian, D. W. Brogden, J. K. Bindra, J. S. Kinyon, J. Van-tol et al., Enhancing the Magnetic Anisotropy of Linear Cr(II) Chain Compounds Using Heavy Metal Substitutions, Inorg. Chem, issue.13, pp.6376-6383, 2016.

J. Wang, Z. Wang, R. J. Clark, A. Ozarowski, J. Van-tol et al., A high-frequency EPR characterization of the S=2 linear tri-atomic chain in Cr3(dpa)4Cl2·CH2Cl2, Polyhedron, vol.30, issue.18, pp.3058-3061, 2011.

J. F. Berry, F. A. Cotton, C. S. Fewox, T. Lu, and C. Murillo,

X. Wang, , p.40

, chains (EMACs) of five chromium or cobalt atoms: Symmetrical or unsymmetrical? Dalton Trans, pp.2297-2302, 2004.

A. Dirvanauskas, R. Galavotti, A. Lunghi, A. Nicolini, F. Roncaglia et al., Solution structure of a pentachromium(II) single molecule magnet from DFT calculations, isotopic labelling and multinuclear NMR spectroscopy, Dalton Trans, vol.47, issue.2, pp.585-595, 2018.

W. Wang, R. H. Ismayilov, G. Lee, Y. Huang, C. Yeh et al., Fine tuning of pentachromium(II) metal string complexes through elaborate design of ligand, New J. Chem, vol.2012, issue.3, pp.632-637

R. H. Ismayilov, W. Wang, G. Lee, C. Chien, C. Jiang et al., Redox Modification of EMACs Through the Tuning of Ligands: Heptametal(II) Complexes of Pyrazine-Modulated Oligo-?-pyridylamido Ligands, Eur. J. Inorg. Chem, issue.14, pp.2110-2120, 2009.

R. H. Ismayilov, W. Wang, R. Wang, C. Yeh, G. Lee et al., Four quadruple metal-metal bonds lined up: linear nonachromium(II) metal string complexes, Chem. Commun, issue.11, pp.1121-1123, 2007.

J. F. Berry, F. A. Cotton, T. Lu, C. A. Murillo, B. K. Roberts et al., Molecular and electronic structures by design: Tuning symmetrical and unsymmetrical linear trichromium chains

, J. Am. Chem. Soc, vol.126, issue.22, pp.7082-7096, 2004.

J. F. Berry, F. A. Cotton, C. A. Murillo, and B. K. Roberts, An Efficient Synthesis of Acetylide/Trimetal/Acetylide Molecular Wires, Inorg. Chem, issue.7, pp.2277-2283, 2004.

R. H. Ismayilov, W. Wang, G. Lee, R. Wang, I. P. Liu et al., , p.41

, New versatile ligand family, pyrazine-modulated oligo-?-pyridylamino ligands, from coordination polymer to extended metal atom chains, Dalton Trans, issue.27, pp.2898-2907, 2007.

L. Wu, M. K. Thomsen, S. R. Madsen, M. Schmoekel, M. R. Jørgensen et al., Chemical Bonding in a Linear Chromium Metal String Complex, Inorg. Chem, vol.53, issue.23, pp.12489-12498, 2014.

N. Benbellat, M. Rohmer, and M. Bénard, Electronic origin of the structural versatility in linear trichromium complexes of dipyridylamide, Chem. Commun, vol.3, issue.22, pp.2368-2369, 2001.

V. P. Georgiev and J. E. Mcgrady, Influence of Low-Symmetry Distortions on Electron Transport through Metal Atom Chains: When Is a Molecular Wire Really "Broken, J. Am. Chem. Soc, issue.32, pp.12590-12599, 2011.

V. P. Georgiev, P. J. Mohan, D. Debrincat, and J. E. Mcgrady, Low-symmetry distortions in Extended Metal Atom Chains (EMACs): Origins and consequences for electron transport, Coord. Chem. Rev, vol.257, issue.1, pp.290-298, 2013.

M. Spivak, V. Arcisauskaite, X. López, J. E. Mcgrady, and C. De-graaf, A multiconfigurational approach to the electronic structure of trichromium extended metal atom chains, Dalton Trans. 2017, vol.46, issue.19, pp.6202-6211

M. Spivak, V. Arcisauskaite, X. López, and C. De-graaf, Backbone flexibility of extended metal atom chains. Ab initio molecular dynamics for Cr3(dpa)4X2 (X = NCS, CN, NO3) in gas and crystalline phases, Dalton Trans, vol.46, issue.44, pp.15487-15493, 2017.

J. F. Berry, F. A. Cotton, C. A. Murillo, Z. Chan, C. Yeh et al., Linear Trichromium, Tricobalt, Trinickel, and Tricopper Complexes of 2,2?-Dipyridylamide. Inorg. Syn, vol.36, pp.103-110, 2014.

Y. Turov and J. F. Berry, Synthesis, characterization and thermal properties of trimetallic N3-Cr?Cr?M-N3 azide complexes with M = Cr, pp.8153-8161, 2012.

S. Apex2 and . Saint, Software Reference Manuals, 2009.

G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C Struct. Chem, vol.71, issue.1, pp.3-8, 2015.

G. A. Bain and J. F. Berry, Diamagnetic Corrections and Pascal's Constants, J. Chem. Educ, vol.85, issue.4, pp.532-536, 2008.

K. S. Cole and R. H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, J. Chem. Phys, vol.1941, issue.4, pp.341-351

C. Dekker, A. F. Arts, H. W. De-wijn, A. J. Van-duyneveldt, and J. A. Mydosh, Activated dynamics in a two-dimensional Ising spin glass: Rb2Cu1?xCoxF4, Phys. Rev. B, issue.16, pp.11243-11251, 1989.

S. Mossin, H. Weihe, and A. Barra, Is the Axial Zero-Field Splitting Parameter of Tetragonally Elongated High-Spin Manganese(III) Complexes Always Negative?, J. Am. Chem. Soc, vol.124, issue.30, pp.8764-8765, 2002.

C. J. Jacobsen, E. Pedersen, J. Villadsen, and H. Weihe, ESR characterization of trans-V II (py)4X2 and trans-Mn II (py)4X2 (X = NCS, Cl, Br, I; py = pyridine), Inorg. Chem, issue.7, pp.1216-1221, 1993.

A. Bencini, I. Ciofini, and M. G. Uytterhoeven, Angular overlap calculations of the spin Hamiltonian parameters of transition metal ions in low symmetry environments. High spin iron(II), iron(III) and manganese(III), Inorg. Chim. Acta, vol.274, issue.1, pp.90-101, 1998.

A. B. Lever, Inorganic Electronic Spectroscopy, 1986.

A. Bencini, C. Benelli, and D. Gatteschi, The angular overlap model for the description of the paramagnetic properties of transition metal complexes, Coord. Chem. Rev, vol.60, pp.131-169, 1984.

M. M. Khamar, L. F. Larkworthy, and M. H. Nelson-richardson, Complexes of chromium(II) halides with methylpyridines, Inorg. Chim. Acta, vol.28, pp.245-250, 1978.

F. Neese, The ORCA program system, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.2012, issue.1, pp.73-78

M. D. Segall, R. Shah, C. J. Pickard, and M. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B, issue.23, pp.16317-16320, 1996.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, vol.2010, issue.15, p.154104

D. A. Pantazis, X. Chen, C. R. Landis, and F. Neese, All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms, J. Chem. Theory Comput, vol.4, issue.6, pp.908-919, 2008.

F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys, vol.7, issue.18, pp.3297-3305, 2005.

S. Lin, I. P. Chen, C. Chen, M. Hsieh, C. Yeh et al.,

M. , Effect of Metal?Metal Interactions on Electron Transfer: an STM Study of One-Dimensional Metal String Complexes, J. Phys. Chem. B, vol.108, issue.3, pp.959-964, 2004.

M. Llunell, D. Casanova, J. Cirera, P. Alemany, and S. A. , SHAPE v2.1 -Continuous Shape Measures calculation, 2013.

S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson, vol.178, issue.1, pp.42-55, 2006.

D. Reta and N. F. Chilton, Uncertainty estimates for magnetic relaxation times and magnetic relaxation parameters, Phys. Chem. Chem. Phys, vol.2019, issue.42, pp.23567-23575

Y. Deng, T. Han, Z. Wang, Z. Ouyang, B. Yin et al.,

, Uniaxial magnetic anisotropy of square-planar chromium(II) complexes revealed by magnetic and HF-EPR studies, Chem. Commun, vol.51, issue.100, pp.17688-17691, 2015.

D. Gatteschi, L. Sorace, R. Sessoli, and A. L. Barra, High-frequency EPR: An occasion for revisiting ligand field theory, Appl. Magn. Reson, vol.21, issue.3-4, pp.299-310, 2001.

J. Krzystek, J. Telser, L. A. Pardi, D. P. Goldberg, B. M. Hoffman et al., High-Frequency and -Field Electron Paramagnetic Resonance of High-Spin Manganese

, Porphyrinic Complexes. Inorg. Chem, vol.38, issue.26, pp.6121-6129, 1999.

J. Telser, L. A. Pardi, J. Krzystek, L. Brunel, and . Spectra, EPR-Silent" Species: High-Field EPR Spectroscopy of Aqueous Chromium(II), pp.1834-1834, 2000.

A. Barra, D. Gatteschi, R. Sessoli, G. L. Abbati, A. Cornia et al., Electronic structure of manganese

, Angew. Chem. Int. Ed, vol.36, issue.21, pp.2329-2331, 1997.

J. Telser, A perspective on applications of ligand-field analysis: inspiration from electron paramagnetic resonance spectroscopy of coordination complexes of transition metal ions, J. Braz. Chem. Soc, vol.17, issue.8, pp.1501-1515, 2006.

A. Bencini and D. Gatteschi, EPR of Exchange Coupled Systems, 1990.

F. A. Cotton, L. M. Daniels, C. A. Murillo, and X. Wang, Getting the right answer to a key question concerning molecular wires, Chem. Commun, vol.5, issue.24, pp.2461-2462, 1999.

F. Cotton, A. Chromium Compounds. In Multiple Bonds between Metal Atoms

F. A. Cotton, C. A. Murillo, and R. A. Walton, , pp.35-68, 2005.

A. Bencini and F. Totti, A Few Comments on the Application of Density Functional Theory to the Calculation of the Magnetic Structure of Oligo-Nuclear Transition Metal Clusters, J. Chem. Theory Comput, vol.5, issue.1, pp.144-154, 2009.

A. Bencini and F. Totti, DFT description of the magnetic structure of polynuclear transition-metal clusters: The complexes [{Cu(bpca)2(H2O)2}{Cu(NO3)2}2], (bpca = Bis(2-pyridylcarbonyl)amine), and, Int. J. Quantum Chem, vol.101, issue.6, pp.819-825, 2005.

F. Neese, Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory, J. Chem. Phys, vol.127, issue.16, p.164112, 2007.

F. A. Cotton and T. R. Felthouse, Pyridine and pyrazine adducts of tetrakis(acetato)dichromium, Inorg. Chem, vol.19, issue.2, pp.328-331, 1980.

F. Neese and E. I. Solomon, Calculation of Zero-Field Splittings, g-Values, and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High-Spin Ferric Complexes, Inorg. Chem, issue.26, pp.6568-6582, 1998.

F. Neese, Importance of Direct Spin?Spin Coupling and Spin-Flip Excitations for the Zero-Field Splittings of Transition Metal Complexes: A Case Study, J. Am. Chem. Soc, vol.128, issue.31, pp.10213-10222, 2006.

D. G. Liakos, D. Ganyushin, and F. Neese, A Multiconfigurational ab Initio Study of the Zero-Field Splitting in the Di-and Trivalent Hexaquo?Chromium Complexes, Inorg. Chem, issue.22, pp.10572-10580, 2009.

M. Nakagaki, N. Nakatani, and S. Sakaki, How to understand very weak Cr-Cr double bonds and negative spin populations in trinuclear Cr complexes: theoretical insight, Phys. Chem. Chem. Phys, vol.2019, issue.41, pp.22976-22989