K. F. Swaney, C. Huang, and P. N. Devreotes, Eukaryotic Chemotaxis: A Network of Signaling Pathways Controls Motility, Directional Sensing, and Polarity, Annu. Rev. Biophys, vol.39, pp.265-289, 2010.

R. H. Insall, Understanding eukaryotic chemotaxis: a pseudopod-centred view, Nat. Rev. Mol. Cell Biol, vol.11, pp.453-458, 2010.

J. Yuan, D. M. Raizen, and H. H. Bau, Propensity of undulatory swimmers, such as worms, to go against the flow, Proc. Natl. Acad. Sci, 2015.

Z. Zhang, J. Liu, J. Meriano, C. Ru, S. Xie et al., Human sperm rheotaxis: a passive physical process, Sci. Rep, vol.6, 2016.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, pp.677-689, 2006.

D. Mitrossilis, J. Roper, D. L. Roy, B. Driquez, A. Michel et al., Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation, Nat. Commun, vol.8, p.13883, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01449624

C. Bertet, L. Sulak, and T. Lecuit, Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation, Nature, vol.429, pp.667-671, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00311086

F. Yinnian, K. N. Brazin, M. J. Kobayashi, and . Lang, Mechanosensing drives acuity of ?? T-cell recognition(1).pdf, Proc. Natl. Acad. Sci, 2017.

M. Weber, R. Hauschild, J. Schwarz, C. Moussion, I. Vries et al., Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients, Science, vol.339, pp.328-332, 2013.

F. Castellino, A. Y. Huang, G. Altan-bonnet, S. Stoll, C. Scheinecker et al., Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction, Nature, vol.440, pp.890-895, 2006.

L. I. Ehrlich, D. Y. Oh, I. L. Weissman, and R. S. Lewis, Differential Contribution of Chemotaxis and Substrate Restriction to Segregation of Immature and Mature Thymocytes, Immunity, vol.31, pp.986-998, 2009.

I. Bartholomäus, N. Kawakami, F. Odoardi, C. Schläger, D. Miljkovic et al., Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions, Nature, vol.462, pp.94-98, 2009.

L. A. Smith, H. Aranda-espinoza, J. B. Haun, and D. A. Hammer, Interplay between Shear Stress and Adhesion on Neutrophil Locomotion, Biophys. J, vol.92, pp.632-640, 2007.

M. Valignat, O. Theodoly, A. Gucciardi, N. Hogg, and A. C. Lellouch, T Lymphocytes Orient against the Direction of Fluid Flow during LFA-1-Mediated Migration, Biophys. J, vol.104, pp.322-331, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00799746

M. Valignat, P. Nègre, S. Cadra, A. C. Lellouch, F. Gallet et al., Lymphocytes can self-steer passively with wind vane uropods, Nat. Commun, vol.5, p.5213, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086070

G. A. Dominguez, N. R. Anderson, and D. A. Hammer, The direction of migration of Tlymphocytes under flow depends upon which adhesion receptors are engaged, Integr Biol, vol.7, pp.345-355, 2015.

R. Sumagin and I. H. Sarelius, Intercellular Adhesion Molecule-1 Enrichment near Tricellular Endothelial Junctions Is Preferentially Associated with Leukocyte Transmigration and Signals for Reorganization of These Junctions To Accommodate Leukocyte Passage, J. Immunol, vol.184, pp.5242-5252, 2010.

M. Phillipson, B. Heit, S. A. Parsons, B. Petri, S. C. Mullaly et al., Vav1 Is Essential for Mechanotactic Crawling and Migration of Neutrophils out of the Inflamed Microvasculature, J. Immunol, vol.182, pp.6870-6878, 2009.

R. Sumagin, H. Prizant, E. Lomakina, R. E. Waugh, and I. H. Sarelius, LFA-1 and Mac-1 Define Characteristically Different Intralumenal Crawling and Emigration Patterns for Monocytes and Neutrophils In Situ, J. Immunol, vol.185, pp.7057-7066, 2010.

G. E. Rainger, C. D. Buckley, D. L. Simmons, and G. B. Nash, Neutrophils sense flow-generated stress and direct their migration through ?V?3-integrin, Am. J. Physiol. -Heart Circ. Physiol, vol.276, pp.858-864, 1999.

O. Steiner, C. Coisne, R. Cecchelli, R. Boscacci, U. Deutsch et al., Differential Roles for Endothelial ICAM-1, ICAM-2, and VCAM-1 in Shear-Resistant T Cell Arrest, Polarization, and Directed Crawling on Blood-Brain Barrier Endothelium, J. Immunol, vol.185, pp.4846-4855, 2010.

H. J. Lee, M. F. Diaz, K. M. Price, J. A. Ozuna, S. Zhang et al., Fluid shear stress activates YAP1 to promote cancer cell motility, Nat. Commun, vol.8, p.14122, 2017.

N. Dixit, I. Yamayoshi, A. Nazarian, and S. I. Simon, Migrational Guidance of Neutrophils Is Mechanotransduced via High-Affinity LFA-1 and Calcium Flux, J. Immunol, vol.187, pp.472-481, 2011.

M. Grönholm, F. Jahan, E. A. Bryushkova, S. Madhavan, F. Aglialoro et al., LFA-1 integrin antibodies inhibit leukocyte ?4?1-mediated adhesion by intracellular signaling, Blood, vol.128, pp.1270-1281, 2016.

M. Ishibashi, Y. Miyanaga, S. Matsuoka, J. Kozuka, Y. Togashi et al., Integrin LFA-1 regulates cell adhesion via transient clutch formation, Biochem. Biophys. Res. Commun, vol.464, pp.459-466, 2015.

P. Nordenfelt, H. L. Elliott, and T. A. Springer, Coordinated integrin activation by actindependent force during T-cell migration, Nat. Commun, vol.7, p.13119, 2016.

T. Schürpf and T. A. Springer, Regulation of integrin affinity on cell surfaces, EMBO J, vol.30, pp.4712-4727, 2011.

R. Alon, P. D. Kassner, M. W. Carr, E. B. Finger, M. E. Hemler et al., The integrin VLA-4 supports tethering and rolling in flow on VCAM-1, J Cell Biol, vol.128, pp.1243-1253, 1995.

A. Huttenlocher and A. R. Horwitz, Integrins in Cell Migration, Cold Spring Harb. Perspect. Biol, vol.3, pp.5074-005074, 2011.

N. K. Verma and D. Kelleher, Not Just an Adhesion Molecule: LFA-1 Contact Tunes the T Lymphocyte Program, J. Immunol, vol.199, pp.1213-1221, 2017.

A. Buffone, N. R. Anderson, and D. A. Hammer, Migration against the direction of flow is LFA-1-dependent in human hematopoietic stem and progenitor cells, J Cell Sci, vol.131, p.205575, 2018.

N. R. Anderson, D. A. Buffone, and . Hammer, T lymphocytes migrate upstream after completing the leukocyte adhesion cascade, Cell Adhes. Migr, pp.1-6, 2019.

A. Buffone, N. R. Anderson, and D. A. Hammer, Migration against the direction of flow is LFA-1-dependent in human hematopoietic stem and progenitor cells, J Cell Sci, vol.131, p.205575, 2018.

B. D. Hoffman, C. Grashoff, and M. A. Schwartz, Dynamic molecular processes mediate cellular mechanotransduction, Nature, vol.475, pp.316-323, 2011.

A. Rio, R. Del, R. Perez-jimenez, P. Liu, J. M. Roca-cusachs et al., Stretching Single Talin Rod Molecules Activates Vinculin Binding, Science, vol.323, pp.638-641, 2009.

Y. Sawada, M. Tamada, B. J. Dubin-thaler, O. Cherniavskaya, R. Sakai et al., Force Sensing by Mechanical Extension of the Src Family Kinase Substrate p130Cas, Cell, vol.127, pp.1015-1026, 2006.

R. Zaidel-bar, Z. Kam, and B. Geiger, Polarized downregulation of the paxillin-p130CAS-Rac1 pathway induced by shear flow, J. Cell Sci, vol.118, pp.3997-4007, 2005.

C. Urbich, E. Dernbach, A. Reissner, M. Vasa, A. M. Zeiher et al., Shear stressinduced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1), Arterioscler. Thromb. Vasc. Biol, vol.22, pp.69-75, 2002.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, N. Stuurman et al., Computer Control of Microscopes Using µManager, Current Protocols in Molecular Biology, 2010.

Y. Xia and G. M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci, vol.28, pp.153-184, 1998.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

S. Bohnet, R. Ananthakrishnan, A. Mogilner, J. Meister, and A. B. Verkhovsky, Weak Force Stalls Protrusion at the Leading Edge of the Lamellipodium, Biophys. J, vol.90, pp.1810-1820, 2006.

J. P. Kao, G. Li, and D. A. Auston, Practical Aspects of Measuring Intracellular Calcium Signals with Fluorescent Indicators, Methods in Cell Biology, pp.113-152, 2010.

Y. Artemenko, L. Axiotakis, J. Borleis, P. A. Iglesias, and P. N. Devreotes, Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks, Proc. Natl. Acad. Sci, vol.113, pp.7500-7509, 2016.

B. Johnston, T. B. Issekutz, and P. Kubes, The alpha(4)-integrin supports leukocyte rolling and adhesion in chronically inflamed postcapillary venules in vivo, J. Exp. Med, vol.183, pp.1995-2006, 1996.

R. Gorina, R. Lyck, D. Vestweber, and B. Engelhardt, beta(2) Integrin-Mediated Crawling on Endothelial ICAM-1 and ICAM-2 Is a Prerequisite for Transcellular Neutrophil Diapedesis across the Inflamed Blood-Brain Barrier, J. Immunol, vol.192, pp.324-337, 2014.

A. Smith, P. Stanley, K. Jones, L. Svensson, A. Mcdowall et al., The role of the integrin LFA-1 in T-lymphocyte migration, Immunol. Rev, vol.218, pp.135-146, 2007.

P. Niethammer, Neutrophil mechanotransduction: A GEF to sense fluid shear stress, J Cell Biol, vol.215, pp.13-14, 2016.

H. D. Moreau, C. Blanch-mercader, R. Attia, M. Maurin, Z. Alraies et al., Macropinocytosis Overcomes Directional Bias in Dendritic Cells Due to Hydraulic Resistance and Facilitates Space Exploration, Dev. Cell, vol.49, pp.171-188, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02378369

H. Ghandour, X. Cullere, A. Alvarez, F. W. Luscinskas, and T. N. Mayadas, Essential role for Rap1 GTPase and its guanine exchange factor CalDAG-GEFI in LFA-1 but not VLA-4 integrinmediated human T-cell adhesion, Blood, vol.110, pp.3682-3690, 2007.

C. Laudanna, J. J. Campbell, and E. C. Butcher, Role of Rho in Chemoattractant-Activated Leukocyte Adhesion Through Integrins, Science, vol.271, pp.981-983, 1996.

N. A. Morin, P. W. Oakes, Y. Hyun, D. Lee, Y. E. Chin et al., Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration, J. Exp. Med, vol.205, pp.195-205, 2008.

J. Pouwels, N. De-franceschi, P. Rantakari, K. Auvinen, M. Karikoski et al., SHARPIN Regulates Uropod Detachment in Migrating Lymphocytes, vol.5, pp.619-628, 2013.

J. C. Porter and N. Hogg, Integrin Cross Talk: Activation of Lymphocyte Function-associated Antigen-1 on Human T Cells Alters ?4?1-and ?5?1-mediated Function, J. Cell Biol, vol.138, pp.1437-1447, 1997.

A. E. May, F. Neumann, A. Schömig, and K. T. Preissner, VLA-4 (?4?1) engagement defines a novel activation pathway for ?2 integrin-dependent leukocyte adhesion involving the urokinase receptor, Blood, vol.96, pp.506-513, 2000.

J. R. Chan, S. J. Hyduk, and M. I. Cybulsky, ?4?1 Integrin/VCAM-1 Interaction Activates ?L?2 Integrin-Mediated Adhesion to ICAM-1 in Human T Cells, vol.164, pp.746-753, 2000.

C. V. Carman and T. A. Springer, A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them, J. Cell Biol, vol.167, pp.377-388, 2004.

, Supplementary Information 3: Calcium signaling

, Figure S 3: Absence of calcium signaling triggered by flow supports absence of mechanotransduction in flow mechanotaxis. Calcium signaling versus onset of flow (left) or addition of ionomycin (right) in cells loaded with Oregon Green 488 BAPTA-1 and crawling on ICAM-1 -top) or VCAM-1 (bottom) substrates

, Supplementary movies (see, Biophysical Journal, vol.2020, issue.3, pp.565-577

, Movie S1: T cell motility phenotype under flow (8 dyn.cm ---2 ) on ICAM-1 (left) and VCAM-1 (right) substrates. Bright-field images with magnification x10

, Movie S2: T cell motility phenotype under flow (8 dyn.cm -2 ) on mixed ICAM-1/ VCAM-1 substrates. Transmission images with magnification x10

, cm -2 ) on mixed 50 % ICAM-1 / 50 % VCAM-1 substrate. Transmission (left) and RICM (right) images with magnification x63, Movie S3: T cell motility phenotype under flow (4 dyn

S. Movie, Image sequence of lymphocytes crawling on VCAM-1 coated glass substrate at a shear stress of 8 dyn