
HAL Id: hal-02484661
https://hal.science/hal-02484661

Submitted on 19 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Does the operational model capture partition tolerance
in distributed systems?

Grégoire Bonin, Achour Mostefaoui, Matthieu Perrin

To cite this version:
Grégoire Bonin, Achour Mostefaoui, Matthieu Perrin. Does the operational model capture partition
tolerance in distributed systems?. 15th International Conference on Parallel Computing Technologies,
Aug 2019, Astana, Kazakhstan. �hal-02484661�

https://hal.science/hal-02484661
https://hal.archives-ouvertes.fr

Does the operational model capture partition
tolerance in distributed systems?

Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

LS2N, Université de Nantes
first.last@univ-nantes.fr

1 Introduction

Eventual consistency. In large scale distributed systems, replication is essential
in order to provide availability and partition tolerance. Problems arise with
replication as consistency has to be maintained between the different replicas.

The most natural and intuitive abstraction for the user would be to view
a distributed/replicated object as if it is a single physical object shared by all
the processes. This means that all the operations on the object, possibly con-
current or interleaving, appear as if they have been executed atomically and
sequentially. Such an abstraction has to respect a correctness condition called
strong consistency. Unfortunately, the CAP Theorem [6] states that this prop-
erty is unrealizable in most systems, as it is impossible to combine strong con-
sistency, availability and partition tolerance in asynchronous systems. Eventual
consistency was introduced to overcome this issue. It states that, after update
operations stop taking place, the different replicas will eventual converge to an
identical state.

The operational model. In this context, Conflict-Free Replicated Data Types
(CRDTs) [11] constitute a family of objects designed to achieve eventual consis-
tency. Those are based on a theorem stating the equivalence between two kinds
of objects: the Commutative Replicated Data Types (CmRDTs), in which all
update operations commute, and Convergent Replicated Data Types (CvRDTs),
whose states form a lattice. For example, the G-set (grow-only set) provides two
different operations: an update operation that inserts an element and a query
operation that reads if a specific element is in the set. On the CmRDT view-
point, inserting x and inserting y commute. On the CvRDT viewpoint, the set
inclusion is a lattice order on the states of the set.

The operational model has been proposed to abstract the implementation
of CRDTs. In the operational model, each replica maintains a local state on
which the operations are done. An update operation is divided into two facets.
First, the update operation is prepared locally by the replica where the update
operation is issued and then a message is broadcast to inform all other replicas.
Second, the local state of each replica is updated at reception of the update
message. Thanks to commutativity, all replicas converge to the same state when
no update operation is in progress.

2 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

As only one message is broadcast per update operation, algorithms in the op-
erational model are, by design, optimal in terms of the number of used messages.
The amount of metadata that must be stored on each replica is more problem-
atic and has been widely studied for several objects including sets, counters and
registers [5], data stores [2] and collaborative editors [1].

The wait-free model. Despite the fact that algorithms from the operational model
are naturally partition tolerant and minimize communication in their implemen-
tation, the operational model imposes limitations on the form of its admissible
algorithms. It is for example impossible to acknowledge or forward messages, to
execute local steps without the reception of a message, or to propagate informa-
tion during read operations. This prevents algorithms from using more advanced
techniques like the message schemes used by checkpointing [9, 3].

Such algorithms are usually studied in the wait-free asynchronous message-
passing distributed model, or simply the wait-free model, in which asynchronous
processes communicate by sending and receiving messages. Any number of pro-
cesses may crash: a faulty process executes correctly until it crashes, at which
point it stops operating. A process that does not crash during an execution is
called correct. Failure tolerance also captures partition tolerance as it is impos-
sible for a process to wait for an acknowledgement from any other process since
all other processes may have crashed.

Processes can communicate by sending and receiving messages, using the
causal broadcast abstraction1 that provides them with a broadcast(m) opera-
tion and a receive(m) event, where m is a message. Communication channels
are uniformly reliable, as all correct processes eventually receive the same set
of messages, including their owns. However, channels are asynchronous, in the
sense that there is no bound on the time it takes for one message to be delivered.

A history in the wait-free model is an abstraction of an execution that con-
tains the information accessible for an outside observer, i.e. the operations that
were performed, their invoking process and time, as well as their returned value.

Complexity. We consider deterministic algorithms. This allows us to define a
state by an execution or a history. In order to compare the local complexity of
algorithms in the different models, we define the H-complexity that allows us
to compare the efficiency of two algorithms when executing the same history.
As the algorithms are deterministic, we can compare equivalent state in the
two algorithms (if the states are defined by the same sub-history, then they are
equivalent).

More precisely, given a history H that contains a finite number of updates,
and an algorithm Λ, we define the H-complexity of Λ as follows. Let S be the

1 Note that causal broadcast can be easily implemented in the wait-free model [10].
However, this implementation has a cost in local memory. We choose to include the
primitive in the model to isolate the complexity needed to maintain consistency of
the shared objects from the complexity needed to ensure causality, and therefore
reducing the noise of the complexity results we obtain in the next sections.

Separating the operational model and the wait-free model 3

set of all local states reachable by any process executing Λ during an execution
that can be abstracted by H. We define the H-complexity of Λ as follows:

– if S = ∅ (i.e. if H is not admitted by Λ), the H-complexity is 0;
– if |S| =∞ (i.e. if S has states of unbounded size), the H-complexity is ∞;
– otherwise, the H-complexity is the maximal size of a state in S.

Problem statement. The wait-free model is strictly more general than the oper-
ational model, as any algorithm from the operational model is also an algorithm
in the wait-free model, but the converse does not hold. In particular, this means
that the complexity results proven in the operational model may not hold in the
wait-free model. Therefore arises the following question: are the wait-free model
and the operational model equivalent in terms of complexity?

Approach. In this paper, we propose a new object, called update consistent l-
countdown-append object, and compare its wait-free implementations in both
models. As its name suggests, the update consistent l-countdown-append ob-
ject is specified by a sequential specification, that describes the behaviour of
the object when processes access it sequentially, and a weak consistency crite-
rion, called update consistency [8], that describe how concurrency affects the
sequential behaviour of the object.

The l-countdown-append object, where l ∈ N, exposes the 4 update opera-
tions in the set U = {a, b, c, d}, and one query operation, q. The behaviour of
the object is divided into two phases: during the first phase, the object counts
the number of update operations, starting from l, down to 1, then ε (the empty
word). In the second phase, the operation is concatenated at the end of the state.
Finally, the query operation returns the local state of the objects each time it is
executed.

Update consistency strengthens eventual consistency by stating that the con-
vergence state must be obtainable in a sequentially consistent execution. In other
words, it can be obtained by a sequential ordering of the update operations. More
formally, a history H is update consistent for an object O if it is in one of the
two following cases:

– The processes never stop updating, i.e. H contains an infinite number of
update operations.

– It is possible to omit a finite number of query operations such that resulting
history has a linearization admitted by the sequential specification of O.

On a computability viewpoint, it is possible to implement any object with
this criterion in both computing models [8].

Contributions. This paper proves that the two models are not equivalent: we
prove that O(l) bits are necessary in the operational model to implement an
update consistent l-countdown-append, but give a logarithmic algorithm in the
wait-free model.

4 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

Organization. Section 2 proves the part of the result for the operational model,
and Section 3 explores the wait-free model. Finally, 4 concludes the paper. We
could not include all the proofs in this extended abstract, due to space restric-
tions. A complete version of the paper can be found in [4].

2 Lower bound in the operational model

In order to compare both models, we introduce a class of histories: the Hv

histories. Let l ∈ N, and v = u1...ul be a word consisting of l update operations
of the l-countdown-append object. We denote by Hv the history in which one
process performs all updates of v in their order of appearance, and the other
processes keep performing the query operation.

We now prove that any algorithm in the operational model has aHv-complexity
of at least l

2 − 1 bits for some v. Our proof follows the scheme introduced in [5]:
we build a family of executions such that, at some point in the execution, pro-
cess pi performing the operations of v is unable to distinguish between all these
executions and an execution modeled by Hv. Then, in a later stage of the exe-
cution, pi must be able to distinguish between enough of them in order to keep
convergence possible.

Theorem 1. For any deterministic algorithm Λ that implements an update con-
sistent l-countdown-append object in the operational model, there exists v such
that the Hv-complexity of Λ is at least l

2 − 1 bits.

Proof. Let Λ be an algorithm in the operational model implementing an up-
date consistent l-countdown-append object. For each pair of words of update
operations (v1, v2), where v1 ∈ {a, b}l and v2 ∈ {c, d}l, we define the execution
X(v1,v2) as follows. Only two processes p1 and p2 take steps in X(v1,v2). All other
processes crash before the beginning of the execution. Initially, process p1 (resp.
p2) executes sequentially, in order, the operations forming v1 (resp. v2). In ac-
cordance to the operational model, they broadcast a single message during each
operation. In a later stage, they both receive the others’ messages, respecting the
FIFO ordering. Finally, both processes perform a query operation. We denote
by X = {X(v1,v2)|v1 ∈ {a, b}l ∧ v2 ∈ {c, d}l} the set of all X(v1,v2) executions.

Let us first remark that update consistency imposes that both query opera-
tions returns the same value vc, that is a suffix of size l, of an interleaving of v1
and v2. Let f(v1, v2) be the number of c and d operations in vc. Note that f is
well defined because Λ is deterministic.

We now distinguish the executions depending on which process has a majority
of operations in the convergence state. We define
X1 = {X(v1,v2) ∈ X : f(v1, v2) ≥ l

2} and X2 = X \ X1. As X1 and X2 form

a partition of X which has a size 22l, we have |X1| ≥ 22l−1 or |X2| ≥ 22l−1.
Without loss of generality, we suppose that |X1| ≥ 22l−1.

We now partition X1 based on the value of v1. For each word v1 ∈ {a, b}l, let
X1(v1) = {X(v,v2) ∈ X1 : v = v1}. There exists a word v1 such that |X1(v1)| ≥
|X1|
|{a,b}l| = 22l−1

2l
= 2l−1. Let us fix such a v1.

Separating the operational model and the wait-free model 5

Let v2 and v′2 such that X(v1,v2) and X(v1,v′2)
belong to X1(v1). By definition

of f , if X(v1,v2) and X(v1,v′2)
converge to the same state, then v2 and v′2 differ at

most by their l− f(v1, v2) ≤ l
2 first operations. Consequently, there are at least

2l−1

2
l
2

= 2
l
2−1 different values for v2 for whichX(v1,v2) lead to different convergence

states. Let X ′ be a subset of X1(v1) of size 2
l
2−1, in which all convergence states

are different.
In the operational model, the local state of process p2 at the end of the execu-

tion only depends on its local state after executing its own l update operations,
and the messages received from p1 afterwards. In all the executions of X ′, the
messages received by p2 are the same in all executions because v1 is fixed. More-
over, the local state of p2 at the end of all executions is different. This means
that the local state of p2 after doing its updates is also different in all executions.
Consequently, there is a word v2 such that, after executing all update operations
in v2 (execution X), the local state of p2 requires at least l

2 − 1 bits.
Finally, let us consider the execution X ′ in which only p2 takes steps, execut-

ing a the sequence of update operations of v2. Just after executing its updates, p2
cannot distinguish between executions X and X ′, so its local state in X ′ also re-
quires l

2−1 bits. Moreover, X ′ is modeled by Hv2 . Therefore, the Hv2 -complexity

of Λ is at least l
2 − 1 bits.

3 Upper bound in the wait-free model

We now prove there is an algorithm that implements an update consistent l-
Countdown-append in the wait-free model with a lower Hv-complexity, for any
v. Our proof is based on Algorithm 1, based on the algorithm UQ0 from [7].

Each process pi maintains four variables. Variables countdowni and appendi
represent the current local state at pi. If countdowni > 0, the l-countdown-
append object is in the countdown phase. Otherwise it is in the append phase
and its value is appendi. Variable clocki is the equivalent of a version vector,
such that clocki(j) represents the number of operations done by pj that are
taken into account into the current state of pi. As pi does not know the number
of participants, it is encoded as an associative array, rather than a vector. Finally,
variable leaderi is the identifier of a process such that, if clocki < clockleaderi or
pi and pleaderi are in the same local state.

When a process invokes the query operation q, it computes locally the state
of the object based on countdowni and appendi.

When process pi invokes an update operation a, b, c or d, it increments its
local clock clocki[i] and broadcasts a message mUpdate (Line 8). At reception of
such a message, pi executes the operation (decrements countdowni if the count-
down is not finished, or append the operation to appendi), and answers with a
mUpdate message containing its version of the state and its current vector clock.

When receiving a correction message, the process checks if the message re-
ceived is more recent according to the vector clock, and if that is the case, it
replaces its own data with the received one.

6 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

1 var clocki ∈ Array(N,N)← [i 7→ 0];
2 var leaderi ∈ N← i;
3 var countdowni ∈ {0, ..., l} ← l;
4 var appendi ∈ U? ← ε;
5 operation q()
6 if countdowni = 0 then return appendi else return countdowni;

7 operation u() // u ∈ U
8 broadcast mUpdate (clocki[i] + 1, i, u);

9 receive mUpdate (tj ∈ N, j ∈ N, u ∈ U)
10 if clocki[j] < tj then
11 clocki[j]← tj ; leaderi ← i;
12 if countdowni = 0 then
13 appendi ← appendi · u;
14 broadcast mCorrect (clocki, i, appendi);

15 else countdowni ← countdowni − 1;

16 receive mCorrect (clj ∈ Array(N,N), j ∈ N, aj ∈ U?)
17 if (∀k, clocki[k] ≤ clj [k]) ∧ (j ≤ leaderi ∨ ∃k, clocki[k] < clj [k]) then
18 appendi ← aj ; clocki ← clj ; leaderi ← j;

Algorithm 1: The countdown-append object in the wait-free model

Algorithm 1 is clearly wait-free as its operations contain no loop. It is also
update consistent because, 1) all processes constantly maintain a state obtained
by a linearization of the operations of their causal past, and 2) after all updates
have been performed, all replicas converge to a common state, that is the state
of the correct process with the smallest identifier.

Let l ∈ N and v ∈ U l. In any execution abstracted by Hv, there is a process pi
that performs all l update operations. For all processes pj , clockj only contains
one entry for pi, smaller than l. Therefore, clockj can be encoded in less than
log(n) + log(l) = log(nl) bits; The process identifier leaderi can be encoded in
log(n) bits; countdowni can take at most l different values, so it can be encoded
in log(l) bits and appendi = ε is a constant value, so it has an encoding of
constant size c. Finally, the Hv complexity of Algorithm 1 is O(log(nl)) bits,
which proves the following theorem.

Theorem 2. There exists an algorithm Λ implementing an update consistent
l-countdown-append object in the wait-free model such that, for all v ∈ U l, Λ has
an Hv-complexity of O(log(nl)) bits.

We can finally conclude on the non-equivalence between the two computing
model in the implementation of update consistency.

Corollary 1. There exists an object O and an algorithm Λwf implementing an
update consistent O in the wait-free model, such that, for any algorithm Λom

implementing an update consistent O object in the operational model, there is a
history H such that Λwf has a strictly lower H-complexity than Λom.

Separating the operational model and the wait-free model 7

4 Conclusion

In this paper we answered the following question: are the wait-free model and
the operational model equivalent in terms of local complexity? We proved that
the response to this question is no in the case of update consistency: we proved
that there exists an object that has a different complexity when implemented on
each of the two models: the l-countdown-append object. In the wait-free model,
there is an algorithm for which the complexity required to encode a special state
of the object is upper bounded by O(n log(nl)) bits, whereas in the operational
model, any algorithm requires at least l

2 − 1 bits to encode the same state. This
means that the operational model does not allow the optimal implementation
for update consistency.

These two results show that the question of whether the operational model
is well suited to represent partition tolerance is not simple, especially in the
context of determining the complexity in local memory required to implement
shared objects. An interesting open question is whether the lower bounds proved
for several objects in the operational model can be extended to the wait-free
model.

References

1. Attiya, H., Burckhardt, S., Gotsman, A., Morrison, A., Yang, H., Zawirski, M.:
Specification and complexity of collaborative text editing. In: Symposium on Prin-
ciples of Distributed Computing. pp. 259–268. ACM (2016)

2. Attiya, H., Ellen, F., Morrison, A.: Limitations of highly-available eventually-
consistent data stores. IEEE Trans. Parallel Distrib. Syst. 28(1), 141–155 (2017)

3. Baldoni, R., Brzezinski, J., Hélary, J.M., Mostefaoui, A., Raynal, M.: Characteri-
zation of consistent global checkpoints in large-scale distributed systems. In: Work-
shop on Future Trends of Dist. Computing Systems. pp. 314–323. IEEE (1995)

4. Bonin, G., Achour, M., Perrin, M.: Does the operational model capture partition
tolerance in distributed systems? extended version

5. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: ACM Sigplan Notices. vol. 49, pp. 271–284.
ACM (2014)

6. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. Acm Sigact News (2002)

7. Perrin, M.: Distributed Systems: Concurrency and Consistency. Elsevier (2017)
8. Perrin, M., Mostefaoui, A., Jard, C.: Update consistency for wait-free concurrent

objects. In: International Parallel and Distributed Processing Symposium. pp. 219–
228. IEEE (2015)

9. Randell, B., Lee, P., Treleaven, P.C.: Reliability issues in computing system design.
ACM Computing Surveys (CSUR) 10(2), 123–165 (1978)

10. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple
way to implement it. Information processing letters 39(6), 343–350 (1991)

11. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Symposium on Self-Stabilizing Systems. pp. 386–400. Springer (2011)

