S. Boscolo and C. Finot, Shaping Light in Nonlinear Optical Fibers, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02062474

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty et al., Nonlinear spectral shaping and optical rogue events in fiber-based systems, Opt. Fiber. Technol, vol.18, pp.248-256, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00699104

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett, vol.45, pp.1095-1098, 1980.

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, Optical parabolic pulse generation and applications, IEEE J. Quantum Electron, vol.45, pp.1482-1489, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00447035

S. Boscolo, A. I. Latkin, and S. K. Turitsyn, Passive nonlinear pulse shaping in normally dispersive fiber systems, IEEE J. Quantum Electron, vol.44, pp.1196-1203, 2008.

A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akobyan, and L. K. Mouradian, Dispersive regime of spectral compression, Quantum Electron, vol.38, pp.383-387, 2008.

G. P. , Nonlinear Fiber Optics, Fourth Edition, 2006.

G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld et al.,

. Zdeborová, Machine learning and the physical sciences, Rev. Modern Physics, p.45002, 2019.

S. Boscolo, C. Finot, I. Gukov, and S. K. Turitsyn, Performance analysis of dual-pump nonlinear amplifying loop mirror mode-locked all-fibre laser, Laser Phys. Lett, vol.16, p.65105, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02085756

R. I. Woodward and E. J. Kelleher, Towards 'smart lasers': Self-optimisation of an ultrafast pulse source using a genetic algorithm, Sci. Rep, vol.6, p.37616, 2016.

T. Baumeister, S. L. Brunton, and J. N. Kutz, Deep learning and model predictive control for selftuning mode-locked lasers, J. Opt. Soc. Am. B, vol.35, pp.617-626, 2018.

M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley et al., Machine learning analysis of extreme events in optical fibre modulation instability, Nat. Commun, vol.9, p.4923, 2018.

S. Chugh, A. Gulistan, S. Ghosh, and B. M. Rahman, Machine learning approach for computing optical properties of a photonic crystal fiber, Opt. Express, vol.27, pp.36414-36425, 2019.

L. Pilozzi, F. A. Farrelly, G. Marcucci, and C. Conti, Machine learning inverse problem for topological photonics, Commun. Phys, vol.1, p.57, 2018.

T. Zahavy, A. Dikopoltsev, D. Moss, G. I. Haham, O. Cohen et al., Deep learning reconstruction of ultrashort pulses, vol.5, pp.666-673, 2018.

E. Giacoumidis, Y. T. Lin, J. Wei, I. Aldaya, A. Tsokanos et al., Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM, Future Internet, vol.11, p.2, 2019.

M. K. Kopae, A. Vasylchenkova, M. Pankratova, J. E. Prilepsky, and S. K. Turitsyn, Aritificial neural network-based equalizer in the nonlinear Fourier domain for fibre-optic communication applications, p.2019

C. Finot, I. Gukov, K. Hammani, and S. Boscolo, Nonlinear sculpturing of optical pulses with normally dispersive fiber-based devices, Opt. Fiber Technol, vol.45, pp.306-312, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01821853

M. A. Kalashyan, K. A. Palandzhyan, G. L. Esayan, and L. K. Muradyan, Generation of transformlimited rectangular pulses in a spectral compressor, Quantum Electron, vol.40, p.868, 2010.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, Generation of triangular-shaped optical pulses in normally dispersive fibre, J. Opt, vol.12, p.35205, 2010.

N. Verscheure and C. Finot, Pulse doubling and wavelength conversion through triangular nonlinear pulse reshaping, Electron. Lett, vol.47, pp.1194-1196, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00626183

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, Clean similariton generation from an initial pulse optimized by the backward propagation method, OSA Trends in Optics and Photonics Series, pp.51113-51114, 2004.

M. Pawlowska, A. Patas, G. Achazi, and A. Lindinger, Parametrically shaped femtosecond pulses in the nonlinear regime obtained by reverse propagation in an optical fiber, Opt. Lett, vol.37, pp.2709-2711, 2012.

R. H. Stolen, L. F. Mollenauer, and W. J. Tomlinson, Observation of pulse restoration at the soliton period in optical fibers, Opt. Lett, vol.8, pp.187-189, 1983.

C. Finot, Optical pulse doublet resulting from the nonlinear splitting of a super-Gaussian pulse, Laser Phys. Lett, vol.17, p.25103, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02401265

M. Oberthaler and R. A. Höpfel, Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers, Appl. Phys. Lett, vol.63, pp.1017-1019, 1993.

C. Finot and S. Boscolo, Design rules for nonlinear spectral compression in optical fibers, J. Opt. Soc. Am. B, vol.33, pp.760-767, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01275273

D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-teixeiro, Wave-breaking in nonlinear optical fibers, J. Opt. Soc. Am. B, vol.9, pp.1358-1361, 1992.

C. Finot, F. Chaussard, and S. Boscolo, Simple guidelines to predict self-phase modulation patterns, J. Opt. Soc. Am. B, vol.35, pp.3143-3152, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01856994

Y. Khoo and L. Ying, SwitchNet: A neural network model for forward and inverse scattering problems, SIAM J. Sci. Comp, vol.41, 2018.

Y. Sanghvi, Y. Kalepu, and U. K. Khankhoje, Embedding deep learning in inverse scattering problems, IEEE Trans. Comp. Imag, vol.6, pp.46-56, 2020.