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Abstract
We study languages of unambiguous VASS, that is, Vector Addition Systems with States, whose
transitions read letters from a finite alphabet, and whose acceptance condition is defined by a
set of final states (i.e., the coverability language). We show that the problem of universality for
unambiguous VASS is ExpSpace-complete, in sheer contrast to Ackermann-completeness for
arbitrary VASS, even in dimension 1. When the dimension d ∈ N is fixed, the universality problem is
PSpace-complete if d ≥ 2, and coNP-hard for 1-dimensional VASSes (also known as One Counter
Nets).
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1 Introduction

Determinism is a central notion of computational models, it ensures that there is one way
to proceed for every input. It often enables constructions which would not be possible
without it and allows for efficient algorithms. While the relation between deterministic vs
non-deterministic models is extensively studied, there exists also a less understood middle
ground of unambiguous systems. In the case of models accepting word languages, a model
is said to be unambiguous if for every word in its language, there is exactly one accepting
run, which is a much weaker restriction than determinism. Unambiguity, although featuring
non-determinism, often causes some problems to be computationally easier. As a prominent
example, the universality problem for finite automata (i.e., whether all words over the
alphabet are accepted by the automaton), which is PSpace-complete in general, is known
to be in PTime in the unambiguous case [12] and even in NC2 [13]. While the study of
unambiguous models of computation has lately attracted some attention, in some settings it
remains, by and large, an unexplored area.

In particular, there has been considerable volume of research on unambiguous finite
automata (see [1] for a nice overview). One way to design a polynomial time algorithm for the
universality problem on finite automata is to show that the shortest word which is not in the
language, if any, is of at most linear length. Then, by counting the number of linear length
runs one may answer the problem. The existence of a linear counterexamples for universality
and its PTime algorithm, led to the conjecture, formulated by Colcombet [1], that for every
unambiguous finite automaton (UFA) there exists another UFA of polynomial size accepting
the complement of its language. This conjecture was later shown false by Raskin [10]. As it
turns out, there is a family of UFA such that for accepting the complement of UFA with n
states even nondeterministic finite automaton (NFA) needs a super-polynomial number of
states —at least Θ(nlog log logn). The universality problem for UFA is actually known to be
not only in PTime, but even in NC2 [13], the class of problems solvable by uniform families
of circuits width O(log2 n) depth and binary branching. The work [13] in fact solves the more
general problem of path equivalence for two NFA: is the number of accepting runs on w the
same for both automata, for every word w? However, to the best of our knowledge the best
known lower bound for the problem is NL-hardness, so the exact complexity of universality
problem for UFA is still open even in the simplest possible setting of finite automata.

There was also research about the universality problem and related ones for unambiguous
register automata. In [7] authors have shown that the containment problem for unambiguous
register automata is in 2ExpSpace and even in ExpSpace if the number of register is fixed,
which implies similar upper bounds for the universality problem. Without the unambiguity
assumption, even the universality problem (and even with just one register) can be easily
shown undecidable [8].

It is not by accident that existing research focuses on universality, equivalence and
containment of languages of unambiguous systems, and that there are efficient algorithms
for these problems under the assumption of unambiguity. Unambiguity speaks about the
language of a system, so it is natural to hope that problems related to the language of the
systems may become more tractable. But for the most natural problem concerning the
language, i.e., for the emptiness problem one cannot hope for an improvement. This is
because for most of the systems one can relabel transitions giving each one a unique label.
Then the system becomes deterministic and in consequence unambiguous. The language
changes, but it is empty iff the original language was empty, which intuitively explains
why the emptiness problem shouldn’t be any easier for unambiguous systems compared
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to general non-deterministic ones. One the other hand, it is more reasonable to expect
that the universality problem might be easier, since both the universality problem and the
unambiguity property are universal properties of the form “For all words, [...]”.

Our contribution

The foremost goal of this paper is to push the understanding of unambiguity further. We
focus on the universality problem, which is arguably the most natural first step, that may
open the way for further studies on the equivalence, co-finiteness, containment and other
problems for languages. The universality problem was studied for finite automata and
register automata under the unambiguity assumption. In our opinion, the most interesting
yet unsolved cases in which one can expect a progress assuming unambiguity are One Counter
Nets (called also 1-dimensional VASS here) and its generalization Vector Addition Systems
with States (VASS).

The universality checking for VASS with state acceptance is known to be decidable by
the use of well quasi-order techniques [4] (the paper shows decidability of trace universality,
but language universality can be reduced to that problem). However the problem is also
known to be Ackermann-complete even for 1-dimensional VASS [3], so hardly tractable.
For deterministic VASS it is quite easy to show that universality problem can be decided
in PTime. Therefore, it is natural to hope for an improvement under the unambiguity
restriction.

Our main contribution is ExpSpace membership of the universality problem for unam-
biguous VASS. The believe that it is the most interesting result and it was as well the most
challenging problem and technically involved solution. We actually have shown that this
problem is ExpSpace-complete. For the completeness of the picture we have also analyzed
the complexity of the problem for d-dimensional VASS for fixed d ∈ N. We have shown that
the problem is PSpace-complete for every d ≥ 2. For d = 1 we have shown coNP-hardness,
although we do not have the matching upper bound, we conjecture that it is coNP-complete.
We additionally consider the variant of the problem in which the numbers in the input are
encoded in unary. Finally, we study also the problem of unambiguity checking (i.e., given a
VASS, is it unambiguous?). All our results are listed in Section 3.

2 Preliminaries

We use the letter Σ to denote a finite alphabet, Z to denote the set of all integers, and N the
set of non-negative integers. We use ε to denote the empty string, and Σε to denote Σ ∪ {ε}.
We use A ⊆fin B to denote that A is a finite subset of B, and ℘fin(A) to denote the set of all
finite subsets of A. We use ū, v̄, w̄, . . . to denote vectors of numbers, and we use 0̄ to denote
the all-0 vector and 1̄ to denote the all-1 vector. We use [i, j] for i, j ∈ N, i ≤ j to denote
the set {i, i+ 1, . . . , j − 1, j}. For a vector ū ∈ Zd and i ∈ [1, d] we denote by ū[i] the i-th
coordinate of ū. For a word w ∈ Σ∗ and i ∈ N we denote by w[i] the i-th letter of w. For
ū, v̄ ∈ Zd we write ū � v̄ if for all i ∈ [1, d] we have ū[i] ≤ v̄[i]. We define minimum of ū and
v̄ as min(ū, v̄)[i] = min(ū[i], v̄[i]) for any i ∈ [1, d].

We consider a Vector Addition Systems with States (VASS) of dimension d ∈ N as a
tuple A = (Σ, d,Q, q0, δ, F ) where Σ is a finite alphabet, Q is a finite state space, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states, and δ ⊆fin Q × Σε × Zd × Q is the
set of transitions. We often write transition (p, a, v, q) as p a;v−−→ q. We will henceforth
write d-VASS to denote a VASS of fixed dimension d. A configuration of A is a pair
of a state q ∈ Q and a vector ū ∈ Nd, that we usually note q(ū). If c is a configuration,
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write c[i] to denote the i-th coordinate of the vector it contains. A run of A from a
configuration q(ū) to a configuration q′(v̄) reading the word w ∈ Σ∗ is a sequence of
transitions (r1, α1, v̄n, r

′
1) · · · (rn, αn, v̄n, r′n) ∈ δ∗ such that: (i) r1 = q and r′n = q′, (ii)

r′i = ri+1 for every 1 ≤ i < n; (iii) w = α1 · · ·αn; (iv) ū+
∑
i≤j v̄i ∈ Nk for every 1 ≤ j ≤ n;

and (v) v̄ = ū+
∑
i≤n v̄i. If we further have q′ ∈ F , we say that such run is accepting. We

henceforth say that a configuration c is reachable from a configuration c′ if there is a run
from c′ to c. The effect of a transition (r, α, v̄, r′) is the vector v̄ ∈ Zd, the effect of a run is
the sum of effects of the transitions therein. The norm of a VASS A is the maximal absolute
value of a number occurring in its transition, and we denote it by |A|. The language of a
configuration c in A, denoted by L(A, c), is the set of all w ∈ Σ∗ with an accepting run from
c. We call q0(0̄) the initial configuration where q0 is the initial state. If c is the initial
configuration then we say just language of A and write L(A) instead of L(A, c). A VASS A
is unambiguous if for every w ∈ Σ∗ there is no more than one accepting run starting from
the initial configuration and reading w. The unambiguity checking problem for VASS
is the problem of, given a VASS A, decide whether it is unambiguous. An automaton over Σ
(finite automaton or VASS) is universal if it accepts the language Σ∗. The universality
problem for VASS is the problem of, given a VASS A, decide whether it is universal. We
will henceforth assume that the numbers contained in the transitions of VASSes are always
encoded in binary if not explicitly indicated otherwise.

Let us recall now the main result of the Rackoff construction [9]. Let us denote AM,d,n =
(2n2(M+1)2)(4d)d−1 . We present here an adaptation of the Rackoff argument with an explicit
bound on the length of an accepting run, its proof can be found in the Appendix.

I Proposition 1 (Adaptation of the Rackoff construction). If a language of a d-VASS with
norm M and n states is nonempty then there exists an accepting run of length at most
AM,d,n.

The language emptiness problem for VASS (i.e., given a VASS, does it accept at least one
word?) is, basically, equivalent to the coverability problem, which is known to be ExpSpace-
complete as shown by the lower bound of Lipton [6] and the upper-bound of Rackoff [9].
The coverability problem is the problem of, given a VASS A and two configurations c1, c2,
whether there is a run from c1 to some some configuration c′2 such that c′2 � c2. In our
setting, this result can be restated as the language emptiness problem for VASS being
ExpSpace-complete, even when all transitions are ε-transitions, and hence the language is
either {} or {ε}. What is more, the construction of Lipton is unambiguous: if there is an
accepting run, there is exactly one. This is formalized in the next lemma. Let us denote
by ε-VASS, a VASS whose every transition reads ε (and thus the alphabet is not important
here).

I Lemma 2 (consequence of [6, 9]). The problem of whether an unambiguous ε-VASS has
an empty language is ExpSpace-complete.

3 Results

We summarize all our results in the next two theorems. Detailed proofs will come in the
sections that follow.

I Theorem 3. The universality problem for

(i) VASS is ExpSpace-complete, both with binary and unary encodings;
(ii) d-VASS with unary encoding is in NC2 and NL-hard, for every d ≥ 1;
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(iii) d-VASS with binary encoding is PSpace-complete, for every d ≥ 2;
(iv) 1-VASS (One Counter Net) with binary encoding is coNP-hard.

I Theorem 4. The unambiguity checking problem for

(i) VASS is ExpSpace-complete, both with binary and unary encodings;
(ii) d-VASS with unary encoding is NL-complete, for every d ≥ 1;
(iii) d-VASS with binary encoding is PSpace-complete, for every d ≥ 2;
(iv) 1-VASS with binary encoding is coNP-hard.

The main technical contribution lies in the ExpSpace bounds on the universality problem
in Theorem 3(i). The upper bound will need some insights on the structure of accepting
runs in unambiguous VASS which happen to have a universal language. The remaining
upper bounds will follow easily from this one. The ExpSpace, PSpace, and coNP lower
bounds of items (i), (iii), and (iv) are also of interest, as they reveal different ways in which
unambiguity can encode non-trivial properties. All the remaining results of Theorems 3 and
4 are either easy, or follow from simple adaptations of the four results just mentioned.

It is interesting to observe that complexity results on universality seem to coincide with
the complexity of emptiness for the non-deterministic version of the considered classes. Notice
also that closing the ‘gap’ between NC2 and NL in Theorem 3(ii) would imply in particular
solving the corresponding problem for UFA, which is an open question.

Organization

We will prove Theorem 3 in Section 4 and Theorem 4 in Section 5. Each of these sections
is divided into an “upper bounds” and “lower bounds” subsections. For reference, the
upper and lower bounds of item (i) of Theorem 3 are shown in Propositions 5 and 17
respectively; item (ii) in Propositions 16 and 21; item (iii) in Propositions 15 and 19; and
item (iv) in Proposition 20. The upper and lower bounds of item (i) of Theorem 4 are shown
in Propositions 22 and 23 respectively; item (ii) in Propositions 22 and 24; item (iii) in
Propositions 22 and 25; and item (iv) in Proposition 26.

4 Testing for Universality

In this section we will prove Theorem 3. Most of the section will be dedicated to proving the
ExpSpace upper bound of item (i).

4.1 Upper bounds
I Proposition 5 (Theorem 3(i) upper bound). The universality problem for unambiguous
VASSes is in ExpSpace.

The proof strategy is as follows. First, we define an abstraction of a configuration, called
an N -profile, for N ∈ N, which is the result of replacing every number bigger or equal to
N with N in a configuration. The intuition is that any number bigger or equal N is so big
that we can disregard its exact value. We next show that in certain circumstances, for any
unambiguous d-VASS V with n states two configurations having equal f(|V |, d, n)-profile
have also the same language, where f is some fixed doubly-exponential function. This fact
allows us to construct an unambiguous finite automaton A of doubly-exponential size, whose
every state corresponds to one f(|V |, d, n)-profile, and such that A is universal if, and only



6 Universality Problem for Unambiguous VASS

if, V is universal. As universality of UFAs is in PolyLogSpace, this gives us an ExpSpace
algorithm for checking universality.

For any number N ∈ N, the N-profile of a configuration (q, v̄) ∈ Q × Nd is the pair
(q,min(v̄, N · 1̄)). Let BM,d,n = M ·AM,2d,2n2 , and let CM,d,n = M · (BM,d,n + 1)d.

We start with a useful lemma which bounds the length of runs witnessing ambiguity.

I Lemma 6. Let V be a d-VASS with norm M and n states. If V is ambiguous then there
exists two different runs accepting the same word of length at most AM,2d,2n2 each.

Proof. Consider the following 2d-VASS V ′, which accepts exactly these words, which have
at least two different accepting runs from initial configuration of V . The VASS V ′ guesses
two different runs of V and simulates them, it is quite similar to a synchronized product of
V with itself. In its 2d counters V ′ keeps counter valuations of two configurations of V of
the simulated runs. State of V ′ is a pair of states of V together with one bit of information
indicating whether the two simulated runs have already differed or they are the same till
that moment. VASS V ′ accepts if states of both simulated runs are accepting and the bit
indicates that they have differed (even if now they are in the same state). It is easy to see
that V ′ indeed accepts words, which have two different accepting runs in V . Therefore if V
is ambiguous then L(V ′) is nonempty. Notice that norm of V ′ is bounded by M , as norm
of V is. Therefore by Proposition 1 if L(V ′) is nonempty then there is an accepting run
of V ′ of length at most AM,2d,2n2 . Notice that existence of such a run implies existence of
two different runs of V over the same word, which additionally also have length bounded by
AM,2d,2n2 . This finishes the proof. J

We state two basic properties of VASS which will be useful throughout.

B Claim 7. For any two configurations c and c′ of a VASS V with equal (|V | ·N)-profile, if
ρ is an accepting run from c of length at most N then ρ is also accepting from c′.

B Claim 8 (language monotonicity). If q(ū) and q(v̄) are two configurations of a VASS V
with ū � v̄ then L(V, q(ū)) ⊆ L(V, q(v̄)).

The following is the key lemma which will enable the improved complexity for the
universality problem.

I Lemma 9. Let V be a universal, unambiguous d-VASS with n states. Then, any two
configurations with equal B|V |,d,n-profile reachable from the initial configuration have the
same set of accepting runs (in particular, they have the same language).

Proof. By means of contradiction, let c1, c2 ∈ Q× Nd be two configurations reachable from
the initial configuration cinit with the same B|V |,d,n-profile, but different sets of accepting
runs. Let ρ be an accepting run from c1 but not from c2, reading the word w.

Let cinit
u−→ c2. The word uw is accepted by V since it is universal, so there must be a

configuration c′2 such that cinit
u−→ c′2 and w ∈ L(V, c′2). Therefore w is accepted both from

configuration c1 with the run ρ and from configuration c′2 with some accepting run ρ̂. There
are two cases to consider: either (i) c2 6= c′2, or (ii) c2 = c′2 and ρ̂ 6= ρ.

For (i), let us first consider an (ambiguous) VASS Ṽ , being the result of adding ε-labelled
self-loops with effect 0̄ in every state to V . Clearly, for every configuration c we have
L(V, c) = L(Ṽ , c). Let us confider a 2d-VASS V ′, which is a synchronized product of Ṽ
with itself: transitions, initial and accepting states are defined in a natural way. Product is
synchronized, so for any a ∈ Σε there is an a-labelled transition in the product V ′ iff there
exist a-labelled transitions in the components, both identical with Ṽ . For two configurations
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c = q(ū) and c′ = q′(ū′) of V we denote by L(V ′, c, c′) the language L(V ′, (q, q′)(ū, ū′)).
Notice that, by construction, L(V ′, c, c′) is the intersection of L(V, c) and L(V, c′). Therefore
the word w belongs to L(V ′, c1, c

′
2). By Proposition 1 there exists an accepting run ρ′ of

V ′ of length at most A|V |,2d,n2 reading a word w′ from L(V ′, c1, c
′
2) = L(V, c1) ∩ L(V, c2).

Consider the projection ρ1 of ρ′ onto the first copy of Ṽ . We know thus that ρ1 is accepting
from c1. Further, the absolute value of the effect of ρ1 on every coordinate is at most
|V | · A|V |,2d,n2 ≤ |V | · A|V |,2d,2n2 = B|V |,d,n. Recall that c1 and c2 have the same B|V |,d,n-
profile, so if ρ1 is accepting from c1 then it is also accepting from c2. Therefore w′ ∈ L(V, c2)
and w′ ∈ L(V, c′2), which means that there are two distinct accepting runs over uw′ in V ,
contradicting the fact that it is unambiguous.

For (ii), we have that there are two distinct accepting runs for w from max(c1, c2), namely
ρ and ρ̂. Then, by Lemma 6, there exist two different runs ρ1 and ρ2 from max(c1, c2) of
length at most A|V |,2d,2n2 accepting the same word w′. Since c1 and c2 have the same B|V |,d,n-
profile, where B|V |,d,n = |V | · A|V |,2d,2n2 , by Claim 7 both ρ1 and ρ2 are accepting from
configuration c2, and thus there are two distinct accepting runs over uw′ in V , contradicting
the fact that it is ambiguous. J

I Corollary 10. If a universal, unambiguous d-VASS V with n states contains an accepting
run with two configurations c1 and c2 such that c1 occurs before c2, then

(i) if c1 and c2 have equal B|V |,d,n-profile, then c1 � c2;
(ii) for every i ∈ [1, d], c1[i]− c2[i] < C|V |,d,n.

Proof. (i) By means of contradiction, let c1 and c2 be configurations with the same profile
such that c1 6� c2, meaning that c1[i] > c2[i] for some i. Let ρ1ρ2ρ3 be an accepting run of
V , such that ρ1 reaches the configuration c1 from the initial configuration, and ρ2 reaches
the configuration c2 from configuration c1. Since the effect of ρ2 decrements component i, it
is easy to see that there is some k ∈ N such that (ρ2)kρ3 is an accepting run from c1 but not
from c2, contradicting Lemma 9 above.

(ii) Suppose there is a decrement of at least C|V |,d,n at some coordinate i. Since C|V |,d,n =
|V | · (B|V |,d,n + 1)d is at least the number of B|V |,d,n-profiles times the biggest effect of a
transition, this means that at least k = B|V |,d,n distinct configurations c′1, . . . , c′k occur in
the run between c1 and c2 such that c1[i] > c′1[i] > c′2[i] > · · · > c′k[i]. Hence, among them
c1, c

′
1, . . . , c

′
k there must be two equal B|V |,d,n-profile configurations, contradicting the item

(i) above. J

This last statement can be informally understood as follows: if V is universal, then it is
still universal if configurations are abstracted by its C|V |,d,n-profiles. We now formalize what
this means. Let us fix an unambiguous VASS V , and let us henceforth write ω as short for
C|V |,d,n. For any configuration c let bcc denote its ω-profile, that is, bq(ū)c = q(min(ū, ω · 1̄)).
Let V = (Σ, d,QV , qV , δV , FV ) be an unambiguous VASS. We construct a finite automaton
AV = (Σ, QA, qA, δA, FA) in the following way:

the set of states QA is the set of pairs QV × [0, ω]d;
the initial state qA is qV (0̄);
the set of final states FA consists of all the pairs with first coordinate in FV , namely
FA = FV × [0, ω]d;
δA is the set of all transitions p(ū) a−→ q(bū+ v̄c) such that (p, a, v̄, q) ∈ δV and ū+ v̄ ∈ Nd.

We now show that AV is unambiguous, and that it is universal iff V is universal.
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I Lemma 11. For every run p1(ū1) a1−→ p2(ū2) a2−→ · · · pn(ūn) an−−→ pn+1(ūn+1) of AV there is
a run (p1, a1, v̄1, p2) · · · (pn, an, v̄n, pn+1) of V such that v̄1 + · · ·+ v̄i ≥ ūi for every i ∈ [1, n].

Proof. This can by shown by induction on n. It suffices to replace every transition pi(ūi)
ai−→

pi+1(ūi+1) of AV by a transition (pi, ai, v̄, pi+1) ∈ δV such that ūi+1 = būi + v̄c, which exists
by construction. J

As a consequence of the previous lemma, if there are two distinct accepting runs for a word
w in AV , then there are also two distinct accepting runs over w in V . In other words:

I Lemma 12. If V is unambiguous then AV is unambiguous.

I Lemma 13. V is universal if, and only if, AV is universal.

Proof. First observe that L(AV ) ⊆ L(V ) by Lemma 11. Hence, if AV is universal, so is
V . For the converse direction, suppose V is universal, and let us show that AV is universal
as well. Let ρ = (q0, a1, v̄1, q1) · · · (qn−1, an, v̄n, qn) be the accepting run of w = a1 · · · an in
V . Let us consider the run ρ′ = (q0(x̄0), a1, q1(x̄1)) · · · (qn−1(x̄n−1), an, qn(x̄n)) of AV , where
x0 = 0̄ and for every i > 0, x̄i = bx̄i−1 + v̄ic. We claim that ρ′ is an accepting run on AV . By
means of contradiction, if ρ′ is not a run, there must be some qi(x̄i)

ai+1−−−→ qi+1(x̄i+1) which
is not a transition of AV . This can only happen if in within configurations reachable through
ρ there are two configurations c, c′ such that c appears before c′ and for some j ∈ [1, k] we
have c[j]− c[j] > ω. But this would contradict Corollary 10-(ii). Hence, ρ′ is an accepting
run and thus AV is universal. J

Notice that the automaton AV has a doubly-exponential number of states. As checking
its universality is polynomial-time in its size [1], which is doubly exponential, the problem is
in 2ExpTime. In order to design an ExpSpace algorithm we need a bit more work. The
following lemma together with Lemma 13 finishes the proof of Proposition 5.

I Lemma 14. Checking universality of AV is in ExpSpace.

Proof. First notice that the function V 7→ AV can be easily computed in ExpSpace. Indeed,
a state of AV is described by a pair consisting of a state from QV and a vector v̄ ∈ [0, ω]d,
where ω = C|V |,d,|QV | = |V | · (|V | · (4|QV |4(|V |+ 1)2)(8d)2d−1 + 1)d is doubly exponential with
respect to the description size of V , and therefore it can be kept in ExpSpace. It is then
possible to iterate through all the possible pairs in (QV , [0, ω]d) in ExpSpace and for every
state output the transitions outgoing from of this state.

By [13] checking universality of UFA without cycles containing only ε-labelled transitions
(ε-cycles) is in NC2, namely in the class of languages recognizable by uniform families of
circuits of depth O(log2(n)) and binary branching, where n is the number of inputs. A simple
procedure which eliminates all the ε-cycles (i.e., all the transitions involved in ε-cycles) can
be designed to be in NL. Observe that eliminating ε-cycles does not change the language
of unambiguous automata, since no accepting run can contain a transition from an ε-cycle.
Since NL ⊆ NC2 and NC2 is closed under composition, we obtain that the universality
problem for an arbitrary UFA (possibly with ε-transitions) is in NC2 as well. It is folklore
that NC2 is included in poly-logarithmic space (actually in the deterministic space log2 n).
Indeed, one can simply simulate a circuit of depth D and binary branching in space D.

It is now enough to argue that composition of ExpSpace and PolyLogSpace is included
in ExpSpace. This result is also folklore, we sketch here a proof. Any algorithm in the
composition of ExpSpace and PolyLogSpace can be seen as PolyLogSpace algorithm
inputing the output of ExpSpace machine, potentially of a doubly exponential length. This
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doubly exponential output cannot be kept by an ExpSpace algorithm, but one can simulate
the composition by a PolyLogSpace algorithm asking ExpSpace oracles for particular
letters of its input. Such an algorithm in turn can be simulated easily in ExpSpace. We keep
three exponential size pieces of the information: (i) the space of the oracle, (ii) the index of the
doubly exponential input being currently transferred to the oracle, and (iii) the space of the
poly-logarithmic algorithm, which is poly-logarithmic with respect to the doubly exponential
input, hence exponential. Therefore indeed ExpSpace ◦ PolyLogSpace ⊆ ExpSpace,
which finishes the proof. J

Let us now analyze the situation for a fixed dimension d ∈ N. The number of states
of AV equals |QV | times |V | · (|V | · (4|QV |4(|V |+ 1)2)(8d)2d−1 + 1)d, which for fixed d is a
polynomial depending on |QV | and |V |. This immediately implies that for V represented
in unary the size of AV is polynomial, while for |V | represented in binary the size of AV is
exponential in the size of the input. A proof almost identical to that of Lemma 14, where we
substitute ExpSpace with PSpace, yields the following result.

I Proposition 15 (Theorem 3(iii) upper bound). For every fixed d ∈ N the universality
problem for binary represented, unambiguous d-VASS is in PSpace.

In a similar way we solve the case of unary represented d-VASSes. In this case, we replace
ExpSpace with the class of problems solvable in logarithmic space L. We also use the fact
that L composed with NC2 is included in NC2, which is immediately implied by a trivial
closure of NC2 by composition and inclusion L ⊆ NC2. Then we get the following.

I Proposition 16 (Theorem 3(ii) upper bound). For every fixed d ∈ N the universality problem
for unary represented, unambiguous d-VASS is in NC2.

4.2 Lower bounds
I Proposition 17 (Theorem 3(i) lower bound). The universality problem for unambiguous
VASS is ExpSpace-hard, even on a one letter alphabet.

Proof. We reduce from the problem of whether an unambiguous ε-VASS has an empty
language, which is ExpSpace-hard as observed in Lemma 2. Let A = ({a}, d,Q, q0, δ, F ) be
an unambiguous ε-VASS Observe that either there is exactly one accepting run in A (and
hence its language is {ε}), or there are no accepting runs (and hence its language is ∅).

We build an unambiguous VASS B on a one letter alphabet {a} such that L(B) = a∗ if
L(A) = {ε} and L(B) = ∅ otherwise. In fact B can be built as the union of two unambiguous,
language-disjoint, VASSes B1,B2 such that

(i) L(B1) = {a` : ` ≤ N} if L(A) = {ε} or L(B1) = ∅ otherwise; and
(ii) L(B2) = {a` : ` > N} if L(A) = {ε} or L(B2) = ∅ otherwise.

In fact, B1 and B2 can be easily constructed from A.
Let B1 = ({a}, d+ 1, Q ∪̇{qf}, q0, δ1, {qf}) be an unambiguous VASS with the same state

space and initial state as A but with of one more dimension. This transition increments
along the ε-run, that is, for every transition (q, ε, (u1, . . . , ud), q′) ∈ δ we have a transition
(q, ε, (u1, . . . , ud, 1), q′) in δ1. Further, we have the transitions (q, ε, 0̄, qf ) for every q ∈ F ,
which allows to go from a final state of A to the final state of B1 and (qf , a, (0, . . . , 0,−1), qf )
which allows to read as many a’s as the length of the (sole) accepting run of A.

Let B2 = ({a}, d+ 1, Q ∪̇{qf}, q0, δ2, {qf}) be an unambiguous VASS with the same state
space and initial state. The set of transitions δ2 is defined as follows. First, we replace ε with
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a in all transitions from δ. That is, for every transition (q, ε, (u1, . . . , ud), q′) ∈ δ, we have a
transition (q, a, (u1, . . . , ud, 0), q′) in δ2. Second, we add a transition to qf , from which the
language a∗ is accepted. That is, we add (q, a, 0̄, qf ) for every q ∈ F , and (qf , a, 0̄, qf ) to δ2.

It is easy to see that B1 and B2 satisfy, respectively, the properties (i) and (ii), and that
they are unambiguous assuming A is unambiguous. We build B as the union of B1 and B2.
We can do this in the obvious way: taking disjoint sets of states for B1 and B2, taking the
union of the final states sets, adding a new initial state qinit, and adding two transitions that
allow to move from qinit to either the initial state of B1 or the initial state of B2, by reading ε
and with 0̄-effect. Since the languages of B1 and B2 are a partition of a∗, we obtain that B is
ambiguous, and L(B) = a∗ if, and only if, L(A) is non-empty. This concludes our proof. J

I Corollary 18. The co-finiteness problem for unambiguous VASS, that is, whether the
complement of its language is finite, is ExpSpace-hard.

The following proposition proves the lower bound of Theorem 3(iii).

I Proposition 19 (Theorem 3(iii) lower bound). The universality problem for unambiguous
2-VASS is PSpace-hard.

Proof. We reduce from the bounded one-counter automata reachability problem, which is
known to be PSpace-hard [2, Corollary 10]. This problem can be stated as follows: given a 1-
VASS A = (Σ, 1, QA, q, δA, F ), a number N ∈ N encoded in binary, and a configuration p(m),
is there a run (r1, α1, u1, r

′
1) · · · (rn, αn, un, r′n) from q(0) to p(m) such that

∑
i≤j ui ≤ N for

every 1 ≤ j ≤ n? The alphabet is not important for this problem, we can consider that every
transition reads letter a.

Let A, N , p(m) be the input of the aforementioned problem. We now construct, in
polynomial time, an unambiguous 2-VASS B = (Σ, 2, Q, q0, δ, F ), such that it is universal, if
and only if, the answer to the input is negative —the statement then follows by closure under
complement of PSpace. Concretely, the language of B is essentially the set of all sequences
of transitions in (δA)∗ which do not contain a run from q(0) to p(m) as prefix. Intuitively
the construction of B from A can be divided in two steps. First we change N -bounded
1-VASS into 2-VASS by simulating configuration q(i) by q(i,N − i). However this 2-VASS
might be far from being universal. Therefore we add to it a lot of transitions such that it
is almost universal: the only way for a word to be not accepted is to reach a configuration
corresponding to p(m).

The construction of B is as follows. The alphabet Σ is defined as δA ∪̇{?}; the state set
Q is defined as QA ∪̇{⊥, qf , q0}; and the set of final states F = Q \ {⊥} being everything
beside the sink state ⊥. B will always keep the invariant that the sum of its two components
is equal to N on all configurations with state in QA reachable from the initial configuration
q0(0, 0). Further, the transition graph is as in δA but labels are used to enforce unambiguity.
This is done by initializing the vector in (0, N) as the first thing the automaton does (by
adding a new initial state q0 and transition (q0, t, (0, N), q) from it to the initial state of A),
and additionally translating every transition t = (r, a, h, r′) ∈ δA into (r, t, (h,−h), r′). Now
we need to assure that the only way to be not accepted is to reach configuration p(m,N −m).
For that purpose we add a special transition reading ? with effect (−m,m−N) and going
from p to the sink state ⊥. All the other sequences of transitions need to be made accepting.
For that we add an extra accepting state qf and a lot of transitions leading to it. Concretely,
B has these transitions:

(i) the initial transition (q0, t, (0, N), q) for every t ∈ Σ \ {?};
(ii) a ‘simulating’ transition (r, t, (h,−h), r′) for every t = (r, a, h, r′) ∈ δA;
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1; 0

<latexit sha1_base64="hrkjCJ+PHhY2MwYoYsnQbOPjl+c=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRcGDAS8eI5oHJEuYncwmQ2Znl5leIYR8ghcPinj1i7z5F36Ck00OmljQUFR1090VJFIYdN0vJ7eyura+kd8sbG3v7O4V9w8aJk4143UWy1i3Amq4FIrXUaDkrURzGgWSN4PhzdRvPnJtRKwecJRwP6J9JULBKFrp3rtyu8WyW3EzkGXizUn5+hsy1LrFz04vZmnEFTJJjWl7boL+mGoUTPJJoZManlA2pH3etlTRiBt/nJ06IcdW6ZEw1rYUkkz9PTGmkTGjKLCdEcWBWfSm4n9eO8Xw0h8LlaTIFZstClNJMCbTv0lPaM5QjiyhTAt7K2EDqilDm07BhuAtvrxMGqcV76xyfndWrpZmaUAejqAEJ+DBBVThFmpQBwZ9eIIXeHWk8+y8Oe+z1pwznzmEP3A+fgD7Oo5L</latexit>

1; 0

<latexit sha1_base64="hrkjCJ+PHhY2MwYoYsnQbOPjl+c=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRcGDAS8eI5oHJEuYncwmQ2Znl5leIYR8ghcPinj1i7z5F36Ck00OmljQUFR1090VJFIYdN0vJ7eyura+kd8sbG3v7O4V9w8aJk4143UWy1i3Amq4FIrXUaDkrURzGgWSN4PhzdRvPnJtRKwecJRwP6J9JULBKFrp3rtyu8WyW3EzkGXizUn5+hsy1LrFz04vZmnEFTJJjWl7boL+mGoUTPJJoZManlA2pH3etlTRiBt/nJ06IcdW6ZEw1rYUkkz9PTGmkTGjKLCdEcWBWfSm4n9eO8Xw0h8LlaTIFZstClNJMCbTv0lPaM5QjiyhTAt7K2EDqilDm07BhuAtvrxMGqcV76xyfndWrpZmaUAejqAEJ+DBBVThFmpQBwZ9eIIXeHWk8+y8Oe+z1pwznzmEP3A+fgD7Oo5L</latexit>

1; 0

<latexit sha1_base64="hrkjCJ+PHhY2MwYoYsnQbOPjl+c=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRcGDAS8eI5oHJEuYncwmQ2Znl5leIYR8ghcPinj1i7z5F36Ck00OmljQUFR1090VJFIYdN0vJ7eyura+kd8sbG3v7O4V9w8aJk4143UWy1i3Amq4FIrXUaDkrURzGgWSN4PhzdRvPnJtRKwecJRwP6J9JULBKFrp3rtyu8WyW3EzkGXizUn5+hsy1LrFz04vZmnEFTJJjWl7boL+mGoUTPJJoZManlA2pH3etlTRiBt/nJ06IcdW6ZEw1rYUkkz9PTGmkTGjKLCdEcWBWfSm4n9eO8Xw0h8LlaTIFZstClNJMCbTv0lPaM5QjiyhTAt7K2EDqilDm07BhuAtvrxMGqcV76xyfndWrpZmaUAejqAEJ+DBBVThFmpQBwZ9eIIXeHWk8+y8Oe+z1pwznzmEP3A+fgD7Oo5L</latexit>

1;�2n1

<latexit sha1_base64="P9BX2DVSV9BJ+gVxJUa8f/U6A40=">AAAB7nicbVDLSgNBEOyNrxhfUY9ehgTBi2E3RBQ8GPDiMYJ5QLKE2clsMmR2ZpmZFcKSj/DiQRGvfo83/8JPcLLJQRMLGoqqbrq7gpgzbVz3y8mtrW9sbuW3Czu7e/sHxcOjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvp357UeqNJPiwUxi6kd4KFjICDZWanvX51XR9/rFsltxM6BV4i1I+eYbMjT6xc/eQJIkosIQjrXuem5s/BQrwwin00Iv0TTGZIyHtGupwBHVfpqdO0WnVhmgUCpbwqBM/T2R4kjrSRTYzgibkV72ZuJ/Xjcx4ZWfMhEnhgoyXxQmHBmJZr+jAVOUGD6xBBPF7K2IjLDCxNiECjYEb/nlVdKqVrxa5eK+Vq6X5mlAHk6gBGfgwSXU4Q4a0AQCY3iCF3h1YufZeXPe5605ZzFzDH/gfPwAW3yPoA==</latexit>

1;�2n2

<latexit sha1_base64="F2zcbe4+SD2BoBG3suApzQGbIi8=">AAAB7nicbVDLSgNBEOyNrxhfUY9ehgTBi2E3RBQ8GPDiMYJ5QLKE2clsMmR2ZpmZFcKSj/DiQRGvfo83/8JPcLLJQRMLGoqqbrq7gpgzbVz3y8mtrW9sbuW3Czu7e/sHxcOjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvp357UeqNJPiwUxi6kd4KFjICDZWanvX51XRr/aLZbfiZkCrxFuQ8s03ZGj0i5+9gSRJRIUhHGvd9dzY+ClWhhFOp4VeommMyRgPaddSgSOq/TQ7d4pOrTJAoVS2hEGZ+nsixZHWkyiwnRE2I73szcT/vG5iwis/ZSJODBVkvihMODISzX5HA6YoMXxiCSaK2VsRGWGFibEJFWwI3vLLq6RVrXi1ysV9rVwvzdOAPJxACc7Ag0uowx00oAkExvAEL/DqxM6z8+a8z1tzzmLmGP7A+fgBXQCPoQ==</latexit>

1;�2nk

<latexit sha1_base64="saT7Ztg0QmRS9YuNyA9BPURwm60=">AAAB7nicbVDLSsNAFL2pr1pfVZduhhbBjSUpFQUXFty4rGAf0IYymU7aIZNJmJkIIfQj3LhQxK3f486/8BOcpl1o64ELh3Pu5d57vJgzpW37yyqsrW9sbhW3Szu7e/sH5cOjjooSSWibRDySPQ8rypmgbc00p71YUhx6nHa94Hbmdx+pVCwSDzqNqRvisWA+I1gbqetcn9fFMBiWq3bNzoFWibMg1ZtvyNEalj8Ho4gkIRWacKxU37Fj7WZYakY4nZYGiaIxJgEe076hAodUuVl+7hSdGmWE/EiaEhrl6u+JDIdKpaFnOkOsJ2rZm4n/ef1E+1duxkScaCrIfJGfcKQjNPsdjZikRPPUEEwkM7ciMsESE20SKpkQnOWXV0mnXnMatYv7RrVZmacBRTiBCpyBA5fQhDtoQRsIBPAEL/Bqxdaz9Wa9z1sL1mLmGP7A+vgBs2SP2g==</latexit>

1;�2nk�1

<latexit sha1_base64="qy4J6DEucJLlPdIzTMPRXIkwbo0=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CS2Cl5bdUlHwYMGLxwq2FrZLyaZpG5pNliQrlKU/w4sHRbz6a7z5L/wJptsetPXBwOO9GWbmhTFn2rjul5NbW9/Y3MpvF3Z29/YPiodHbS0TRWiLSC5VJ8SaciZoyzDDaSdWFEchpw/h+GbmPzxSpZkU92YS0yDCQ8EGjGBjJd+7qtRELx1XvGmvWHarbga0SrwFKV9/Q4Zmr/jZ7UuSRFQYwrHWvufGJkixMoxwOi10E01jTMZ4SH1LBY6oDtLs5Ck6tUofDaSyJQzK1N8TKY60nkSh7YywGellbyb+5/mJGVwGKRNxYqgg80WDhCMj0ex/1GeKEsMnlmCimL0VkRFWmBibUsGG4C2/vEratapXr57f1cuN0jwNyMMJlOAMPLiABtxCE1pAQMITvMCrY5xn5815n7fmnMXMMfyB8/EDV82RWA==</latexit>

0;�2nk

<latexit sha1_base64="LsySa52yODIZ3WVvMLQcbIS+O2k=">AAAB8HicbVDLSgNBEOz1GeMr6tHLkCB4MeyGiIIHA148RjAPSZYwO5lNhszMLjOzQljyFV48KOLVz/HmX/gJTjY5aGJBQ1HVTXdXEHOmjet+OSura+sbm7mt/PbO7t5+4eCwqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywupn6rUeqNIvkvRnH1Bd4IFnICDZWenCvziqyl44mvULJLbsZ0DLx5qR0/Q0Z6r3CZ7cfkURQaQjHWnc8NzZ+ipVhhNNJvptoGmMywgPasVRiQbWfZgdP0IlV+iiMlC1pUKb+nkix0HosAtspsBnqRW8q/ud1EhNe+imTcWKoJLNFYcKRidD0e9RnihLDx5Zgopi9FZEhVpgYm1HehuAtvrxMmpWyVy2f31VLteIsDcjBMRThFDy4gBrcQh0aQEDAE7zAq6OcZ+fNeZ+1rjjzmSP4A+fjB3hJkOU=</latexit>

0;�2nk�1

<latexit sha1_base64="iu76VRrF89Bp+g91TujkDywTl+w=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CS2Cl5bdUlHwYMGLxwq2FrZLyaZpG5pNliQrlKU/w4sHRbz6a7z5L/wJptsetPXBwOO9GWbmhTFn2rjul5NbW9/Y3MpvF3Z29/YPiodHbS0TRWiLSC5VJ8SaciZoyzDDaSdWFEchpw/h+GbmPzxSpZkU92YS0yDCQ8EGjGBjJd+9qtRELx1XvGmvWHarbga0SrwFKV9/Q4Zmr/jZ7UuSRFQYwrHWvufGJkixMoxwOi10E01jTMZ4SH1LBY6oDtLs5Ck6tUofDaSyJQzK1N8TKY60nkSh7YywGellbyb+5/mJGVwGKRNxYqgg80WDhCMj0ex/1GeKEsMnlmCimL0VkRFWmBibUsGG4C2/vEratapXr57f1cuN0jwNyMMJlOAMPLiABtxCE1pAQMITvMCrY5xn5815n7fmnMXMMfyB8/EDVj+RVw==</latexit>

0;�2n1

<latexit sha1_base64="n6akaEcwWKHNPxNfqc17YofQI6E=">AAAB8HicbVDLSgNBEOz1GeMr6tHLkCB4MeyGiIIHA148RjAPSZYwO5lNhszMLjOzQljyFV48KOLVz/HmX/gJTjY5aGJBQ1HVTXdXEHOmjet+OSura+sbm7mt/PbO7t5+4eCwqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywupn6rUeqNIvkvRnH1Bd4IFnICDZWenCvziqyl3qTXqHklt0MaJl4c1K6/oYM9V7hs9uPSCKoNIRjrTueGxs/xcowwukk3000jTEZ4QHtWCqxoNpPs4Mn6MQqfRRGypY0KFN/T6RYaD0Wge0U2Az1ojcV//M6iQkv/ZTJODFUktmiMOHIRGj6PeozRYnhY0swUczeisgQK0yMzShvQ/AWX14mzUrZq5bP76qlWnGWBuTgGIpwCh5cQA1uoQ4NICDgCV7g1VHOs/PmvM9aV5z5zBH8gfPxAyAnkKs=</latexit>

0;�2n2

<latexit sha1_base64="4Z4PAl9LBjFGc03KWcYtpR8JGZE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLkCB4MeyGiIIHA148RjAPSZYwO5lNhszMLjOzQljyFV48KOLVz/HmX/gJTjY5aGJBQ1HVTXdXEHOmjet+OSura+sbm7mt/PbO7t5+4eCwqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywupn6rUeqNIvkvRnH1Bd4IFnICDZWenCvziqyl1YmvULJLbsZ0DLx5qR0/Q0Z6r3CZ7cfkURQaQjHWnc8NzZ+ipVhhNNJvptoGmMywgPasVRiQbWfZgdP0IlV+iiMlC1pUKb+nkix0HosAtspsBnqRW8q/ud1EhNe+imTcWKoJLNFYcKRidD0e9RnihLDx5Zgopi9FZEhVpgYm1HehuAtvrxMmpWyVy2f31VLteIsDcjBMRThFDy4gBrcQh0aQEDAE7zAq6OcZ+fNeZ+1rjjzmSP4A+fjByGskKw=</latexit>

. . . 

. . . 

. . . 

0; 0

<latexit sha1_base64="CO0rEbhz08wyXVF/TaHTrnZ9H5s=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRcGDAS8eI5oHJEuYncwmQ2Znl5leIYR8ghcPinj1i7z5F36Ck00OmljQUFR1090VJFIYdN0vJ7eyura+kd8sbG3v7O4V9w8aJk4143UWy1i3Amq4FIrXUaDkrURzGgWSN4PhzdRvPnJtRKwecJRwP6J9JULBKFrp3r1yu8WyW3EzkGXizUn5+hsy1LrFz04vZmnEFTJJjWl7boL+mGoUTPJJoZManlA2pH3etlTRiBt/nJ06IcdW6ZEw1rYUkkz9PTGmkTGjKLCdEcWBWfSm4n9eO8Xw0h8LlaTIFZstClNJMCbTv0lPaM5QjiyhTAt7K2EDqilDm07BhuAtvrxMGqcV76xyfndWrpZmaUAejqAEJ+DBBVThFmpQBwZ9eIIXeHWk8+y8Oe+z1pwznzmEP3A+fgD5tI5K</latexit>

1; 0

<latexit sha1_base64="hrkjCJ+PHhY2MwYoYsnQbOPjl+c=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRcGDAS8eI5oHJEuYncwmQ2Znl5leIYR8ghcPinj1i7z5F36Ck00OmljQUFR1090VJFIYdN0vJ7eyura+kd8sbG3v7O4V9w8aJk4143UWy1i3Amq4FIrXUaDkrURzGgWSN4PhzdRvPnJtRKwecJRwP6J9JULBKFrp3rtyu8WyW3EzkGXizUn5+hsy1LrFz04vZmnEFTJJjWl7boL+mGoUTPJJoZManlA2pH3etlTRiBt/nJ06IcdW6ZEw1rYUkkz9PTGmkTGjKLCdEcWBWfSm4n9eO8Xw0h8LlaTIFZstClNJMCbTv0lPaM5QjiyhTAt7K2EDqilDm07BhuAtvrxMGqcV76xyfndWrpZmaUAejqAEJ+DBBVThFmpQBwZ9eIIXeHWk8+y8Oe+z1pwznzmEP3A+fgD7Oo5L</latexit>

";�(N + 1)

<latexit sha1_base64="3z4umVuxIrszwh6mZdPWV/P0/cI=">AAAB/HicbVDLSgNBEOyNrxhfqzl6GRKEiBh2JaLgwYAXTxLBPCAJYXYySYbMzi4zs4ElxF/x4kERr36IN//CT3CyyUETCxqKqm66u7yQM6Ud58tKrayurW+kNzNb2zu7e/b+QU0FkSS0SgIeyIaHFeVM0KpmmtNGKCn2PU7r3vBm6tdHVCoWiAcdh7Tt475gPUawNlLHzrZGWNJQMR6IK3RauDtxjzt23ik6CdAyceckf/0NCSod+7PVDUjkU6EJx0o1XSfU7TGWmhFOJ5lWpGiIyRD3adNQgX2q2uPk+Ak6MkoX9QJpSmiUqL8nxthXKvY90+ljPVCL3lT8z2tGunfZHjMRRpoKMlvUizjSAZomgbpMUqJ5bAgmkplbERlgiYk2eWVMCO7iy8ukdlZ0S8Xz+1K+nJulAWk4hBwUwIULKMMtVKAKBGJ4ghd4tR6tZ+vNep+1pqz5TBb+wPr4AWMRlKI=</latexit>

";�(N + 1)

<latexit sha1_base64="3z4umVuxIrszwh6mZdPWV/P0/cI=">AAAB/HicbVDLSgNBEOyNrxhfqzl6GRKEiBh2JaLgwYAXTxLBPCAJYXYySYbMzi4zs4ElxF/x4kERr36IN//CT3CyyUETCxqKqm66u7yQM6Ud58tKrayurW+kNzNb2zu7e/b+QU0FkSS0SgIeyIaHFeVM0KpmmtNGKCn2PU7r3vBm6tdHVCoWiAcdh7Tt475gPUawNlLHzrZGWNJQMR6IK3RauDtxjzt23ik6CdAyceckf/0NCSod+7PVDUjkU6EJx0o1XSfU7TGWmhFOJ5lWpGiIyRD3adNQgX2q2uPk+Ak6MkoX9QJpSmiUqL8nxthXKvY90+ljPVCL3lT8z2tGunfZHjMRRpoKMlvUizjSAZomgbpMUqJ5bAgmkplbERlgiYk2eWVMCO7iy8ukdlZ0S8Xz+1K+nJulAWk4hBwUwIULKMMtVKAKBGJ4ghd4tR6tZ+vNep+1pqz5TBb+wPr4AWMRlKI=</latexit>

"; 2N

<latexit sha1_base64="3+WSuQRYIBKHahToy/gtJWuJHVk=">AAAB+HicbVDLSsNAFL3xWeujUZduhhbBVUlKRcGFBTeupIJ9QBvKZDpph04mYWZSqKFf4saFIm79FHf+hZ/gNO1CWw9cOJxzL/fe48ecKe04X9ba+sbm1nZuJ7+7t39QsA+PmipKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryRzczvzWmUrFIPOhJTL0QDwQLGMHaSD270B1jSWPFeCSuUOWuZ5ecspMBrRJ3QUrX35Ch3rM/u/2IJCEVmnCsVMd1Yu2lWGpGOJ3mu4miMSYjPKAdQwUOqfLS7PApOjVKHwWRNCU0ytTfEykOlZqEvukMsR6qZW8m/ud1Eh1ceikTcaKpIPNFQcKRjtAsBdRnkhLNJ4ZgIpm5FZEhlphok1XehOAuv7xKmpWyWy2f31dLteI8DcjBCRThDFy4gBrcQh0aQCCBJ3iBV+vRerberPd565q1mDmGP7A+fgC5I5PS</latexit>

"; 0

<latexit sha1_base64="jCzbFnmDd3CYfSr3YQGTCRGAzmY=">AAAB9XicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRcGDAS8eI5gHJGuYncwmQ2ZnlpnZSFjyH148KOLVf/HmX/gJTjY5aGJBQ1HVTXdXEHOmjet+ObmV1bX1jfxmYWt7Z3evuH/Q0DJRhNaJ5FK1AqwpZ4LWDTOctmJFcRRw2gyGN1O/OaJKMynuzTimfoT7goWMYGOlh84IKxprxqW4Qm63WHYrbga0TLw5KV9/Q4Zat/jZ6UmSRFQYwrHWbc+NjZ9iZRjhdFLoJJrGmAxxn7YtFTii2k+zqyfo2Co9FEplSxiUqb8nUhxpPY4C2xlhM9CL3lT8z2snJrz0UybixFBBZovChCMj0TQC1GOKEsPHlmCimL0VkQFWmBgbVMGG4C2+vEwapxXvrHJ+d1aulmZpQB6OoAQn4MEFVOEWalAHAgqe4AVenUfn2Xlz3metOWc+cwh/4Hz8AJ31k0c=</latexit>

"; 0

<latexit sha1_base64="jCzbFnmDd3CYfSr3YQGTCRGAzmY=">AAAB9XicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRcGDAS8eI5gHJGuYncwmQ2ZnlpnZSFjyH148KOLVf/HmX/gJTjY5aGJBQ1HVTXdXEHOmjet+ObmV1bX1jfxmYWt7Z3evuH/Q0DJRhNaJ5FK1AqwpZ4LWDTOctmJFcRRw2gyGN1O/OaJKMynuzTimfoT7goWMYGOlh84IKxprxqW4Qm63WHYrbga0TLw5KV9/Q4Zat/jZ6UmSRFQYwrHWbc+NjZ9iZRjhdFLoJJrGmAxxn7YtFTii2k+zqyfo2Co9FEplSxiUqb8nUhxpPY4C2xlhM9CL3lT8z2snJrz0UybixFBBZovChCMj0TQC1GOKEsPHlmCimL0VkQFWmBgbVMGG4C2+vEwapxXvrHJ+d1aulmZpQB6OoAQn4MEFVOEWalAHAgqe4AVenUfn2Xlz3metOWc+cwh/4Hz8AJ31k0c=</latexit>

"; 0

<latexit sha1_base64="jCzbFnmDd3CYfSr3YQGTCRGAzmY=">AAAB9XicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRcGDAS8eI5gHJGuYncwmQ2ZnlpnZSFjyH148KOLVf/HmX/gJTjY5aGJBQ1HVTXdXEHOmjet+ObmV1bX1jfxmYWt7Z3evuH/Q0DJRhNaJ5FK1AqwpZ4LWDTOctmJFcRRw2gyGN1O/OaJKMynuzTimfoT7goWMYGOlh84IKxprxqW4Qm63WHYrbga0TLw5KV9/Q4Zat/jZ6UmSRFQYwrHWbc+NjZ9iZRjhdFLoJJrGmAxxn7YtFTii2k+zqyfo2Co9FEplSxiUqb8nUhxpPY4C2xlhM9CL3lT8z2snJrz0UybixFBBZovChCMj0TQC1GOKEsPHlmCimL0VkQFWmBgbVMGG4C2+vEwapxXvrHJ+d1aulmZpQB6OoAQn4MEFVOEWalAHAgqe4AVenUfn2Xlz3metOWc+cwh/4Hz8AJ31k0c=</latexit>

q0

<latexit sha1_base64="T71cGC7FMJuzm/8YZz3SVMVkNFQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRW8GvHiMaB6QLGF20psMmZ1dZ2aFEPIJXjwo4tUv8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB66jcfUWkey3szStCPaF/ykDNqrHT30HW7xbJbcTOQZeLNSfnqGzLUusXPTi9maYTSMEG1bntuYvwxVYYzgZNCJ9WYUDakfWxbKmmE2h9np07IsVV6JIyVLWlIpv6eGNNI61EU2M6ImoFe9Kbif147NeGlP+YySQ1KNlsUpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdAo2BG/x5WXSOK14Z5Xz27NytTRLA/JwBCU4AQ8uoAo3UIM6MOjDE7zAqyOcZ+fNeZ+15pz5zCH8gfPxA5N9jq8=</latexit>

q1

<latexit sha1_base64="nbSaNoBep3L/f9T4/9P6/jcE6cg=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRW8GvHiMaB6QLGF20psMmZ1dZ2aFEPIJXjwo4tUv8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB66jcfUWkey3szStCPaF/ykDNqrHT30PW6xbJbcTOQZeLNSfnqGzLUusXPTi9maYTSMEG1bntuYvwxVYYzgZNCJ9WYUDakfWxbKmmE2h9np07IsVV6JIyVLWlIpv6eGNNI61EU2M6ImoFe9Kbif147NeGlP+YySQ1KNlsUpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdAo2BG/x5WXSOK14Z5Xz27NytTRLA/JwBCU4AQ8uoAo3UIM6MOjDE7zAqyOcZ+fNeZ+15pz5zCH8gfPxA5UBjrA=</latexit>

qk

<latexit sha1_base64="Myp00d3rlXSksMIgokziW9AA7pY=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRW8GvHiMaB6QLGF20kmGzM6uM7NCWPIJXjwo4tUv8uZf+AlONjloYkFDUdVNd1cQC66N6345uZXVtfWN/GZha3tnd6+4f9DQUaIY1lkkItUKqEbBJdYNNwJbsUIaBgKbweh66jcfUWkeyXszjtEP6UDyPmfUWOnuoTvqFstuxc1Alok3J+Wrb8hQ6xY/O72IJSFKwwTVuu25sfFTqgxnAieFTqIxpmxEB9i2VNIQtZ9mp07IsVV6pB8pW9KQTP09kdJQ63EY2M6QmqFe9Kbif147Mf1LP+UyTgxKNlvUTwQxEZn+TXpcITNibAllittbCRtSRZmx6RRsCN7iy8ukcVrxzirnt2flammWBuThCEpwAh5cQBVuoAZ1YDCAJ3iBV0c4z86b8z5rzTnzmUP4A+fjB+zpjuo=</latexit>

qk�1

<latexit sha1_base64="xIRVD5VE2a6QR5fU1M6EOb6F4FA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLkCB4MexKRG8GvHiMYB6QLGF2MpsMOzuzzswKYclHePGgiFe/x5t/4Sc42eSgiQUNRVU33V1Bwpk2rvvlrKyurW9sFraK2zu7e/ulg8OWlqkitEkkl6oTYE05E7RpmOG0kyiK44DTdhDdTP32I1WaSXFvxgn1YzwULGQEGyu1H/pZdOZN+qWKW3VzoGXizUnl+htyNPqlz95AkjSmwhCOte56bmL8DCvDCKeTYi/VNMEkwkPatVTgmGo/y8+doBOrDFAolS1hUK7+nshwrPU4DmxnjM1IL3pT8T+vm5rwys+YSFJDBZktClOOjETT39GAKUoMH1uCiWL2VkRGWGFibEJFG4K3+PIyaZ1XvVr14q5WqZdnaUABjqEMp+DBJdThFhrQBAIRPMELvDqJ8+y8Oe+z1hVnPnMEf+B8/ACOEpBo</latexit>

qk+1

<latexit sha1_base64="z8IMG3ye5zbJoURyKes+jDTMspY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLkCAIQtiViN4MePEYwTwgWcLsZDYZdnZmnZkVwpKP8OJBEa9+jzf/wk9wsslBEwsaiqpuuruChDNtXPfLWVldW9/YLGwVt3d29/ZLB4ctLVNFaJNILlUnwJpyJmjTMMNpJ1EUxwGn7SC6mfrtR6o0k+LejBPqx3goWMgINlZqP/Sz6Myb9EsVt+rmQMvEm5PK9TfkaPRLn72BJGlMhSEca9313MT4GVaGEU4nxV6qaYJJhIe0a6nAMdV+lp87QSdWGaBQKlvCoFz9PZHhWOtxHNjOGJuRXvSm4n9eNzXhlZ8xkaSGCjJbFKYcGYmmv6MBU5QYPrYEE8XsrYiMsMLE2ISKNgRv8eVl0jqverXqxV2tUi/P0oACHEMZTsGDS6jDLTSgCQQieIIXeHUS59l5c95nrSvOfOYI/sD5+AGLBpBm</latexit>

s

<latexit sha1_base64="JYtuRgDefPxjK9YY9xVOlQK27mU=">AAAB6HicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRW8GvHhMwDwgWcLspJOMmZ1dZmaFsOQLvHhQxKuf5M2/8BOcbHLQxIKGoqqb7q4gFlwb1/1ycmvrG5tb+e3Czu7e/kHx8Kipo0QxbLBIRKodUI2CS2wYbgS2Y4U0DAS2gvHtzG89otI8kvdmEqMf0qHkA86osVJd94plt+JmIKvEW5DyzTdkqPWKn91+xJIQpWGCat3x3Nj4KVWGM4HTQjfRGFM2pkPsWCppiNpPs0On5NQqfTKIlC1pSKb+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJZsvGiSCmIjMviZ9rpAZMbGEMsXtrYSNqKLM2GwKNgRv+eVV0jyveBeVy/pFuVqapwF5OIESnIEHV1CFO6hBAxggPMELvDoPzrPz5rzPW3POYuYY/sD5+AFyr44O</latexit>

p

<latexit sha1_base64="IvXqe1AT4wUkieit7QcxIUI6YEM=">AAAB6HicbVDLSgNBEOyNrxhfUY9ehgTBU9gVRW8GvHhMwDwgWcLspJOMmZ1dZmaFsOQLvHhQxKuf5M2/8BOcbHLQxIKGoqqb7q4gFlwb1/1ycmvrG5tb+e3Czu7e/kHx8Kipo0QxbLBIRKodUI2CS2wYbgS2Y4U0DAS2gvHtzG89otI8kvdmEqMf0qHkA86osVI97hXLbsXNQFaJtyDlm2/IUOsVP7v9iCUhSsME1brjubHxU6oMZwKnhW6iMaZsTIfYsVTSELWfZodOyalV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdkUbAje8surpHle8S4ql/WLcrU0TwPycAIlOAMPrqAKd1CDBjBAeIIXeHUenGfnzXmft+acxcwx/IHz8QNuI44L</latexit>

r0

<latexit sha1_base64="8dpjYk8zW2lefcyT+P3qoQNGxt0=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9iViN4MePEY0TwgWcLspJMMmZ1dZmaFsOQTvHhQxKtf5M2/8BOcbHLQxIKGoqqb7q4gFlwb1/1ycmvrG5tb+e3Czu7e/kHx8Kipo0QxbLBIRKodUI2CS2wYbgS2Y4U0DAS2gvHNzG89otI8kg9mEqMf0qHkA86osdK96rm9YtmtuBnIKvEWpHz9DRnqveJntx+xJERpmKBadzw3Nn5KleFM4LTQTTTGlI3pEDuWShqi9tPs1Ck5tUqfDCJlSxqSqb8nUhpqPQkD2xlSM9LL3kz8z+skZnDlp1zGiUHJ5osGiSAmIrO/SZ8rZEZMLKFMcXsrYSOqKDM2nYINwVt+eZU0zytetXJxVy3XSvM0IA8nUIIz8OASanALdWgAgyE8wQu8OsJ5dt6c93lrzlnMHMMfOB8/lQOOsA==</latexit>

r1

<latexit sha1_base64="HCA9Cj/OWwYH8mhXu5i0dEBeSVw=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9iViN4MePEY0TwgWcLspJMMmZ1dZmaFsOQTvHhQxKtf5M2/8BOcbHLQxIKGoqqb7q4gFlwb1/1ycmvrG5tb+e3Czu7e/kHx8Kipo0QxbLBIRKodUI2CS2wYbgS2Y4U0DAS2gvHNzG89otI8kg9mEqMf0qHkA86osdK96nm9YtmtuBnIKvEWpHz9DRnqveJntx+xJERpmKBadzw3Nn5KleFM4LTQTTTGlI3pEDuWShqi9tPs1Ck5tUqfDCJlSxqSqb8nUhpqPQkD2xlSM9LL3kz8z+skZnDlp1zGiUHJ5osGiSAmIrO/SZ8rZEZMLKFMcXsrYSOqKDM2nYINwVt+eZU0zytetXJxVy3XSvM0IA8nUIIz8OASanALdWgAgyE8wQu8OsJ5dt6c93lrzlnMHMMfOB8/loeOsQ==</latexit>

rk

<latexit sha1_base64="NtmkvP2V9s3XqkXpkzScpRonPlA=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9iViN4MePEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/8BOcbHLQxIKGoqqb7q4gkcKg6345ubX1jc2t/HZhZ3dv/6B4eNQ0caoZb7BYxrodUMOlULyBAiVvJ5rTKJC8FYxuZn7rkWsjYvWA44T7ER0oEQpG0Ur3ujfqFctuxc1AVom3IOXrb8hQ7xU/u/2YpRFXyCQ1puO5CfoTqlEwyaeFbmp4QtmIDnjHUkUjbvxJduqUnFqlT8JY21JIMvX3xIRGxoyjwHZGFIdm2ZuJ/3mdFMMrfyJUkiJXbL4oTCXBmMz+Jn2hOUM5toQyLeythA2ppgxtOgUbgrf88ippnle8auXirlquleZpQB5OoARn4MEl1OAW6tAABgN4ghd4daTz7Lw57/PWnLOYOYY/cD5+AO5vjus=</latexit>

rk�1

<latexit sha1_base64="pGGwM5Jw3ptiaI2stchnkBbkKtE=">AAAB7nicbVDLSgNBEOyJrxhfUY9ehgTBi2FXInoz4MVjBPOAZAmzk9lk2NnZZWZWCEs+wosHRbz6Pd78Cz/BySYHTSxoKKq66e7yE8G1cZwvVFhb39jcKm6Xdnb39g/Kh0dtHaeKshaNRay6PtFMcMlahhvBuoliJPIF6/jh7czvPDKleSwfzCRhXkRGkgecEmOljhpk4bk7HZSrTs3JgVeJuyDVm2/I0RyUP/vDmKYRk4YKonXPdRLjZUQZTgWblvqpZgmhIRmxnqWSREx7WX7uFJ9aZYiDWNmSBufq74mMRFpPIt92RsSM9bI3E//zeqkJrr2MyyQ1TNL5oiAV2MR49jsecsWoERNLCFXc3orpmChCjU2oZENwl19eJe2LmluvXd7Xq43KPA0owglU4AxcuIIG3EETWkAhhCd4gVeUoGf0ht7nrQW0mDmGP0AfP4+ckGk=</latexit>

s0

<latexit sha1_base64="bHKqOIz7EOWrcxD93r9Qs2h6iCE=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9iViN4MePEY0TwgWcLspJMMmZ1dZmaFsOQTvHhQxKtf5M2/8BOcbHLQxIKGoqqb7q4gFlwb1/1ycmvrG5tb+e3Czu7e/kHx8Kipo0QxbLBIRKodUI2CS2wYbgS2Y4U0DAS2gvHNzG89otI8kg9mEqMf0qHkA86osdK97rm9YtmtuBnIKvEWpHz9DRnqveJntx+xJERpmKBadzw3Nn5KleFM4LTQTTTGlI3pEDuWShqi9tPs1Ck5tUqfDCJlSxqSqb8nUhpqPQkD2xlSM9LL3kz8z+skZnDlp1zGiUHJ5osGiSAmIrO/SZ8rZEZMLKFMcXsrYSOqKDM2nYINwVt+eZU0zytetXJxVy3XSvM0IA8nUIIz8OASanALdWgAgyE8wQu8OsJ5dt6c93lrzlnMHMMfOB8/lomOsQ==</latexit>

s1

<latexit sha1_base64="bLMLtYsyOV5zR2NcIxRTx5wrevw=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9iViN4MePEY0TwgWcLspJMMmZ1dZmaFsOQTvHhQxKtf5M2/8BOcbHLQxIKGoqqb7q4gFlwb1/1ycmvrG5tb+e3Czu7e/kHx8Kipo0QxbLBIRKodUI2CS2wYbgS2Y4U0DAS2gvHNzG89otI8kg9mEqMf0qHkA86osdK97nm9YtmtuBnIKvEWpHz9DRnqveJntx+xJERpmKBadzw3Nn5KleFM4LTQTTTGlI3pEDuWShqi9tPs1Ck5tUqfDCJlSxqSqb8nUhpqPQkD2xlSM9LL3kz8z+skZnDlp1zGiUHJ5osGiSAmIrO/SZ8rZEZMLKFMcXsrYSOqKDM2nYINwVt+eZU0zytetXJxVy3XSvM0IA8nUIIz8OASanALdWgAgyE8wQu8OsJ5dt6c93lrzlnMHMMfOB8/mA2Osg==</latexit>

sk

<latexit sha1_base64="k5R7zASXHOzWpKFyNGQgqiEWtgo=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgTBU9iViN4MePEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/8BOcbHLQxIKGoqqb7q4gkcKg6345ubX1jc2t/HZhZ3dv/6B4eNQ0caoZb7BYxrodUMOlULyBAiVvJ5rTKJC8FYxuZn7rkWsjYvWA44T7ER0oEQpG0Ur3pjfqFctuxc1AVom3IOXrb8hQ7xU/u/2YpRFXyCQ1puO5CfoTqlEwyaeFbmp4QtmIDnjHUkUjbvxJduqUnFqlT8JY21JIMvX3xIRGxoyjwHZGFIdm2ZuJ/3mdFMMrfyJUkiJXbL4oTCXBmMz+Jn2hOUM5toQyLeythA2ppgxtOgUbgrf88ippnle8auXirlquleZpQB5OoARn4MEl1OAW6tAABgN4ghd4daTz7Lw57/PWnLOYOYY/cD5+AO/1juw=</latexit>

sk�1

<latexit sha1_base64="dFyp0PtpN+2YF0v/Y+ZGJNzibZM=">AAAB7nicbVDLSgNBEOyJrxhfUY9ehgTBi2FXInoz4MVjBPOAZAmzk9lk2NnZZWZWCEs+wosHRbz6Pd78Cz/BySYHTSxoKKq66e7yE8G1cZwvVFhb39jcKm6Xdnb39g/Kh0dtHaeKshaNRay6PtFMcMlahhvBuoliJPIF6/jh7czvPDKleSwfzCRhXkRGkgecEmOljh5k4bk7HZSrTs3JgVeJuyDVm2/I0RyUP/vDmKYRk4YKonXPdRLjZUQZTgWblvqpZgmhIRmxnqWSREx7WX7uFJ9aZYiDWNmSBufq74mMRFpPIt92RsSM9bI3E//zeqkJrr2MyyQ1TNL5oiAV2MR49jsecsWoERNLCFXc3orpmChCjU2oZENwl19eJe2LmluvXd7Xq43KPA0owglU4AxcuIIG3EETWkAhhCd4gVeUoGf0ht7nrQW0mDmGP0AfP5EmkGo=</latexit>

p0

<latexit sha1_base64="4tYVji5hSOce3AkPo5qi04od0b8=">AAAB6XicbVDLSgNBEOz1GeMr6tHLkCB6CrsS0ZsBLx6jmAckS5idzCZDZmeXmV4hLPkDLx4U8eofefMv/AQnj4MmFjQUVd10dwWJFAZd98tZWV1b39jMbeW3d3b39gsHhw0Tp5rxOotlrFsBNVwKxesoUPJWojmNAsmbwfBm4jcfuTYiVg84Srgf0b4SoWAUrXSfnHYLJbfsTkGWiTcnpetvmKLWLXx2ejFLI66QSWpM23MT9DOqUTDJx/lOanhC2ZD2edtSRSNu/Gx66ZicWKVHwljbUkim6u+JjEbGjKLAdkYUB2bRm4j/ee0Uwys/EypJkSs2WxSmkmBMJm+TntCcoRxZQpkW9lbCBlRThjacvA3BW3x5mTTOy16lfHFXKVWLszQgB8dQhDPw4BKqcAs1qAODEJ7gBV6dofPsvDnvs9YVZz5zBH/gfPwAzpOOPA==</latexit>

Figure 1 Definition of VS . An arrow labelled “i; `” denotes a transition reading i with effect `.
Double circled states are final.

(iii) a transition from p to ⊥ reading ? with effect (−m,m−N);
(iv) a transition from every r ∈ QA \ {p} to qf reading ? with effect (0, 0);
(v) a transition from p to qf reading ? with effect (−k,−(N − k)) for every k 6= m;
(vi) a transition from every r ∈ QA to qf reading t ∈ Σ \ {?} if the t-labelled transition is

not outgoing from r;
(vii) a transition from every r ∈ QA to qf reading t ∈ Σ \ {?} with effect (0,−(N + `)− 1)

if the t-labelled transition is outgoing from r and has effect ` < 0;
(viii) 0̄-effect self-loops on qf , with all possible letters of Σ.
The correctness of the construction is in the Appendix. J

Finally, we show coNP-hardness for universality of one counter nets.

I Proposition 20 (Theorem 3(iv)). The universality problem for unambiguous 1-VASS is
coNP-hard.

Proof. We equivalently will show that non-universality problem for unambiguous 1-VASSes
is NP-hard. The reduction is from the Perfect Partition problem. In the Perfect
Partition problem we are given a finite set of natural numbers S = {n1, . . . , nk} ⊆fin N
and we are supposed to answer whether the set of indices [1, k] can be partitioned into two
subsets I1, I2 ⊆ [1, k] such that

∑
i∈I1

ni =
∑
i∈I2

ni. Such a partition is called a perfect
partition. All the numbers are binary represented. The Perfect Partition problem is
known to be NP-hard [5].

For an instance of a Perfect Partition problem S ⊆fin N we build an unambiguous
1-VASS VS such that perfect partition for S exists if and only if the 1-VASS is not universal.
Let

∑
i∈[1,k] ni = N , note that the perfect partition exists iff there is a set of indices I

such that
∑
i∈I ni = N/2. Every word of length k encodes a subset of S in the following

way: for w ∈ {0, 1}k we define Sw = {ni | w[i] = 1}. We will design VS in such a way that
L(VS) ⊆ {0, 1}∗ will always contain all the words of length different than k. Among words of
length k language L(VS) will contain exactly these for which

∑
n∈Sw

n 6= N/2. Then indeed
L(VS) would be not universal iff set S has a perfect partition.

The 1-VASS VS is defined in Figure 1. It consists of two parts: the top part, with states
q0 to qk+1 accepts all the words of length different than |S| = k, while the bottom part
accepts some words of length k.

It is immediate to see that the top part accepts all words of length different to k, and all
of them by exactly one run.

The bottom part consists of states: p, p′, r0, r1, . . . , rk and s0, s1, . . . , sk, where only
the state p′ is accepting. Notice that transitions in states ri are mirrored with respect to
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transitions in states si, namely effect of a transition over some letter from ri equals the effect
of the transition over the other letter in si. Let us inspect now how an accepting run over
w ∈ {0, 1}k can look like. Every such run starts from q0(0) and then goes to p(2N). Then it
splits into two runs, to r0(2N) and s0(2N) and from this moment on there are two runs: one
in some state ri and the other in the corresponding state si. Then after reading the whole w
the two runs are in configurations rk(2N − 2Sw) and sk(2N − 2(N −Sw)) = sk(2Sw). Notice
that 0 ≤ Sw ≤ N , so both configurations are indeed always reachable. Now comes the last
transition from either rk or sk to p′. Observe that if Sw 6= N/2 then exactly one of them
can be fired. Indeed if Sw 6= N/2 so 2Sw 6= N then exactly one of the numbers 2Sw and
2N − 2Sw equals at least N + 1. Then from exactly one of the configurations rk(2N − 2Sw)
and sk(2Sw) counter value N + 1 can be subtracted and the run over the word w will reach
an accepting configuration p′(c) for some c ≥ 0. Then we have w ∈ L(VS) and exactly one
accepting run over w. On the other hand assume now that Sw = N/2. Then the two reached
configurations are rk(N) and sk(N). In none of them counter value N + 1 can be subtracted,
which means that in that case no accepting run over w exists and w 6∈ L(VS). Therefore
indeed VS is unambiguous and importantly L(VS) is not universal iff there exists a perfect
partition for S. This finishes the proof. J

I Proposition 21 (Theorem 3(ii) lower bound). The universality problem for d-VASS with
unary encoding is NL-hard, for every d ≥ 1.

Proof. This already holds for UFA. J

5 Testing for Unambiguity

Here we will prove Theorem 4. As we will see, upper bounds follow from the emptiness
problem and lower bounds from adaptations of the reductions from the previous section.

5.1 Upper bounds

We will next prove the upper bound of Theorem 4(i), (ii) and (iii) namely:

I Proposition 22 (Theorem 4(i), (ii) and (iii) upper bound). The unambiguity checking
problem is:

(i) in ExpSpace for VASSes with binary encoding;
(ii) in NL for d-VASSes with unary encoding for any fixed d ∈ N;
(iii) in PSpace for d-VASSes with binary encoding for any fixed d ∈ N.

Proof. By Lemma 6 if a d-VASS with norm M and n states is ambiguous then there exists
two different runs of length at most AM,2d,2n2 accepting the same word. Number AM,2d,2n2 =
(4n4(M +1)2)(8d)2d−1 is doubly exponential wrt. the size of the VASS representation when M
is given in binary and d not fixed. For fixed d an M given in binary AM,2d,2n2 is exponential
wrt. the input and for fixed d andM given in unary it is polynomial wrt. the input. Therefore
the algorithm, which enumerates all the pairs of different runs of length up to AM,2d,2n2 and
checks whether some pair accepts the same word works in ExpSpace, NL and PSpace,
respectively, which finishes the proof. J
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5.2 Lower bounds
I Proposition 23 (Theorem 4(i) lower bound). The unambiguity checking problem for VASS
with unary encoding is ExpSpace-hard.

Proof. We reduce from the problem whether an unambiguous ε-VASS has an empty language,
which is ExpSpace-complete as mentioned in Lemma 2 (it is a consequence of Lipton’s
construction [6]). To an unambiguous ε-VASS we add one state accepting the empty word ε.
Then the constructed VASS is unambiguous iff the original one has empty language, which
finishes the ExpSpace-hardness proof. J

I Proposition 24 (Theorem 4(ii) lower bound). The unambiguity checking problem for d-VASS
with unary encoding is NL-hard.

Proof. This is already true for finite automata. J

I Proposition 25 (Theorem 4(iii) lower bound). The unambiguity checking problem for
2-VASS is PSpace-hard.

Proof. This is a corollary of the construction in the proof of Proposition 19. One can adapt
the automaton by now having ⊥ as sole accepting state, and all other states as non-accepting,
and adding a transition (⊥, ε, (0, 0),⊥), in such a way that B is unambiguous if, and only if,
there is no run that reaches ⊥. J

I Proposition 26 (Theorem 4(iv)). The unambiguity checking problem for 1-VASS is coNP-
hard.

Proof. A construction very similar to the one used to show coNP-hardness of universality
(Proposition 20) can be used to show that unambiguity checking for 1-VASS is coNP-hard.
If instead of transitions rk

ε;−(N+1)−−−−−−→ p′ and sk
ε;−(N+1)−−−−−−→ p′ we have transitions rk

ε;−N−−−→ p′

and sk
ε;−N−−−→ p′, then VS is ambiguous if and only if there is a perfect partition for S. This

shows that ambiguity checking is NP-hard and unambiguity checking is coNP-hard. J

6 Discussion

We leave open the question about the exact complexity of universality problem for unam-
biguous 1-VASS with transitions represented in binary, which we showed to be PSpace-easy
and coNP-hard. We conjecture that it is coNP-complete. Another question that we leave
open is the complexity of the universality problem for VASS without ε-transitions; our
ExpSpace-hardness of Proposition 17 crucially uses ε-transitions, and it is not clear whether
it can be adapted to avoid them. An open question related to the gap of Theorem 3(ii) is
the one about the precise complexity of the universality problem for unambiguous finite
automata, which is NL-hard and only known to be in NC2 [13].

While we have focused our study on the universality and unambiguity checking problems
for unambiguous VASS, we point out that there are many intriguing unanswered problems
on unambiguous systems. In particular, closely related to the universality problem are:
co-finiteness, equivalence and inclusion problems. It is natural to ask about the decidability
and complexity of the problem for most fundamental models of computation: finite automata,
one counter nets, VASS or even pushdown automata (PDA) under the assumption of
unambiguity. We give some examples. While equivalence of VASS languages is undecidable,
is it be decidable for unambiguous VASS? Language equivalence is undecidable for PDA and
decidable for deterministic PDA (by the celebrated result of Sénizergues [11]), but might it
still be decidable for unambiguous PDA? And what about universality?
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A Missing proofs

Proof of Proposition 1. Let C = 2n2(M + 1)2. We proceed by induction on d. For d = 1
assume there is some accepting run with no configuration repeating. Then in its prefix of
length nM there is definitely first a configuration q(x) and later a configuration q(ȳ) for some
state q and counter values x < y. Then we can change this accepting run into an accepting
run of length at most nM + (nM)2 +n−1. We first pump the infix from q(x) do q(y) exactly
nM times obtaining then a configuration q(z) with z = y + nM(y − x) ≥ nM . As some
accepting state is reachable from q then it is also reachable by a run of length smaller than
n. This run (and any of its prefixes) can, at worst, have a negative effect of value (n− 1)M ,
and thus it can be triggered from q(z), since z ≥ nM . In this way, we get an accepting run
of length at most nM + (nM)2 + n− 1 ≤ C, proving the base case.

For the inductive step, assume that there is an accepting run s(0̄) ρ−→ f(v̄) in a (d+1)-VASS
with norm M and n states. Let Kd = C(4d)d−1 . We distinguish two cases:

(i) the norm of every configuration on ρ is bounded by C ·Kd;
(ii) the norm of some configuration on ρ exceeds C ·Kd.

Without loss of generality we can assume that no configuration on ρ appears more than once,
otherwise we can “unpump” ρ to obtain a shorter one. Observe that in the first case (i), the
length of ρ is bounded by D = (C ·Kd)d+1 (we will bound D later on).
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In second case (ii), the run ρ might be long, but we will show that there is another short
accepting run ρ′. Let p(ū) be the first configuration on ρ with norm exceeding C ·Kd. Let
s(0̄) ρ1−→ p(ū) ρ2−→ f(v̄). Clearly, the length of ρ1 is bounded by D by a similar reasoning as
in the case (i). We will replace ρ2 with a “short” run π, so that c π−→ f(v̄′). First note that
some coordinate of p(ū) must have value greater or equal to C ·Kd; without loss of generality,
assume it is the last one, that is, the (d + 1)-st coordinate. Let us now ignore the last
coordinate in the VASS. By inductive hypothesis, there is a sequence of transitions π of length
at most Kd such that p(ūd)

πd−→ f(v̄′d), where πd is the result of ignoring the last coordinate
of π, and ūd, v̄d ∈ Nd are the results of ignoring the last coordinate of ū, v̄. Consider now the
sequence of transitions π starting in p(ū). Its length is bounded by Kd, so its effect on the
(d+ 1)-st coordinate is not smaller than −M ·Kd. Since ū[d+ 1] ≥ C ·Kd ≥M ·Kd, then
π is indeed a valid run from p(ū) to f(v̄′) for some v̄′ ∈ Nd+1. Therefore, the run ρ1 · π is
accepting from s(0̄) as s(0̄) ρ1−→ p(ū) π−→ f(v̄′). Length of ρ1 · π is at most D +Kd.

In order to finish the argument in case (ii) we need to show that D+Kd ≤ Kd+1, through
the following sequence of (very rough) estimations

D +Kd ≤ 2D ≤ C ·D = C · (C ·Kd)d+1 = C ·
(
(C · C(4d)d−1

)d+1

= C((4d)d−1+1)(d+1)+1 ≤ C4(4d)d−1·(d+1) ≤ C(4(d+1))d

= Kd+1.

Observe that in case (i), the bound D ≤ Kd+1 is trivial. J

Proof of Proposition 19 (correctness). Observe first that, by construction, all configura-
tions c of B reachable from q0(0, 0) are N -bounded. Further, if the state of c is from QA,
then the sum of its components is equal to N .

We show that B is unambiguous. What is more, we will show that for every configuration
r(ū0) reachable from q0(0, 0) and for every letter a ∈ Σ there is at most one outgoing
transition from r reading a that can be applied to r(u0, u

′
0). By means of contradiction,

suppose that there are two distinct transitions (r, a, (u1, u
′
1), r1), (r, a, (u2, u

′
2), r2) ∈ δ such

that (u0, u
′
0)+(u1, u

′
1) ∈ N2 and (u0, u

′
0)+(u2, u

′
2) ∈ N2. By construction, the only possibility

is that one transition is a simulating transition as defined in (ii), and the other transition
is as defined in (vii). In particular, a must be a transition from δA, r, r1 are states from
QA, and r2 = qf . By the above observation, u0 + u′0 = N , and by construction (item (vii)),
u1 < 0 and u′2 = −(N +u1)− 1. Since u′0 +u′2 ≥ 0 by the hypothesis (u0, u

′
0) + (u2, u

′
2) ∈ N2,

we can replace u′2 with the equality u′2 = −(N + u1) − 1 just observed, and we obtain
u′0 − (N + u1)− 1 ≥ 0. Since we also know that u0 + u′0 = N by the observation above, we
can further replace u′0 with N − u0 in u′0 − (N + u1) − 1 ≥ 0, and we obtain u0 + u1 < 0.
Note that this contradicts the hypothesis (u0, u

′
0) + (u1, u

′
1) ∈ N2. The contradiction comes

from assuming that both transitions were possible to trigger.
We finally show that B is universal if, and only if, there is no N -bounded run from q(0) to

p(m) in A. Observe first that for every word w ∈ Σ∗ there is exactly one run of B reading w.
If there is an N -bounded run ρ from q(0) to p(m) in A, it follows that the run of B reading
ρ? ends in the sink state ⊥, and thus ρ? 6∈ L(B), witnessing the fact that B is not universal.
If, on the other hand, there is a run of B ending in state ⊥, it must be reading a word of
the form ρ? where ρ is an N -bounded run from q(0) to p(m) in A. Since ⊥ is the sole state
which is not accepting and since, as observed before, for all words there is a run, it follows
that if B is universal, then there is no N -bounded run in from q(0) to p(m) in A. J
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