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Abstract 

 

 

Several studies have investigated the differential vulnerability of hippocampal subfields during aging 

and Alzheimer’s disease (AD). Results were often contradictory, mainly because these works were 

based on concatenations of cross-sectional measures in cohorts with different ages or stages of AD, in 

the absence of a longitudinal design. Here, we investigated 327 participants from a population-based 

cohort of non-demented older adults with a 14-year clinical follow-up. MRI at baseline and 4 years later 

were assessed to measure the annualized rates of hippocampal subfields atrophy in each participant 

using an automatic segmentation pipeline with subsequent quality-control. In the one hand, CA4-dentate 

gyrus was significantly more affected than the other subfields in the whole population (CA1-3: -

0.68%/year; subiculum: -0.99%/year and CA4-DG: -1.39%/year; p<0.0001). In the other hand, the 

annualized rate of CA1-3 atrophy was associated with an increased risk of developing Alzheimer’s 

clinical syndrome over time, independently of age, gender, educational level and ApoE4 genotype 

(HR=2.0; IC95% 1.4-3.0). These results illustrate the natural history of hippocampal subfields atrophy 

during aging and AD by showing that the dentate gyrus is the most vulnerable subfield to the effects of 

aging while the cornu-ammonis is the primary target of AD pathophysiological processes, years prior to 

symptom onset. 
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Introduction 

 

The hippocampus is an archeocortical structure involved in cognitive functions such as memory and 

spatial learning. The hippocampal formation is made up of distinct subfields that include the subiculum, 

the cornu-ammonis (CA1-4) and the dentate gyrus. Although the hippocampus is non-specifically 

affected by almost all neurological and psychiatric disorders, its subfields can be differentially and 

selectively affected by different pathologies, including Alzheimer’s disease (AD) (Small et al., 2011), 

neurovascular damage (Li et al., 2016), temporal lobe epilepsy (Sone et al., 2016), multiple sclerosis 

(Planche et al., 2018), mood disorders (Cao et al., 2017), schizophrenia (Ho et al., 2017) or post-

traumatic stress disorder (Postel et al., 2019). Theoretically, the study of hippocampal focal vulnerability 

could explain this phenotypic diversity and might distinguish between various normal and pathological 

conditions.  

Hippocampal damage in patients with AD was first histologically described using post-mortem brains 

(Ball et al., 1985) and was subsequantly demonstrated in vivo using MRI. Such studies revealed strong 

correlations between MRI and histological data regarding hippocampal volume and neuronal counts 

(Bobinski et al., 2000). Therefore, hippocampal atrophy can be used as a biomarker of neuronal injury 

in AD and as information in support of diagnostic criteria (Scheltens et al., 1992; McKhann et al., 2011). 

However, as mentioned above, hippocampal atrophy is poorly specific of AD and is often present in 

patients with other causes of dementia such as frontotemporal lobar degeneration, vascular dementia 

and hippocampal sclerosis, as well as in healthy aging (Harper et al., 2014; Coupé et al., 2017). 

The first pathological studies to identify focal hippocampal damage in AD reported severe neuronal loss 

in the CA1 region (West et al., 1994). Consistent with these findings, the majority of neuroimaging 

studies investigating patients with AD have reported that regional atrophy is primarily located in CA1 

(De Flores et al, 2015). These findings seem consensual between studies using surface-based techniques 

(Csernansky et al., 2000; Chételat et al., 2008; Frisoni et al., 2008; Tang et al., 2014) but are more in 

contradiction with studies using proper volumetric analyses, in which diffuse atrophy of the 

hippocampus was observed (although usually more severe in CA1) (Mueller et al., 2010; Kerchner et 

al., 2013; La Joie et al., 2013). The idea of selective regional vulnerability in the hippocampus during 

healthy aging is even more controversial (see de Flores et al., 2015 for review). Interestingly, a recent 

MRI-histological correlation study demonstrated that the modification of hippocampal subfields shape 

during aging is associated with AD-related tau pathology, but not with amyloid beta or TDP-43 

pathologies (Hanko et al., 2019). It suggests that the monitoring of hippocampal subfields damage in 

elderly people could help clinicians distinguish between healthy aging, the early stages of AD, and other 

causes of neurodegenerative dementia. Furtheromre, as a biomarker of confined tauopathy, it is possible 

that the early detection of hippocampal subfields atrophy during aging could help to predict future AD.  
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The discrepancies between the MRI studies assessing hippocampal subfields integrity in aging and AD 

can be explained in several ways. First, many of them included small samples, with significant 

heterogeneity in terms of the subject’s sociodemographic and clinical characteristics. Second, these 

studies relied on cross-sectional MRI acquisition procedures that cannot properly measure individual 

occurences of atrophy, which is a dynamic process measured between two timepoints. Third, none of 

these studies conducted long-term longitudinal follow-ups of participants that would have allowed for 

the determination of individual cognitive trajectories to differentiate healthy aging from various 

neurodegenerative diseases properly. Fourth, most of these MRI studies employed surface-based mesh 

modelling techniques to study the shape of the hippocampus. However, measuring external surface 

modifications does not allow for a direct characterization of the inner alterations of a particular subfield 

(particularly the dentate gyrus), which would require volumetric measures (De Flores et al., 2015).  

Thus, the primary aim of the present study was to assess properly the natural history of hippocampal 

subfields vulnerability during healthy aging and in elderly people who will develop Alzheimer’s clinical 

syndrome over time. Additionally, we aimed at investigating whether the annualized rates of 

hippocampal subfields atrophy could predict an increased risk of Alzheimer’s clinical syndrome over 

time. For these purposes, a well-defined population-based cohort of older adults who underwent two 

MRI examinations at a 4-year interval and also completed a clinical follow-up period for up to 14 years 

was evaluated. This long-term clinical follow-up allowed to truly discriminate subjects developing AD 

pathology from subjects remaining free of dementia over time. 

 

 

Methods 

 

Participants 

The study participants were recruited from the Bordeaux subset of the Three-City (3C) study, which 

was a longitudinal population-based cohort designed to evaluate the risk factors of dementia (3C Study 

Group, 2003). During the 1999-2000 inclusion period, non-institutionalized individuals who were 65 

years of age and older were randomly selected from electoral lists and then followed-up prospectively 

for up to 14 years. Information regarding demographic characteristics and ApoE genotype was collected 

at baseline. Methods for genotyping the ApoE epsilon polymorphism have been described previously 

(Dufouil et al., 2005) and ApoE4 carrier was defined as the presence of at least one E4 allele. Of the 

initial cohort of participants with baseline MRI data (n=663), only non-demented participants with a 

MMSE>23, who agreed to have a second MRI 4 years later were included in the present hippocampal 

subfields analyses (n=364) (Fig. 1A and B). There were no significant differences in the baseline 
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demographic or neuropsychological characteristics between subjects who completed one MRI and those 

who completed two MRIs. All participants provided written informed consent to participate and the 

study protocol was approved by the ethics committee of Kremlin-Bicêtre University Hospital (Paris, 

France).  

 

Neuropsychological assessments and diagnosis of Alzheimer’s clinical syndrome 

During the 14-year follow-up period, neuropsychological assessments were administered by trained 

psychologists at baseline and after 2, 4, 7, 10, 12 and 14 years (Fig. 1A). At each follow-up visit, a 

diagnosis of dementia was pre-specified at home by the neuropsychologist and a clinical validation of 

the diagnosis was made at home by a neurologist or a geriatrician. A definitive diagnosis of dementia 

and diagnoses of possible or probable AD were ultimately made by a panel of independent neurologists 

based on the Diagnostic and Statistical Manual of Mental Disorders criteria (DSM-IV) and the National 

Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related 

Disorders Association criteria (McKhann et al., 2011). Cases of probable or possible AD were labeled 

as “Alzheimer’s clinical syndrome” according to the recent National Institute on Aging and Alzheimer's 

Association (NIA-AA) research framework recommendations (Jack et al., 2018). According to these 

definitions, people with mild cognitive impairment at the end of the follow-up were not considered as 

demented and were therefore classified in the “non-AD group”. 

The initial neuropsychological battery consisted of the Mini Mental State Evaluation (MMSE: global 

cognitive functions), the Free and Cued Selective Reminding Test (FCSRT: verbal episodic memory - 

sum of the number of words retrieved during the three free or cued trials), the Benton Visual Retention 

Test (BVRT: visuospatial working memory), the Isaacs Set Test (IST: semantic fluency) and the Trail 

Making Test part A and B (TMT-A and TMT-B: attention, information processing speed and executive 

functions ((number of correct moves/total time)x10)). 

 

MRI acquisition and processing 

Participants were scanned on a 1.5 T Gyroscan Intera system (Philips Medical Systems) with a 

quadrature head coil. The morphological protocol consisted of 3D high-resolution T1-weighted images 

acquired in transverse plane using magnetization prepared rapid gradient echo sequence (TR=8.5 ms, 

TE=3.9 ms, a=10°, FOV=240 mm, voxel size=0.94x0.94x1mm3). The same scanner and the same 

sequence were used for the baseline and the 4-year follow-up MRI procedures.  
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For the volumetric analyses of brain structures (total hippocampal volume, total grey matter volume and 

total intracranial volume) and hippocampal subfields, T1-weighted images were processed using the 

volBrain system (http://volbrain.upv.es) (Manjón and Coupé, 2016). After denoising with an adaptive 

nonlocal mean filter (Manjón et al., 2010), the images were affine-registered into the Montreal 

Neurological Institute (MNI) space using ANTS software (Avants et al., 2011), corrected for image 

inhomogeneities using N4 (Tustison et al., 2010) and then intensity-normalized (Nyúl and Udupa, 1999). 

Next, the segmentation of hippocampal subfields was performed with the HIPS pipeline (Romero et al., 

2017), based on a combination of non-linear registration and multiatlas patch-based label fusion with 

systematic error correction. This method uses a training library from a public repository 

(www.nitrc.org/projects/mni-hisub25) composed of high resolution T1w images manually labeled 

(Kulaga-Yoskovitz et al., 2015). We used Kulaga-Yoskovitz protocol instead of Winterburn protocol 

because its segmentations were more reliable (0.88 vs 0.71) due to the use of a larger number of training 

cases (Romero et al., 2017). To perform the segmentation, the images were up-sampled with a local 

adaptive super resolution method to fit in the training image resolution (Fig. 2A).  (Coupé et al., 2013). 

The method provides automatic segmentation of hippocampal subfields gathered into 3 labels, based on 

morphology and intensity of densely myelinated molecular layers as follows: Subiculum, CA1-3 and 

CA4/dentate gyrus (CA4-DG) (Fig. 2B).  

Quality control of the image-processing pipeline for the baseline and 4-year MRI data was performed 

by two neurologists (LN and VP) who were blind to the final dementia diagnosis using 3D Slicer 4.10.0 

(www.slicer.org). First, a visual assessment of the image processing quality for all subjects (n=364, at 

2 timepoints) was performed using sagittal, coronal and axial slices of the 3D hippocampal volume. 

Registration into the MNI space, intracranial volume extraction and tissue classification were also 

carefully evaluated. This step led to the removal of 37 subjects from the study due to segmentation errors 

that were deemed too important to be corrected. Second, we performed manual correction of 44 labels 

with minor segmentation errors (such as the inappropriate inclusion of  choroidal plexus, para-

hippocampal T1-hypointensity, and/or CSF “pockets”). Finally, the present cohort consisted of 327 

participants with available quality-controlled hippocampal subfields segmentations at both baseline and 

4 years (Fig. 2B). Using these longitudinal MRI data, the annualized rates of atrophy for each participant 

wa calculated as follows: ((volume after 4 years – volume at baseline)/volume at baseline)/4. 

 

Statistical analyses 

Statistical analyses were performed with Prism software 8 (Graphpad) and XLstats 19.4 (Addinsoft). 

First, participants who were seen at least one time after the second MRI for a new neuropsychological 

assessment were classified as “incident-AD” (n=35) and “non-AD” (n=269) based on the final diagnosis 

after the 14-year longitudinal follow-up period (Fig. 1B). We compared clinical and imaging 
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characteristics at baseline between groups using t-tests for quantitative variables and Chi-squared tests 

for categorical variables. Second, to describe differential hippocampal subfields atrophy during aging 

and AD, the annualized rates of atrophy in the three subfields were compared using one-way and two-

way analysis of variance tests (ANOVA) for the whole cohort of participants and for the “incident-AD” 

and “non-AD” groups, respectively. ANOVAs were followed by appropriate post-hoc tests (Sidak’s or 

Holm-Sidak’s) to account for multiple comparisons. Cohen’s d was used to determine the effect size of 

atrophy rates between the “incident-AD” and “non-AD” groups. Third, associations between baseline 

characteristics and the annualized rates of hippocampal subfields atrophy were assessed using t-tests, 

Pearson correlation coefficients and multiple linear regressions (using Bonferroni correction for multiple 

comparisons when appropriate). Finally, to identify which hippocampal subfields might be predictive 

of incident Alzheimer’s clinical syndrome over time, Cox proportional hazard survival regression 

analyses were performed, using the annualized rates of atrophy as predictors and typical confounding 

variables, such as age, gender, education level and ApoE4 genotype as co-variates.  

 

Results 

 

Demographic, neuropsychological and MRI characteristics at baseline 

Three-hundred and twenty-seven participants were finally included in our analyses after quality control 

and manual correction of the automatic hippocampal subfields segmentation procedures at both 

timepoints. Of these participants, 304 (92.7%) were seen at least one time after the second MRI for a 

new neuropsychological assessment (Fig 1B). During the 14-year longitudinal follow-up period, 35 

participants developed Alzheimer’s clinical syndrome after the second MRI (12% of participants, 

“incident-AD”). The mean time before the estimated conversion to dementia was 11.5 years (±2.2). The 

baseline characteristics of the whole sample and of the two subgroups are summarized in Table 1.  

Participants who developed incident Alzheimer’s clinical syndrome were significantly older at baseline 

than the group of participants who remained free of AD over time (73.7 vs 71.7 years, p=0.003). In term 

of baseline neuropsychological characteristics, the “incident-AD” group already displayed poorer 

performance in tests of verbal episodic memory tests (free recall of the FCRST, p=0.002), visuospatial 

working memory (BVRT, p=0.003) and attentional and executive function (TMT-A and TMT-B, 

p=0.001 and p=0.05 respectively).  

There were no significant differences in the baseline MRI characteristics between the “incident-AD” 

and “non-AD” groups.  
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Dynamics of regional hippocampal atrophy  

The annualized rates of hippocampal subfields atrophy were calculated based on MRI collected at 

baseline and 4 years later. Analyses revealed a differential regional vulnerability in the hippocampus 

during aging (Fig. 3A). In the whole cohort, CA4-DG was significantly more affected than the other 

subfields whereas CA1-3 was significantly less affected (CA1-3: -0.68%/year; Subiculum: -0.99%/year 

and CA4-DG: -1.39%/year; F=19.7, p<0.0001 (ANOVA); mean differences: CA4-DG vs CA1-3 = -

0.70, p<0.0001; Subiculum vs CA1-3 = -0.31, p<0.01 and CA4-DG vs Subiculum = -0.40, p<0.01 

(Holm-Sidak’s multiple comparisons test)). As a comparison, the annualized rate of atrophy was -

0.84%/year in the whole hippocampus and -0.11%/year for the whole cerebral grey matter. 

A two-way ANOVA accounting for incident Alzheimer’s clinical syndrome revealed a “subfield effect” 

(F=10.3, p<0.0001) as well as a “disease effect” (F=29.4, p<0.0001) that could explain the variance in 

the annualized rates of regional hippocampal atrophy; without any significant interactions (F=1.01, 

p=0.23). Compared to the “non-AD” group, the “incident-AD” group had significantly higher rates of 

atrophy in CA1-3 (-1.37%/year vs -0.59%/year; p<0.001) and in CA4-DG (-2.33%/year vs -1.21%/year; 

p<0.001) but not in the subiculum. Regarding effect size, CA1-3 was the most affected subfield in the 

“incident-AD” group compared to the “non-AD” group (d=0.77 for CA1-3 and d=0.50 for CA4-DG) 

(Fig. 3B).  

 
Associations between baseline characteristics and annualized rates of hippocampal subfields atrophy. 

Age, gender, educational level and ApoE genotype were not associated or correlated with the annualized 

rate of hippocampal subfields atrophy in the whole cohort of participants and in the “non-AD” subgroup. 

Age, gender and educational level were not associated with the annualized rates of hippocampal 

subfields atrophy in the “incident-AD” group. However, there were associations between ApoE4 

genotype and a higher annualized rates of atrophy in the subiculum (p=0.028) and CA1-3 (p=0.030) in 

the “incident-AD” subgroup (but these results were just below Bonferroni threshold p-values for 

multiple comparisons (0.016)). Associations between ApoE status and annualized rate of hippocampal 

subfields atrophy are summarized in Table 2.  

Regarding the neuropsychological correlates at baseline, there was a significant association between the 

total recall score on the FCSRT and the annualized rate of atrophy in the CA1-3 (r=0.18, p=0.0015), 

taking into account multiple comparisons (Bonferroni threshold p-values = 0.0018 for 27 comparisons). 

This association was still significant after adjusting for age, educational level and ApoE4 status 

(p=0.0016). 
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Prediction of incident Alzheimer's clinical syndrome 

The results of the Cox proportional hazard models assessing relationships of the annualized rates of 

hippocampal subfield atrophy, age, gender, educational level, and ApoE4 genotype with the risk of 

developing Alzheimer’s clinical syndrome are shown in Table 3. In terms of regional hippocampal 

vulnerability, only the annualized rate of CA1-3 atrophy was associated with an increased risk of 

developing AD over time (HR=1.8; IC95% 1.2-2.6). This association remained significant after adusting 

for age, gender, educational level and ApoE4 genotype (HR=2.0; IC95% 1.4-3.0). 

In contrast, normalized hippocampal subfields volumes at baseline were not predictive of incident 

Alzheimer’s clinical syndrome over time. 

 

 

Discussion 

Thanks to its longitudinal design involving repeated MRI exams and a 14-year clinical follow-up of 327 

initially non-demented elderly people, this study showed that hippocampal subfields are differentially 

affected in healthy aging and AD. Indeed, we have shown that the annualized rate of CA4/dentate gyrus 

atrophy was the most important during aging, compared to the other hippocampal subfields. 

Additionally, we showed that participants who developed incident Alzheimer’s clinical syndrome 

during the follow-up period had higher atrophy rates in CA4/dentate gyrus and CA1-3 compared to 

those who did not develop AD, but with a larger effect size in CA1-3. Our assumption is that the 

“neurodegenerative effect” linked to ongoing early AD pathophysiological process mainly affects CA1-

3, on top of the aging-related atrophy in the dentate gyrus. Furthermore, participants with a higher initial 

annualized rate of CA1-3 atrophy had a higher risk of developing Alzheimer’s clinical syndrome during 

the 14-year follow-up period, independently of age, gender, educational level, and ApoE4 genotype, 

whereas subicular and CA4/dentate gyrus atrophy were not predictive. The fact that the the annualized 

rate of CA1-3 was associated with lower FCSRT scores at baseline, known to predict dementia in this 

cohort (Auriacombe et al., 2010) and able to screen for patients with amnestic syndrome of the 

hippocampal in prodromal AD support this finding (Sarazin et al., 2007). Furthermore, ApoE4 genotype 

was associated with the annualized rate of CA1-3 atrophy only in the “incident-AD” group, which 

further strengthens the association of CA1-3 atrophy and AD pathophysiology. Taken together, these 

results revealed a differential vulnerability of CA4/dentate gyrus to aging process and a differential and 

early vulnerability of CA1-3 to AD pathology, even several years prior to the onset of dementia.   
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Many previous MRI studies have demonstrated that the hippocampus shrinks with age and that this 

shrinkage is not homogeneous among the hippocampal subfields. However, these previous studies were 

based on cross-sectional analyses that assessed hippocampal volume in subjects of different ages rather 

than the rate of atrophy over time in individual subjects (de Flores et al., 2015). Furthermore, these 

studies often failed to isolate participants free of age-related neurological diseases affecting the 

hippocampal circuit, because they lacked very long-term longitudinal follow-up periods. It may explain 

the significant discrepancies among the results. For example, some authors concluded that predominant 

damage during aging occurs either within CA1 (Kerchner et al., 2013; Raz et al., 2015; Daugherty et al., 

2016), whereas others identified the subiculum (La Joie et al., 2010), the dentate gyrus (Pereira et al., 

2014; Dillon et al., 2017), and still others observed homogeneous damage among various subfields 

(Mueller and Weiner, 2009; Apostolova et al., 2012; Malykhin et al., 2017). By conducting 4-year 

longitudinal MRI analyses in people over 65 (mean age 72), our work is therefore unique in 

demonstrating that individuals recruited from the general population who remained free of Alzheimer’s 

clinical syndrome 10 years after the last MRI, exhibited a maximal annualized rate of atrophy in 

CA4/dentate gyrus (-1.21%/year) that was more than twice as high as in CA1-3. This CA4/dentate gyrus 

atrophy over time was even higher in participants who developed Alzheimer’s clinical syndrome during 

the follow-up period (-2.33%/year). The dentate gyrus is the only neurogenic niche within the 

hippocampus and the differential atrophy observed in the present study is therefore well supported by 

animal and human studies investigating decreases in adult neurogenesis in the subgranular zone of the 

dentate gyrus during aging, that is further impaired during AD (Sorrells et al., 2018).  

Our longitudinal findings showing an early vulnerability of CA1-3 during the AD pathophysiological 

process are consistent with most of the past and current histological and imaging cross-sectional studies 

(West et al., 1994; Kerchner et al., 2010; Fouquet et al., 2012; La Joie et al., 2013). The association 

between ApoE4 genotype and the rate of CA1-3 atrophy observed in the present study also corroborates 

data from a previous cross-sectional study that used a 7T-MRI scanner (Kerchner et al., 2014). 

Furthermore, we also found that the annualized rate of CA1-3 atrophy was associated with baseline 

FCSRT scores, assessing episodic memory, which is consistent with a previous cross-sectional voxel-

based morphometry study showing that CA1 atrophy in patients with AD is associated with the severity 

of amnestic syndrome of the hippocampal type, which is the typical neuropsychological presentation of 

AD (Sarazin et al., 2010). Thus, our results extend previous knowledge by demonstrating that specific 

CA1-3 atrophy was associated with a higher risk of developing Alzheimer’s clinical syndrome over a 

long period of time, independently of age, gender, educational level and ApoE4 genotype, even if this 

region was not the most atrophied subfield. From a pathophysiological point of view, these results 

support the hypothesis that tau neurofibrillary tangles initially spread from the entorhinal cortex to the 

cornu-ammonis of the hippocampus several years priors to symptom onset and that this process can be 

monitored in vivo with MRI (Braak and Braak, 1991; Lace et al., 2009). 



 11 

The present results indicate that the longitudinal monitoring of hippocampal subfield atrophy may 

distinguish hippocampal damage linked to aging from that associated with AD. Interestingly, a previous 

study by our research group using the same cohort of older adults found that the atrophy rate of the 

whole hippocampus was not significantly associated with the incidence of Alzheimer’s clinical 

syndrome over time, which suggests that the rate of atrophy in specific hippocampal subfields is more 

informative than the rate of atrophy for the whole hippocampus (Planche et al., 2019). That study also 

revealed that individuals with “hippocampal predominant atrophy” (based on the evolution of 

hippocampal-to-cortical volume ratio over time) have a higher risk of developing Alzheimer’s clinical 

syndrome during a 12-year follow-up period (HR=5.7). However, the differentiation of brain atrophy 

subtypes during aging and AD requires the categorical classification of subjects within a reference 

population, which is interesting for epidemiological and pathophysiological studies but not suitable at 

the individual level in clinical practice (Murray et al., 2011). Although the analysis of hippocampal 

subfields appears to be a promising biomarker, this technique will require longitudinal rather than cross-

sectional volumetric assessments because, as seen in the present study, the normalized hippocampal 

subfield volumes at baseline were not predictive of Alzheimer’s clinical syndrome whereas the 

annualized rates of atrophy over 4 years were predictive of the disease. It confirms that the value of 

longitudinal measures of brain shrinkage usually exceeds that of cross-sectional estimates (Raz et al., 

2005) and that such measurements are ultimately more informative. 

As mentioned above, the present study has many methodological strengths compared to previous studies 

in this topic. First, it employed a natural history design that included a large population-based cohort 

who were monitored with two MRIs (4-year interval) using the same scanner. Second, a very long term 

prospective follow-up period (14 years) was used, and few participants were lost to follow-up, which 

allowed for the identification of individuals with “true” healthy aging and the avoidance of a selection 

bias due to the misclassification of people with presymptomatic neurodegenerative diseases. Third, we 

performed proper measurements of hippocampal subfields volumes, rather than a “simpler” shape 

analysis, in conjonction with a strict quality control of the automatic subfields segmentation. 

Additionally, HIPS, which is an automatic pipeline of hippocampal subfields segmentation was used in 

this study (Romero et al., 2017). This pipeline is user-friendly and freely available online, which could 

help to integrate findings across studies.  

Regarding the limitations of the study, we acknowledge that volumetric analyses of hippocampal 

subfields still require protocol harmonization to clearly define subfield boundaries in order to reduce 

discrepancies between research centers and to obtain a truly standardized and generalizable biomarker 

(Yushkevich et al., 2015; Olsen et al., 2019). Furthermore, our findings are based on 1.5T MRI. 

Although it is true that upsampling will never recover completely the underliying high-resolution image, 

we have previously demonstrated that our post-processing pipeline significantly improve the 

segmentation results compared to classical interpolation methods such as linear or spline interpolation 
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(Romero et al., 2017). The main limitation of the present study was the lack of an assessment of amyloid 

pathologies, which was due to the 1999-2000 inclusion period for the present cohort. Analyses of 

amyloid pathologies could have further specified the diagnosis of AD and allowed for evaluations of the 

link between amyloid plaques and the vulnerability of hippocampal subfields. However, the diagnoses 

of Alzheimer’s clinical syndrome (possible or probable AD according to 1984 and 2011 criteria) made 

in the present study relied on longitudinal assessments and were confirmed by a panel of independent 

and expert neurologists. Moreover, the present results are congruent with observations from the 

literature regarding the larger ratio of subjects with incident Alzheimer’s disease presenting at least one 

ApoE4 allele, and the link between CA1-3 atrophy and ApoE4 status specifically in the “incident-AD” 

subgroup.  

 

 

Conclusion 
In this study, we described the natural history of hippocampal subfield atrophy during healthy aging by 

pinpointing an increased vulnerability of the dentate gyrus relative to the subiculum and the cornu-

ammonis. Although the annualized rate of CA1-3 atrophy was less severe than the other two subfields, 

it was the only region associated with the risk of developing Alzheimer’s clinical syndrome over time, 

independently of age, gender, educational level and ApoE4 genotype. These findings indicate that aging 

and AD differentially impact the hippocampal anatomy and that longitudinal MRI measures can 

contribute to disentangle these two phenomena.  
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Tables 

 

 

 

 
Table 1. Clinical, MRI and neuropsychological features of participants at baseline. BVRT: Benson 

Visual Retention Test ; FCSRT: Free and Cued Selective Reminding Test ; ICV: IntraCranial Volume ; 

MMSE: Mini Mental State Examination ;  TMT: Trail-Making Test.  
1. Education level was considered as high or low according to French baccalaureate (equivalent to A-level).  

2. p-values refer to χ2 test for categorical variables and t-tests for ordinal variables (“non-AD” vs “incident-AD” 

subgroups) 

 

  

 Whole cohort  
(n=327) 

Non-AD group  
(n=269) 

 

Incident-AD group  
(n=35) 

p-value2 

Demographical variables at baseline  
     Age, mean (SD) 72.0 (3.8) 71.7 (3.7) 73.7 (3.9) 0.003 
     Gender, women % 58.2% 57.2% 66.7% 0.28 
     Education level, high1 % 51.8% 51.7% 52.8% 0.90 
     ApoE (ε4 +/- or +/+), % 
 

20.7% 17.7% 27.8% 0.27 

Neuropsychological tests at baseline     
     MMSE, median [range] 28 [24-30] 29 [24-30] 28 [24-30] 0.06 
     FCSRT free recall, mean (SD) 25.1 (5.9) 25.5 (5.7) 22.1 (6.7) 0.002 
     FCSRT total recall, median [range] 46 [21-48] 46 [21-48] 45 [32-48] 0.08 
     BVRT, median [range] 12 [6-15] 12 [6-15] 11 [7-15] 0.003 
     Isaacs set test 15s, mean   (SD) 31.4 (5.8) 31.7 (5.7) 29.9 (5.8) 0.07 
     Isaacs set test 30s, mean (SD) 47.6 (9.1) 48.2 (9.0) 45.1 (9.3) 0.06 
     Isaacs set test 60s, mean (SD) 70.4 (14.7) 71.5 (14.2) 66.0 (16.5) 0.04 
     TMT-A, mean (SD) 4.9 (1.5) 5.0 (1.5) 4.2 (1.3) 0.001 
     TMT-B, mean (SD) 2.3 (1.1) 2.4 (1.1) 2.0 (1.0) 0.05 

 
     
MRI volumes at baseline  
     Hippocampus, mean % ICV (SD) 0.49 (0.04) 0.50 (0.04) 0.49 (0.05) 0.30 
     CA1-3, mean % ICV (SD) 0.31 (0.03) 0.31 (0.03) 0.30 (0.04) 0.24 
     CA4-DG, mean % ICV (SD) 0.05 (0.007) 0.05 (0.008) 0.05 (0.009) 0.63 
     Subiculum, mean % ICV (SD) 0.14 (0.01) 0.14 (0.01) 0.14 (0.02) 0.45 
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Table 2: Annualized rate of hippocampal subfields atrophy regarding ApoE4 status in the whole 

cohort of participents and in both the “non-AD” and “incident-AD” subgroups. ANOVAs p-

values not corrected for multiple comparisons. The Bonferroni threshold p-values for 3 comparisons in 

each group is 0.016.  

 ApoE4 + ApoE4 - p-value 
Whole cohort (n=327 : n=68 ApoE4+ and n=259  ApoE4-)    
    Annualized rate of subiculum atrophy, mean (SD) -1.12 (1.31) -0.95 (1.10) 0.332 
    Annualized rate of CA1-3 atrophy, mean (SD) -0.78 (1.09) -0.65 (0.85) 0.367 
    Annualized rate of CA4-DG atrophy, mean (SD) 
 

-1.85 (2.49) -1.26 (1.92) 0.075 

Non-AD group (n=269; : n=48 ApoE4+ and n=221 ApoE4-)    
    Annualized rate of subiculum atrophy, mean (SD) -0.95 (1.28) -0.93 (1.07) 0.925 
    Annualized rate of CA1-3 atrophy, mean (SD) -0.57 (0.99 ) -0.60 (0.80) 0.865 
    Annualized rate of CA4-DG atrophy, mean (SD) 
 

-1.57 (2.36) -1.19 (1.86) 0.261 

Incident-AD group (n=35; n=10 ApoE4+ and n=25 ApoE4-)    
    Annualized rate of subiculum atrophy, mean (SD) -2.12 (1.02) -1.14 (1.31) 0.028 
    Annualized rate of CA1-3 atrophy, mean (SD) -1.98 (0.90) -1.13 (1.15) 0.030 
    Annualized rate of CA4-DG atrophy, mean (SD) 
 

-3.46 (2.74) -1.89 (2.32) 0.131 
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Table 3. Predictive values of annualized rate of hippocampal subfields atrophy alone (model 1) 

and in combination with age, gender, educational level and ApoE genotype (model 2) on the risk 

of incident Alzheimer’s clinical syndrome (Cox models). 

  

 Hazard ratio 95% CI 
Model 1  
    Annualized rate of subiculum atrophy 1.08 0.81-1.47 
    Annualized rate of CA1-3 atrophy 1.80 1.23-2.63 
    Annualized rate of CA4-DG atrophy 
 

1.08 0.89-1.32 

Model 2  
    Age 1.14 1.04-1.26 
    Gender 1.45 0.69-3.03 
    Education level 1.18 0.61-2.29 
    ApoE genotype 1.66 0.79-3.50 
    Annualized rate of subiculum atrophy 1.04 0.76-1.41 
    Annualized rate of CA1-3 atrophy 2.00 1.35-2.99 
    Annualized rate of CA4-DG atrophy 1.07 0.77-1.32 
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Figure legends 
 
 
 
 
 
Figure 1. Datasets. (A) During the follow-up period, neuropsychological assessments (NP) were 

administered at baseline and after 2, 4, 7, 10, 12 and 14 years. MRI was performed at baseline and 4 

years later. (B) Flowchart of the study.  

 

 

Figure 2. MRI post-processing. (A) To perform the segmentation, the native images (on the left) were 

first up-sampled with a local adaptive super resolution method (on the right). (B) Examples of 

hippocampal segmentations in the sagittal and coronal main axis with the HIPS software. The method 

provides automatic segmentation of hippocampal subfields gathered into 3 labels: Subiculum, CA1-3 

and CA4/dentate gyrus (CA4-DG).  

 

 

Figure 3. Annualized rate of hippocampal subfields atrophy the whole cohort of participants (A) 

and in participants with future Alzheimer’s clinical syndrome and participants who will remain 

free of AD (B). ** p<0.01 and. ***p<0.001. ****p<0.0001 (Holm-Sidak’s multiple comparisons test 

after one-way ANOVA or Sidak’s multiple comparisons test after two-way ANOVA, as appropriate). 

Cohen’s d values measure effect size between two groups. 
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