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The isotopic diversity of oceanic island basalts (OIB) is usually
attributed to the influence, in their sources, of ancient material
recycled into the mantle, although the nature, age, and quantities of
this material remain controversial. The unradiogenic Pb isotope
signature of the enriched mantle I (EM I) source of basalts from,
for example, Pitcairn or Walvis Ridge has been variously attributed
to recycled pelagic sediments, lower continental crust, or recycled
subcontinental lithosphere. Our study helps resolve this debate by
showing that Pitcairn lavas contain sulfides whose sulfur isotopic
compositions are affected by mass-independent fractionation
(S-MIF down to Δ33S = −0.8), something which is thought to have
occurred on Earth only before 2.45 Ga, constraining the youngest pos-
sible age of the EM I source component. With this independent age
constraint and a Monte Carlo refinement modeling of lead isotopes,
we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr,
Nd, and Hf isotopic mixing arrays show that the Archean EM I material
was poor in trace elements, resembling Archean sediment. After sub-
duction, this Archean sediment apparently remained stored in the deep
Earth for billions of years before returning to the surface as Pitcairn´s
characteristic EM I signature. The presence of negative S-MIF in the
deep mantle may also help resolve the problem of an apparent deficit
of negative Δ33S anomalies so far found in surface reservoirs.

mantle plume | sulfur isotopes | geochemical modeling | EM I | Pitcairn

Oceanic island basalts (OIB) are isotopically diverse (1) and,
in radiogenic (Sr, Nd, Pb, Hf) isotopic spaces, define trends

to extreme mantle compositions (“endmembers”) such as HIMU
(high μ, with μ = 238U/204Pb) and the two enriched mantles
EM I and II (EM I with low 206Pb/204Pb and EM II with high
87Sr/86Sr). These endmembers are all thought to have been gen-
erated by subduction of material into the asthenosphere over time
(2), so determining the age and geological nature of their precur-
sors is important to understand the geochemical evolution of the
Earth. Although there appears to be consensus on the presence of
recycled ancient oceanic crust in the source of HIMU (3, 4) and
ancient clastic continental sediments in the source of EM II (5), the
origin of the EM I signature is more controversial.
The Polynesian islands chains show examples of all these types

of source signatures (3, 6–9). For example, Mangaia and Tubuai
Islands in the Cook-Austral chain have the elevated 206Pb/204Pb
ratios typical of HIMU compositions, islands from both the
Society and Marquesas chains have the high 87Sr/86Sr that define
EM II compositions, and Pitcairn lavas in the Pitcairn-Gambier
chain have the very low 206Pb/204Pb at high 208Pb/204Pb that char-
acterize EM I isotopic signatures.
Here we focus on EM I of Pitcairn Island [0.95 My to 0.62 My

(10)] and the Pitcairn Seamounts (11), which constitute the most
recent volcanism of the Pitcairn-Gambier chain, located on the
southeast side of the Polynesian Superplume (Fig. 1). Previous
studies of both the island and the seamounts led to various in-
terpretations for the origin of the EM I source: recycled oceanic
crust carrying 0.7- to 2-Ga pelagic sediment (12, 13), delami-
nated subcontinental lithospheric mantle (14), and delaminated
lower continental crust (15). Each of these suggestions was an
attempt to explain the peculiar Pb isotopic compositions of

Pitcairn basalts, but all remain model-dependent, as the problem
is underdetermined. Independent constraints on either the age
or the nature of the source component are therefore required to
choose the best candidate.
Here we revisit the possible origin of the EM I signature by

presenting in situ sulfur isotopic analyses of Pitcairn samples that
provide independent constraints on a minimum age. Combining
these data with modeling of new high-precision Pb isotopic data
and Sr, Nd, and Hf isotopes allows us to constrain the nature of
the material involved in their source.

Results and Discussion
The sulfur isotopic data measured on sulfide inclusions in oliv-
ines, plagioclases, and matrix material at Centre de Recherche
Pétrographiques et Géochimiques (CRPG) in Nancy are given in
SI Appendix, Table S1 and shown in Fig. 2. Pictures of the dif-
ferent sulfides are also reported in SI Appendix, Fig. S1. We note
two important features of the measurements: (i) With one ex-
ception, all Pitcairn sulfides are characterized by both negative δ34S
(down to −6.2‰) and negative Δ33S (down to −0.8‰) and so
show evidence of mass-independent fractionation (hereafter
“S-MIF”). Data on standards measured as unknowns together
with the sample suite show the external reproducibility of the
method to be ∼0.34‰ (2σ) on Δ33S (see SI Appendix on sulfide
analyses). The average Δ33S value for post-Archean standards is
within error of 0. Both these features demonstrate that the
negative S-MIF measured in the Pitcairn samples is real and
significant. (ii) Repeat measurements on one sulfide inclusion
from the matrix (51DS-13) show a range of Δ33S from −0.54 to
0.12 (SI Appendix, Table S1). Although this total range is larger
than the external reproducibility, we note that (i) the average
of these values is negative and (ii) the most positive values are
within error of Δ33S = 0. Both these features suggest that the
negative magmatic Δ33S of this inclusion has been mixed with

Significance

The source material for mantle plume volcanism is generally
agreed to show geochemical signatures of former oceanic litho-
sphere (crust and/or sediments) recycled into the mantle by sub-
duction. The specific nature and ages of these materials remains,
however, controversial. This study shows that the source of Pit-
cairn basalts contains Archean sediments (i.e. >2.45 Ga) that have
remained chemically isolated in Earth´s mantle for billions of years.
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young, Δ33S = 0 material, probably from seawater; this may be the
result of syneruptive or posteruptive seawater infiltration into the
basaltic matrix. None of the inclusions in minerals show Δ33S > 0,
which we suspect is a result of the better resistance of mineral
structures to such syneruptive or posteruptive seawater infiltration.
Negative Δ33S values have been previously reported for pyrite

included in Archean barite bedded formations (16, 17), Neo-Archean
carbonates (18, 19), exhalites in Archean greenstone belts (20),
or Archean sandstones and conglomerates (21). S-MIF only occurred
in Earth′s atmosphere before the Great Oxygenation Event at ca.
2.45 Ga (22), so its presence in at least part of the Pitcairn plume
source places a strong lower limit on the age of that source. The
association of nonchondritic δ34S (between −6.1‰ and −2.3‰)
with negative Δ33S is an unambiguous signal of a contribution of
Archean supracrustal material to the plume source.
Cabral et al. (23) reported small negative S-MIF anomalies for

sulfides in HIMU basalts from Mangaia Island (Fig. 2), which
they attributed to hydrothermal processes occurring in Archean
basaltic crust. Interestingly, at both Pitcairn and Mangaia, Δ33S
are always negative, in contrast to values found in sublitho-
spheric sulfide included in diamonds.
Previous modeling (3, 12, 13) suggested that the Pitcairn source

includes recycled surface material, although with a young age
(0.7 Ga to 2 Ga). To investigate the elemental and isotopic com-
position of the Pitcairn component, we developed a mixing model
using our new Pb, Sr, Nd, and Hf data for Pitcairn (seeMaterials and
Methods and SI Appendix, Table S2 and Fig. S2). This model con-
strains the isotopic ratios and Pb, Sr, Nd, and Hf concentrations of
the Pitcairn component by assuming that it is the unknown member
of a three-component mix (along with old subducted crust and
ambient peridotitic mantle). The composition of the Pitcairn com-
ponent (shown by the yellow star on Fig. 3 and SI Appendix, Fig. S3)
is determined with no assumption about its geological origin but by
simply adjusting its isotopic ratios and trace element concentrations so

that its calculated percentage in the source of each individual Pitcairn
lava is the same for all available isotopic systems (Pb, Sr, Nd, and Hf).
Our mixing model provides two important pieces of information:

(i) that the percentage of the Pitcairn component in the source of
the individual lavas varies between ∼2.5% and ∼18% and (ii) that
the Pitcairn component has a trace element composition (see SI
Appendix, Table S3) that is significantly depleted relative to that
modeled, for example, as a source component for the Gambier
Island basalts (24), located upstream along the Pitcairn chain (also
listed in SI Appendix, Table S3 and Fig. 1). The Gambier Island
source was suggested to consist of 1.5-Ga recycled material (basaltic
crust + average oceanic sediment) and ambient peridotite.
Using the modeled Pb isotopic composition of the Pitcairn

component and the evidence for S-MIF at Pitcairn, we can use a
three-stage Pb growth model including a Monte Carlo refine-
ment procedure to constrain its age (T) and μ (238U/204Pb) and κ
(232Th/238U) ratios. The Monte Carlo refinement technique (25)
searches possible combinations of μ (238U/204Pb), κ (232Th/238U),
and age for the three stages that reproduce the targeted Pitcairn
component Pb isotopic values (see Materials and Methods and SI
Appendix, Fig. S4). The method randomly tests potential growth-
model results (for model equations, see Materials and Methods)
with a criteria function (Eq. 4) and either accepts or rejects the
results depending on their match to the target value, here the
yellow star in Fig. 3. The method is intrinsically not very differ-
ent from the Monte Carlo simulation of Eisele et al. (13), but
their target composition was different in two significant ways:
(i) a 206Pb/204Pb lower than 17.6 when ours is 17.04, and (ii) vari-
able 207Pb/204Pb and 208Pb/204Pb (207Pb/204Pb ratio within ±0.005
from the array in 207Pb/204Pb vs. 206Pb/204Pb space and 208Pb/204Pb
between 38.8 and 39.1) when ours are 15.45 and 39.0.
The three steps of our model are distinguished using subscripts

1, 2, and 3 for T, μ, and κ. T1 corresponds to the age of the Earth
(4.55 Ga), T2 represents the onset of the crustal history, and T3

Fig. 1. Map of the Pitcairn-Gambier chain that includes Mururoa and Fangataufa atolls, the Gambier archipelago, Pitcairn Island (Pitcairn I.), and Pitcairn
Seamounts (Pitcairn S.) with their associated ages. (Inset) The four chains that constitute Polynesia, as well as the locations of active volcanism (stars).
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represents the age of the onset of the surface material history. To
limit the number of possible solutions, we set four values, the age
of the Earth (T1) and the initial composition of its mantle [μ1 =
8.3 and κ1 = 3.8 (26)] together with the age (T2) of the onset of
crustal history [here 3 Ga (27, 28)] (see Materials and Methods
for the choice of parameters). Results are shown in Fig. 4 in both
μ2−κ2−κ3 and μ2−κ2−T3 space, and other interdependencies be-
tween μ2, κ2, μ3, κ3, and T3 are shown in SI Appendix, Fig. S5. Fig.
4 shows that a large number of μ−κ−T combinations (all dots in
Fig. 4) can reproduce the target composition but that, by limiting
the range of μ2 and κ2 to values reasonable for the continental
crust [9 ≤ μ2 ≤ 11.6 and 4 ≤ κ2 ≤ 5 (29–33); see Fig. 4A], the field
is drastically reduced (as shown by the red dots). We can use the
presence of S-MIF in the Pitcairn component to place a lower
limit of 2.45 Ga on T3 (the onset of sedimentary history); the μ2
and κ2 constraints outlined above give an upper age limit for T3
of 2.75Ga, with a maximum of solutions around 2.5 Ga to 2.6 Ga.
This Archean age for the Pitcairn component differs greatly from
the 0.7- to 2-Ga model ages suggested previously (12, 13). This
difference results from the combined effects of the different
composition of the Pitcairn component, the older onset of crustal
evolution (3.7 Ga), and, mainly, the lower μ and higher κ values
for the early mantle (13) used in previous modeling.
Our model provides constraints on the μ and κ values of the

sedimentary material formed at T3 and recycled later on into the
mantle. The calculated low values for μ3 (6.3 to 6.4) and high values
for κ3 (6.3 to 6.7) are needed to produce the high 208Pb/204Pb at low
206Pb/204Pb that characterize EM I. We also tested the model for
variations in the age of onset of crustal history (T2) ranging from
2.5 Ga to 3.8 Ga to evaluate the impact of this parameter on the
final results. The main findings are (i) when the age of the crustal
history onset increases from 2.5 Ga to 3.8 Ga, κ3 (the sedimentary
component value) needs to decrease from 6.6 through 7.4

(T2 = 2.5 Ga) to 5.3 through 5.8 (T2 = 3.8 Ga) but remains at high
values (see SI Appendix, Fig. S6); (ii) in all cases, the age of onset
of the sedimentary history (T3) is Archean or very early Pro-
terozoic (∼2.3 Ga if T2 = 2.5 Ga and ∼3.5 Ga if T2 = 3.8 Ga) (see
SI Appendix, Fig. S6); and (iii) the overall probability of the model
reproducing the lead isotopic values of the Pitcairn component
decreases significantly when T2 increases (with an increase of T2
from 2.5 Ga to 3.8 Ga, the probability of successful results de-
creases from ∼25% to ∼2.5%; see SI Appendix, Fig. S6).
Together with its low μ and high κ (and ancient negativeΔ33S), the

Archean Pitcairn component has very low Pb, Nd, and Hf concen-
trations and rather low Sr contents (see SI Appendix, Fig. S5 and
Table S3). Equivalent concentrations are not seen in modern oceanic
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Fig. 3. Mixing arrays in (A) 208Pb/204Pb and (B) 87Sr/86Sr versus 206Pb/204Pb
isotopic spaces. Orange and red circles show new data obtained on Pitcairn
Island and Pitcairn Seamounts. Also shown are the compositions of the
endmembers used in the mixing modeling of the Pitcairn data: 1.5-Ga ba-
saltic crust (blue star) and ambient mantle peridotite (green star) as sug-
gested previously for other islands along the Pitcairn chain (24) and the
Pitcairn component (yellow star). The 1.5-Ga sediment suggested for the Gam-
bier source is shown with a red star. The isotopic ratios and element concen-
trations of all endmembers are given in SI Appendix, Table S3. Thick black lines
delimit the field in which all mixtures lie, green dashed lines show percentages of
ambient peridotite in the source of magmas, and thin black lines connect am-
bient peridotite and different mixing proportions of Pitcairn component with
recycled basaltic crust. Parameters for mixing models are given in SI Appendix,
Table S3. Literature data are shown with diamonds: Mururoa (blue) (44–47),
Fangataufa (purple) (45, 46, 48), Gambier (green) (24, 45, 46, 49), and Pitcairn
Island and seamounts (orange and red) (8, 12, 13, 50, 51).
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Fig. 2. Δ33S versus δ34S data for Pitcairn seamount sulfides, along with lit-
erature data. Red dots correspond to measurements on sulfides located in
the matrix, red triangles correspond to sulfide inclusions within olivine, and
red squares correspond to sulfide included in plagioclase. Also shown are
data reported recently on sulfides hosted in olivine crystals from Mangaia Island
(23), Archean barite and pyrite hosted in barite (16, 17), Archean pyrite hosted in
carbonate (18, 19, 42), sulfide inclusions in diamonds (41), and exhalites
from the Abitibi greenstone belt (blue field) (20). The gray dots correspond
to previously published sulfur isotope data after figure 1 in ref. 43. Errors
bars on each data point correspond to calculated propagated errors on Δ33S
and δ34S (95% confidence, smaller than symbols for δ34S; see SI Appendix
and SI Appendix, Table S1A). The external error on Δ33S shown using a
vertical bar at the top of the diagram was calculated using the repeatability
on standards [Δ33S = 0.37 at 2 standard deviation (s.d.)]. The δ34S is defined as
δ34S = 1,000 × [(34S/32Ssample)/(

34S/32SCDT) − 1] and Δ33S as Δ33S = δ33S − 1,000 ×
{[1 + (δ34S/1,000)]0.515 − 1}, with δ33S = 1,000 × [(33S/32Ssample)/(

33S/32SCDT) − 1],
and CDT is the Canyon Diablo Troilite standard.
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sediments (see SI Appendix, Table S4 for a comparison), suggesting
they may be a feature unique to Archean surface materials.
However, few Archean materials known are so chemically de-

pleted and also match the negative Δ33S and δ34S. Archean conti-
nental paleosols, for example, have been reported (21) to show
systematically negative Δ33S values, but their trace element con-
centrations appear too high to fit the requirements of our model.
Much more likely candidates, which also show negative Δ33S, are
Neo-Archean carbonates, such as those found in South Africa and
Brazil (18, 19) and exhalite sedimentary deposits, such as are found
in the Abitibi greenstone belt (Fig. 2). The latter deposits consist of
an alternation of cherts, silicate facies iron formation, and graphitic
argillite (20). Such ultrasiliceous sediments are usually very depleted
in most trace elements (34, 35) and were deposited in abundance
during the earliest part of Earth history (36, 37). Although some of
the trace element contents of Archean sediments do not fully match
the values required by our model (see SI Appendix, Table S4), mod-
ification of their compositions by dehydration/melting processes
during subduction (38) could have removed significant proportions of
their trace elements without seriously affecting the Δ33S signature
(39). Subduction of such sediments, which ultimately are derived
from the Archean continents, therefore appears the best explanation
for the low μ, high κ, and negative S-MIF of the Pitcairn component.
Whereas photochemical reactions in the Archean atmosphere

produced negative and positive mass-independent anomalies in the
same proportion, one remarkable feature of the Archean surface
S-MIF record preserved today is the overabundance of positive Δ33S
anomalies (19, 40). This finding suggests that negative Δ33S are
preserved in a reservoir that has not yet been found. Sulfide inclu-
sions in diamond mainly preserve positive Δ33S signatures (41), in-
dicating that the missing reservoir is not the sublithospheric mantle.
Cabral et al. (23), working on the HIMU island Mangaia, reported
negative S-MIF in sulfide inclusions in olivine and attributed this to
recycling of hydrothermally altered Archean oceanic crust; together
with our evidence for negative S-MIF in a Pitcairn component that
probably represents subducted, continent-derived sediments, this
suggests that a large variety of Archean seafloor materials had neg-
ative S-MIF that are now stored in areas of the deep mantle sam-
pled by plumes. The deep mantle might, therefore, be a promising
candidate for the missing negative Δ33S reservoir; if that is the
case, this reservoir has survived in the deepmantle for billions of years
without being completely mixed with the surrounding peridotite.

Materials and Methods
Radiogenic Isotopes. All samples were crushed in an agate mortar, and the
pure Nd, Hf, Pb, and Sr fractions were isolated using ion exchange chro-
matography techniques. Nd, Hf, and Pb isotopic ratios weremeasured using a
high-resolution multicollector inductively coupled plasma mass spectrometer
(MC-ICP-MS; Nu Instrument 500 HR) at ENS Lyon, and Sr isotopic ratios using a
thermal ionization mass spectrometer (TIMS, Thermo Scientific Triton) at
PSO-IUEM (Pôle de Spectrométrie Océan, Institut Universitaire Européen de
la Mer) in Brest (see SI Appendix for more details).

Sulfur Isotopes. Multiple sulfur isotope analyses (δ33S, δ34S,Δ33S) were performed
in situ on thin sections using a high-resolution secondary ion mass spectrometer
(CAMECA 1280-HR, CRPG-Nancy) (see SI Appendix for more details).

Monte Carlo Refinement Method. The three-stage Pb isotopic growth is described
by Eqs. 1–3 for the three isotopic ratios 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb,

206Pb
204Pb

=
�206Pb

204Pb

�
i+ μ1

�
eλa*T1 − eλa*T2

�
+ μ2

�
eλa*T2 − eλa*T3

�
+ μ3

�
eλa*T3 − 1

�
, [1]

207Pb
204Pb

=
�207Pb

204Pb

�
i+

μ1
137.8

�
eλb*T1 −eλb*T2

�
+

μ2
137.8

�
eλb*T2 − eλb*T3

�
+

μ3
137.8

�
eλb*T3 −1

�
, [2]

208Pb
204Pb

=
�208Pb

204Pb

�
i+ω1

�
eλc*T1 − eλc*T2

�
+ω2

�
eλc*T2 − eλc*T3

�
+ω3

�
eλc*T3 − 1

�
, [3]

where T1 is the age of the Earth (4.55 Ga), and T2 and T3 represent the onset
of the crustal (T2) and sedimentary (T3) histories; (

20*Pb/204Pb)i is the isotopic
ratio at Earth’s formation, taken as that of Canyon Diablo Troilite; λa, λb, and
λc are the decay constants of 238U, 235U, and 232Th, respectively; μ = 238U/204Pb,
ω = 232Th/204Pb; and κ = ω/μ = 232Th/238U.

To reproduce the Pb isotopic ratios of the Pitcairn component as listed in SI
Appendix, Table S3, we performed a Monte Carlo refinement of the possible
combinations of μ (238U/204Pb), κ (232Th/238U) and age that fulfill the three
equations given above. The method consists in generating random values for
each unknown parameter in Eq. 1–3. A comparison between calculated results
for each random set of values and the problem statement (Pb isotopic compo-
sition of the Pitcairn component) allows the input parameters to be accepted or
rejected. We performed a total of 1 × 1011 calculations. The results shown in Fig.
3 correspond to the 9,366 successful combinations. The only fixed parameters
were age of the Earth at 4.55 Ga (T1), initial mantle μ1 and κ1 at 8.3 and 3.8 (26)
(the μ1 corresponds to the average of values listed by Asmerom and Jacobsen
(26) after removal the two outliers), and T2 of 3 Ga for the time at which large
volumes of continental crust already existed (27, 28). The unknown values are
therefore μ2, κ2, μ3, κ3, and T3. To investigate the variability of results, parameter

Fig. 4. Results of the Monte Carlo refinement modeling showing the interdependencies of parameters in the three-stage Pb evolution model. (A) The in-
terdependence between κ2, μ2, and κ3 and (B) the interdependence between μ2, κ2, and T3. Only values fitting the target Pitcairn component (206Pb/204Pb =
17.04, 207Pb/204Pb = 15.45, and 208Pb/204Pb = 39) are represented (see Results and Discussion and Materials and Methods for more details). Model limits are
described in Results and Discussion and in Materials and Methods. The red fields show our preferred range of μ2 (9 to 11.6) and κ2 (4, 5) for continental crust,
and the red dots highlight solutions with values in these ranges that also have T3 ages > 2.45 Ga in accordance with the S-MIF evidence.
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boundaries were set as follows: μ2 was allowed to vary between 1 and 12, κ2 was
allowed to vary between 4 and 7, μ3 was allowed to vary between 1 and 15, and
κ3 was allowed to vary between 1 and 15. Finally, the randomly generated sets
of values were accepted as plausible only when the difference between the
calculated Pb isotopic values and the target isotopic values of the Pitcairn
component was less than 0.01 as shown in

abs

 �206Pb
204Pb

�
target

−
�206Pb

204Pb

�
a

!
+   abs

 �207Pb
204Pb

�
target

− eq
�207Pb

204Pb

�
b

!

+ abs

 �208Pb
204Pb

�
target

−  

�208Pb
204Pb

�
c

!
< 0.01,

[4]

where the subscript “target” represents the Pitcairn component value
and the subscripts a, b, and c refer to the results of Eqs. 1–3, respectively,

defined above. The Matlab code used for this model is available as
Dataset S1.
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