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Subgraph detection for average detectability of
LTI systems

Nicolas Martin, Paolo Frasca, Senior Member, IEEE, Carlos Canudas-de-Wit, Fellow, IEEE

Abstract—Observation and detection of network systems aim to reconstruct the evolution of the dynamical system based on the
measurement of few nodes. In large-scale networks, reconstructing the exact state of each node becomes harduous and is often
superfluous in practice, since reconstructing an aggregated version of the system can be sufficient. In the light of this observation, we
consider the notion of average detectability: a system is said to be average detectable if it is possible to reconstruct the average of the
subset of its unmeasured nodes. We show here that for a particular type of network systems, that is, negative uniform networks, the
average detectability property is satisfied when the subgraph induced by the unmeasured nodes is regular. Next, we introduce the
relaxed notion of quasi-regularity, which ensures an approximate reconstruction of the average. Motivated by these results, we design
algorithms to detect regular induced subgraphs (RIS) and quasi-regular induced subgraph (q-RIS). We also propose an extension to
detect multiple quasi-regular induced subgraphs (mq-RIS) that is meant to reconstruct the average of several subgraphs of the system.
Finally, we apply our method to the estimation of a linearized SIS model of epidemic diffusion that takes place over a simulated contact
network between the largest cities of France.

Index Terms—Network systems, Regular induced subgraph, Observability, Detectability, Network epidemics
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1 INTRODUCTION

In the study of dynamical systems over networks, observation
problems aims to reconstruct the state of the whole system by
knowing only a fraction of the states [1]. This subject has been
widely studied and has raised the question of the choice of the
measured nodes to improve the reconstruction [2], [3], [4]. While
this issue has been solved in some cases, in large-scale networks
we often have to leverage a limited number of sensors. Taking
into account this complexity and the cost of sensors, it is often
difficult to reconstruct the state of a large-scale network. In the past
decades, several graph-theoretical approaches for controllability
and observability of network systems have been proposed [5], [6],
[7], [8]. Most of these works aim to reconstruct or to control the
whole state of the systems. However in numerous cases, there
is no need to reconstruct the state of each node, but only an
aggregation of these states. Recently, Niazi et al. [9], [10] took
advantage of this observation and proposed the notions of average
observability and average detectability. These notions refer to
the reconstruction of the average state of the unmeasured nodes
respectively in closed-loop and in open-loop. In particular, in an
average detectable system, it is possible to design an open-loop
observer estimating the average of the unmeasured nodes such
that the error converges to zero. In the following, we will only
focus on this latter notion. In [9] the authors propose a sufficient
condition for average detectability, which allows testing if a given
network and a given subset of measured nodes form an average
detectable system. If it is possible to choose the placement of
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the measured nodes, a question emerges: given a network system
what is the smallest subset of measured nodes fulfilling the average
detectability condition? Said otherwise, what is the smallest subset
of nodes to observe in order to be able to reconstruct the average
of the unmeasured nodes? This is the question we address through
this article.

In order to transform the condition for average detectability
into a structural condition, we will restrict ourselves to a particular
type of system: negative uniform graphs. With such system, when
a subgraph of unmeasured nodes forms a regular graph1, then
the system is average detectable. Hence, our problem becomes
detecting the largest regular induced subgraph (RIS) out of a
given graph. The question of finding induced subgraphs with
particular properties has been addressed in several works. For
example, we can cite the maximum clique problem [11] which
has implications, in particular, in social networks; Frequent subtree
mining [12] which is applied to data analysis; Induced subgraph
isomorphism problem [13] or its variant as Snake-in-the-box
problem or the maximum independent set problem. In most cases,
these problems are either oriented to data analysis or are graph-
theoretic problems with no direct application. To our knowledge,
the present work is the first to use an induced subgraph problem
for a reconstruction concern. As said, here the objective is also to
detect subgraph with a particular property which is regularity. The
regular subgraph detection have been studied in different contexts
and after introducing this property, we propose a brief review of
the works in this domain in Section 2.

However, the regular induced subgraph detection raises some
difficulties: first, the hypothesis on the system are very restrictive
and concern few real systems. Moreover the problem is known
to be NP-hard and so it is not scalable. Finally the solution found

1. Here, we call regular a graph in which all the nodes have the same out-
degree. The term out-regular would be more accurate, but we prefer regular
for readability concerns.
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implies often to measure a large proportion of nodes. Therefore, in
Section 3, we relax the problem by introducing the notion of quasi-
regularity, which qualifies a graph which is close to be regular. We
derive then a result linking the error of regularity and the error
of reconstruction: the more regular the unmeasured subgraph is,
the better is the reconstruction. On these grounds, we treat the
problem of quasi-regular induced subgraph detection (q-RIS). We
also extend the results, and the algorithm, to multiple quasi-regular
induced subgraph (mq-RIS). Finally, in Section 4 we present an
application of the mq-RIS approach on an example of epidemic
spreading.

1.1 Systems and graphs

In this article we will consider a directed graphG = (V, E), where
V = {v1, v2, . . . , vn} is the set of nodes and E ∈ V×V is the set
of directed edges. SetNout(v) contains the out-neighbors of node
v and its cardinality degout(v) is the outdegree of v. The graph
can be represented by its weighted adjacency matrix A ∈ Rn×n,
whose ij-th entry is given by

Aij =

{
aij if (vi, vj) ∈ E
0 otherwise (1)

where aij is the weight of edge (vi, vj) ∈ E : node vi is influenced
by vj if aij 6= 0. We associate to this graph a linear time-invariant
(LTI) network system

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

, (2)

where A is the graph adjacency matrix,
x(t) = [x1(t), . . . , xn(t) ]T is a state vector,
u(t) = [u1(t), . . . , up(t) ]T is an input vector, and
y = [x1(t), . . . , xk(t) ]T an output vector that contains a sample
of k components of the state vector x (so that C =

[
Ik 0

]
).

The nodes V1 := {v1, . . . , vk} are called the measured nodes
while V2 := {vk+1, . . . , vn} are the unmeasured nodes. We
denote m the number of unmeasured nodes: m = n − k. We
also denote by x2(t) = [xk+1(t), . . . , xm(t) ]T the states
of unmeasured nodes and by xav2 the average value of the
unmeasured nodes:

xav2 =
1

m
1T x2 (3)

Correspondingly, we decompose the matrices A and B as follows:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
. (4)

WithA11 ∈ Rk×k,A22 ∈ Rm×m and all the other block matrices
of corresponding dimensions. We denote by σ the deviation vector
defined as:

σ = x2 − 1xav2 =


xk+1 − xav2

xk+2 − xav2
...

xn − xav2

 (5)

This vector contains the difference between the value of each
unmeasured nodes and the average value of the unmeasured nodes.
We have 1Tσ = 0. The evolution of xav2 is described by the
following equation:

ẋav2 (t) = αxav2 (t) + gy(t) + bu(t) + ησ(t) (6)

with α = 1
m1TA221, g = 1

m1TA21, b = 1
m1TB2 and η =

1
m1TA22. In our analysis of system (2), we shall from now on
make the following standing assumptions: matrix A is Hurwitz
stable and the input u is bounded.

2 EXACT AVERAGE DETECTABILITY

Our estimation objective is estimating the average state of the
unmeasured nodes. More precisely, system Σ with a subset V1 of
measured nodes is said to be average observable if there exists a
scalar observer x̂av2 that converges to the true average:

lim
t→∞

|x̂av2 (t)− xav2 (t)| = 0.

In order to verify this property, we choose to make use of the
following scalar observer

˙̂xav2 = αx̂av2 + gy(t) + bu(t). (7)

In the following, we first exhibit a sufficient condition for average
detectability. We will then introduce a special class of systems, for
which finding a subgraph V1 that ensures average detectability
amounts to finding a regular induced subgraph. This fact will
lead us to investigate the problem of finding large regular induced
subgraphs in a graph.

In order to introduce the condition for average detectability we
first define a graph-based notion.

Definition 1 (Outflow balanced graph). Let G be a directed
weighted graph represented by its adjacency matrix A. G is said
to be outflow balanced if the sum of the weights of the outgoing
edges is the same for every nodes, which is :

∃ γ ∈ R, 1TA = γ1T . (8)

If moreover γ < 0, then the graph is said to be negatively outflow
balanced.

This definition provides a simple sufficient condition for aver-
age detectability.

Proposition 1 (Sufficient condition for average detectability).
Consider system Σ associated to the graph G and denote by GV2
the subgraph of G induced by the subset of unmeasured nodes.
If GV2 is negatively outflow balanced, then system Σ is average
detectable.

Proof. Even though this result can be derived as a consequence of
the theory in [9], [10], we prefer to include a self-contained proof,
which is instructive and will inspire our results in Section 3.

Let x̃av2 = xav2 − x̂av2 be the reconstruction error. By combin-
ing (6) and (7), the error dynamics reads

˙̃xav2 =
1

m
1TA221 x̃av2 +

1

m
1TA22σ(t).

By the assumption 1TA = γ1T and since 1Tσ(t) = 0, the
dynamics simplifies to ˙̃xav2 = γx̃av2 , which is asymptotically
stable.

This result implies that, if the set of nodes can be partitioned
into two subsets such that one induced subgraph is negatively
outflow balanced, then measuring the nodes outside this subgraph
makes the system average detectable. Figure 1 gives an example
of such a system.
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Fig. 1. By measuring the node v2, the unmeasured nodes V2 =
{v1, v3, v4, v5} induce a negatively outflow balanced GV2

with γ = −2.
Thus, the system is average detectable.

2.1 Regular Induced Subgraph detection
Motivated by Proposition 1, we shall consider the following
problem.

Problem 1 (Negatively outflow balanced induced subgraph detec-
tion). In a given graph G, find the largest induced subgraph of G
which is negatively outflow balanced.

However, in an arbitrary graph with independent weights there
is, almost surely, no outflow balanced subgraph. That being said,
two approaches can be considered: either we restrict ourselves
to particular systems for which we know that negatively outflow
balanced subgraphs can be found, or we relax the notion of
average detectability and hence the notion of regularity. The latter
solution will be explored in Section 3 where we introduce the
notion of quasi-regularity. In the remainder of this section, we
focus on the first solution: we treat the problem for a particular
type of systems: the negative uniform graphs defined hereafter.

Definition 2 (Negative uniform graph: NUG). A graph G, repre-
sented by the adjacency matrix A, is said to be negative uniform
if all its non-zero weights are equal and negative, which is
Aij ∈ {0; a} with a < 0.

Given this definition, the following fact is immediate.

Proposition 2 (Sufficient condition for average detectability of
negative uniform graph). Let Σ be a system associated to a
negative uniform graph G. Σ is average detectable if GV2 is
regular.

Remark 1. While negative uniform graph is a quite restrictive case,
we can also consider positive uniform graph with a same negative
self-loop η. Indeed in this case, we have 1TA = a degout−η1,
and even with a > 0 the right side can be negative if the self-
loop η is large enough. Proposition 2 remains true if the system
is associated with such a graph. This type of graphs includes for
example some heat systems with high dissipation [14]. The model
presented in section 4 falls also in this sclope. In the following,
we only consider negative uniform graph for the simplicity of the
development.

We can now formulate the problem arising from Problem 1
restricted to the negative uniform graphs case.

Problem 2 (Regular induced subgraph detection). Let G be a
negative uniform graph. We look for the largest regular induced

(a) Detecting a regular induced subgraph
with out-degree 2 (highlighted).

(b) The system is excited with sinusoidal inputs. The thin lines are
the states of the unmeasured nodes (the highlighted regular subgraph)
and the thick blue line their average. The thick red line is the state of
observer (7), which converges to the average value.

Fig. 2. Illustration of the proposed approach: (a) from an initial negative
uniform graph, a regular subgraph of unmeasured nodes is chosen; (b)
the observer (7) is used to estimate the average value of the unmea-
sured nodes.

subgraph (RIS) of G, which is:

max
I⊂V
|I|,

s.t. GI is regular.
(9)

where GI is the subgraph of G induced by the subset of nodes I .

By measuring the nodes outside the subgraph solution of
Problem 2, we obtain an average detectable system. Figure 2
illustrates this problem.

Solving Problem 2 can benefit from the extended literature on
the k-regular induced subgraph (or k-RIS) problem, which differs
from Problem 2 in fixing the desired degree k.

• Complexity of the k-RIS problem: A first work [15]
showed that the problem in the case k = 0 is NP-
hard. Then several works [16], [17] generalized the result
for any k and different type of graphs. Even though
its complexity is polynomial for some particular types
of graphs [18], [19], the k-RIS problem is also hard to
approximate [20].

• Algorithms for the k-RIS problem: For k = 0, [21],
[22] propose fast-exponential algorithms (i.e. in O(cn)
with c ≤ 2). For any k, a fast-exponential algorithm based
on a branch-and-bound approach is proposed in [23] and
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a polynomial algorithm for a particular type of graphs in
[24]. However these results consider undirected graph and
standard regularity (not out-regularity as we need here).
Still, the branch-and-bound approach proposed in [23] can
be extended to our case and will be presented later.

• Upper bounds on the size of the largest k-RIS: Facing
the complexity of the problem, it is interesting to obtain
an upper bound on the size of the optimal solution. An
intuitive upper bound on the size of the largest k-RIS
is the size of the k-Core of the graph. The k-Core is a
subgraph obtained by iteratively removing nodes with a
degree smaller than k: since a k-Core is a subgraph in
which all vertices have degree at least k, we have that
k-RIS(G) ⊂ k-Core(G). More refined upper bounds
have been proposed for any k [16], [25] or for particular
values of k [15], [26].

These insights will be the basis for our approach to RIS, which
we elaborate next.

2.2 An algorithm for the RIS problem

As discussed in the previous section, the literature proposes only
methods to find the largest k-regular induced subgraph but nothing
to solve the problem for every k. A simple approach consists in
solving the problem for each k and then keeping the best solution:
We denote RIS(G) and k-RIS(G) respectively, the largest regular
and k-regular induced subgraphs of G. We have then:

RIS(G) = max
k∈N

k-RIS(G) (10)

Some tricks can be used to optimize the approach:

• As seen in the previous section, there are some meth-
ods allowing to find an upper bound on k-RIS(G). We
denote this upper bound by θk(G). While testing the
value of k-RIS(G) for every k, if θk0(G) is smaller
than the largest k-RIS(G) so far, it is useless to com-
pute k0-RIS(G). Noticing that the computation of this
upper bound is faster by far than the computation of
the k-RIS(G), this helps the computation of the regular
induced subgraph.

• The cases with k = 0 and k = 1 are particular and a
specific algorithm can be applied.

• Using an approximate algorithm for the k-RIS would
imply a sub-optimal solution for the RIS which can be
interesting if the approximation is good.

Based on these remarks, we propose Algorithm 1 to detect the
largest regular induced subgraph within a given graph.

Algorithm 1 Regular induced subgraph detection
Require: G

1: RIS = []
2: for k = 0 : max degout do
3: θk = UpperBound k-RIS(k,G)
4: if θk > |RIS | then
5: k-RIS = Find k-RIS(k,G)
6: RIS = max(RIS, k-RIS)
7: end if
8: end for

Ensure: RIS

This is actually a meta-algorithm as we only give the skeleton
of the method and not the sub-algorithms UpperBound k-RIS
and Find k-RIS. The choice of these sub-algorithm is discussed
hereafter.

Our choice for the first sub-algorithm Upper-
Bound k-RIS(k,G) is computing the k-Core, as detailed
in Algorithm 2.

Algorithm 2 k-Core
Require: G, k

1: I ← Nodes in G with out-degree < k
2: while I is not empty do
3: Remove I from G
4: I ← Nodes in G with out-degree < k
5: end while
6: θk ← number of nodes in G

Ensure: θk an upper bound on the size of the k-RIS

The second sub-algorithm Find k-RIS(k,G) is described in
Algorithm 3. It is an extension of the branch-and-bound approach
proposed in [23]. It is a recursive algorithm designed as follows:
Given a graph G and a degree k, we first compute the k-Core of
G (line 1). If the graph obtained is k−regular then the k-RIS is
found (line 3) and the algorithm terminates. Otherwise there is at
least one node, denoted r, with a degree larger than k (line 5).
It is clear that either r is not in the k-RIS either (at least) one
of its successors is not (line 6). Thus, we consider the subgraphs
obtained by removing r or a successor of r (line 8). Finally we
compute the k-RIS for each of them (line 9) and select the largest
one (line 11).

Algorithm 3 k-RIS

Require: G, k
1: G← k-Core(G, k)
2: if G is k−regular then
3: k-RIS← G
4: else
5: r ← a node of G with degree > k
6: I ← Nout(r) ∪ r
7: for i ∈ I do
8: Gtmp ← remove i in G
9: k-RIStmp{i} = k-RIS(Gtmp, k)

10: end for
11: k-RIS = max(k-RIStmp)
12: end if
Ensure: k-RIS

Simulation 1. Figure 3 presents a result obtained with Algorithm 1
(and Algorithms 2-3). Considering that the graph is negative
uniform, the system is average detectable by measuring the 8
nodes outside of the red subgraph.

2.3 Discussion
The approach we have taken so far suffers from some limitations,
which we summarize below:

• Negative uniform systems, which motivate our search
for RIS, are rare. Even if we consider positive uniform
systems with large negative self-loop, as discussed in
Remark 1, the applications are limited (see Section 4 for
an example).
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Fig. 3. Left: The largest regular induced subgraph found is highlighted in
red. Thick lines are used for two-way edges for better readibility. Right:
The upper bound (k-Core) is displayed in blue for k ∈ {1; 2; 3; 4}. Black
dots are the real size of k-RIS for k ∈ {1; 2; 3}: 4-RIS is not computed,
as σ(4) < |3-RIS|. The red dotted line shows the size of the RIS.

• RIS is a fragile notion: for example, a grid graph is very
close to regular (only the nodes on the border have a
smaller degree) but does not fulfill the definition.

• The RIS problem is hard to solve: there is no specific
method for the RIS problem besides solving multiple
NP-hard k-RIS problems.

• The largest RIS in a graph is often very small, and
suboptimal heuristics return even smaller subgraphs.

Therefore, the RIS detection approach introduced in this section
is difficult to apply to real-world problems. This fact motivates
the question whether it is possible to accept some error on
the regularity while preserving an efficient reconstruction of the
average. To this purpose, in the next section we introduce the
notion of quasi-regularity.

3 APPROXIMATE AVERAGE DETECTABILITY

In Proposition 1, the sufficient condition for average detectability
was 1TA22 = γ1T with γ < 0: in order to relax the problem, we
consider now that this equality is no longer verified. Recalling (8),
we define

γ =
1

m
1TA221,

and we introduce a degree perturbation vector

sT = 1TA22 − γ1T

and a regularity error

ε =
‖s‖1
m|γ|

. (11)

The following proposition extends Proposition 1 and provides a
relation between this regularity error and the reconstruction error,
defined as

ess = lim sup
t→∞

|xav2 − x̂av2 |. (12)

Proposition 3 (Regularity and reconstruction errors). If γ < 0,
then the reconstruction and regularity errors satisfy

ess ≤ max
i
σ̄i

ε

1− ε
, (13)

where σ̄i = lim sup
t→∞

|σi(t)|.

Proof. As in the proof of Proposition 1, we denote by x̃av2 :=
xav2 − x̂av2 the reconstruction error. From equations (6) and (7) we
have then:

˙̃xav2 (t) = αx̃av2 (t) + ησ(t) (14)

where σ defined in (5) is the deviation from average,

α =
1

m
1TA221 =

1

m
(γ1T + sT )1 = γ +

1

m
sT 1

and, since 1Tσ(t) = 0,

ησ(t) =
1

m
1TA22σ(t) =

1

m
(γ1T + sT )σ(t) =

1

m
sTσ(t).

Therefore, (14) becomes

˙̃xav2 (t) = (γ +
1

m
sT 1)x̃av2 (t) +

1

m
sTσ(t),

which is a stable dynamics by virtue of γ < 0. Since A is stable,
σ(t) is bounded in magnitude and∣∣∣∣lim sup

t→∞
x̃av2

∣∣∣∣ ≤ − 1
m |s

T σ̄|
γ + 1

ms
T 1
. (15)

Finally,

−
1
m |s

T σ̄|
γ + 1

ms
T 1

=
|sT σ̄|

m|γ| − sT 1
≤ |sT σ̄|
|mγ| − |sT 1|

≤ ‖s‖1 maxi σ̄i
m|γ| − ‖s‖1

and (13) follows from the definition of ε in (11).

According to Proposition 3, in order to keep the reconstruction
error, it is interesting to find a subgraph having small regularity
error ε. Relation (13) is supported by simulations in the following
section.

Remark 2. As the reconstruction error ess grows with the regular-
ity error ε, it actually grows with the absolute error of regularity
‖s‖1 and decreases with the degree of regularity γ and the size
of the unobserved subgraph m. This means that the reconstruction
will be better if the subgraph of unmeasured nodes is large, close
to be regular and with a large degree of regularity.

3.1 On the link between regularity error and recon-
struction error
Before investigating the q-RIS detection problem, we present
some simulations enlightening the relation described in Proposi-
tion 3. To this end, we first introduce a family of graphs for which
we can control the regularity.

Definition 3 (p−reg graph). Given a graph G, we denote
Nout(i) = {j, (j, i) ∈ E}, the set of successors of i.
A graph is said p−reg if it verifies:{

|Nout(i)| = 1 if i is odd
|Nout(i)| = p if i is even (16)

Graphs of this family have the particularity to have one half of
their nodes with out-degree 1 and the other half with out-degree
p. In particular if p = 1, the graph is 1-regular (it is a cycle).
By increasing the value of p, the regularity worsens as shown in
fig. 4. In the following numerical simulations, we consider a series
of graphs composed of a p-reg graph and one additional measured
node as in fig. 5. By tuning the value of p we can modify the
regularity of GV2 while preserving the shape of the system. The
graph used in the experiment contains 101 nodes (100 nodes in
the p-reg graph plus one extra node to measure). We add inputs
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Fig. 4. The family of p−reg graphs allows to control the regularity of a
graph.

v1

v2 v3

v4 v5

v6 v7

v8 v9

Fig. 5. A 2-reg graph as defined in Definition 3 with an additional node
to observe. For the experiments, a similar graph is used with 100 nodes
and p varying from 1 to 100.

into 10% of the nodes (randomly chosen) to persistently excite the
system. These inputs are chosen as sine waves with gain, phase
and frequency randomly chosen as:

∀ i ∈ [1, . . . , p], ui(t) = Λ sin(ωt+ φ) (17)

with Λ ∈ [0.1, 10], ω ∈ [0.01, 1] and φ ∈ [0, 2π]. We compare
the average value of the p-reg subgraph and the reconstructed
value of this average for different value of p. The results are
displayed in fig. 6. We notice that as predicted by Proposition 3
the error of reconstruction grows with the error of regularity. This
simulation enlightens the fact that by minimizing the error of
regularity ε we can reduce the error of reconstruction ess.

3.2 Quasi-Regular Induced Subgraph detection
While detecting quasi-regular, if a small error is imposed on
the regularity, the subgraph found might be small (and so the
number of nodes to measure would be high). In the other hand,
Proposition 3 ensures that the reconstruction would be better.
Consequently, a compromise between the number of measure and
the quality of the reconstruction has to be found. An interesting
way to implement this compromise is by fixing a threshold for
the error of regularity and then find the largest subgraph whose
regularity error is lower than this threshold. This leads to the q-
RIS detection problem defined hereafter.

Fig. 6. Error of reconstruction in function of the error regularity for
the family of p-reg graph. For each p ∈ [1, ..., 100], 25 p-reg graph
are generated with different inputs. The error of reconstruction is then
computed as the bias between the signal and the reconstruction at
t = 1000 (which is a good approximation of ess). This emphasizes the
link between the regularity of a subgraph and the ability to reconstruct
its average.

Problem 3 (Quasi-regular induced subgraph detection). Let G be
a graph and ε0 > 0 a threshold for the quasi-regularity. We look
for the largest quasi-regular subgraph of G, which is:

max
I⊂V
|I|,

s.t. ε(GI) < ε0
(18)

where ε(G) is the regularity error (11) associated to G.

Note that this problem may have no feasible solution if ε is
chosen to be too small. After this caveat, we present a beam
search algorithm providing a sub-optimal solution to Problem 3.
The principle of beam-search algorithms is as follows: A set of
candidate solutions is considered as a seed, a set of solution
deriving from these candidate is considered and the β most
promising are memorized (β is called the beam width) and form
the new set of candidate. The algorithm stops when a candidate
solution is satisfying enough or when the new candidates are no
more satisfying. In this latter case, the final solution is chosen
among all the previous candidates.
For the quasi-RIS detection the algorithm is described in Algo-
rithm 4: We initialize the set of candidates with the singletons of
each node (line 1). Then we iterate while one of the candidate
has a regularity error smaller than the minimum accepted ε0
(line 2) (see Remark 3 for a discussion on this point). At each
iteration, new candidates are derived from the current candidates
(line 4-5). These new candidates are all the subsets composed
by one current candidate c and any other nodes of the subset S .
Finally all these new candidates are united (line 7), the β best
form the new candidates (line 8) and the best one is stored as
quasi−RIS (line 9). By repeating this operation several times,
the size of the candidates grows until none of the candidate have
a regularity error small enough. At the end, the candidate with
the smallest regularity error is chosen. Figure 7 illustrates this
algorithm. Beam-search algorithms, like this one, are a type of
greedy algorithm and hence do not provide an optimal solution.
However the computation is relatively fast and the solutions found
are rather good, as we will see.

Remark 3. In Algorithm 4 the while loop will stop if no candidate
has a regularity error small enough. However, this condition is
relatively strict as it is possible that it is not verified at some
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Algorithm 4 quasi-RIS detection
Require: G: graph with n nodes, ε0 maximum acceptable error,

β beam width
1: Cand← {{1}, {2}, . . . , {n}}
2: while minI∈Cand ε(GI) < ε0 do
3: for c ∈ Cand do
4: S ← [1, . . . , n]\c
5: Jc =

⋃
s∈S (c ∪ {s})

6: end for
7: Ω←

⋃
c Jc

8: Cand← β smallest ε(Gc) for c ∈ Ω
9: quasi-RIS← smallest ε(Gc) for c ∈ Ω

10: end while
Ensure: quasi−RIS

Fig. 7. Illustration of Algorithm 4 (on an undirected graph for readability).
Here the beam width is β = 2, so at each step the best two candidates
are kept (solid line). Two small modifications are made to make the
example more readable: the seed is a single candidate while in the
algorithm the seed is composed of the singletons of each node; the
new candidates are the subsets composed of a previous candidate and
a node neighboring this candidate, while the latter node can be arbitrary
in the algorithm.

iteration but it will be verified in the future. Thus, a relaxed
condition would be to stop if the the condition is violated several
iterations in a row. Then the solution would be the last candidate
verifying the condition.

Remark 4. In Algorithm 4, the new candidates are chosen in a
way that may induce a disconnected subgraph. However, for some
applications the connectedness of the unobserved subgraph may
be required. For example, when the network has a geographical
nature (as an urban traffic network or an electrical grid), it is
relevant to estimate the average of a geographical area. In this

(a) In red, the quasi-regular sub-
graph detected with algorithm 4.

(b) We added noises in the graph of
(a) to emphasize the efficiency of
the algorithm to find a consistent
subset of nodes.

(c) Reconstruction of the average of the quasi-regular subgraph obtained in (a).

Fig. 8. Illustration of the q-RIS approach. Our algorithm is able to detect
a subgraph (a) which is regular enough to ensure a good reconstruction
of its average state (b).

case, the algorithm can be adapted by changing line 4 with
S ← Nin(c) ∪ Nout(c): Fig. 7 actually illustrates this variant.
Clearly, a connectedness constraint entails some potential loss in
the objective function: see [27] for a related discussion.

Simulation 2. Algorithm 4 does not enjoy any suboptimality
bound: we therefore explore its performance by simulations. To
this purpose, we construct irregular graphs that however contain
a quasi-regular subgraph and test the ability of the algorithm
to detect it. A representative example is presented in Fig. 8(a-
b), together with the average reconstruction corresponding to the
subgraph in (a) in Fig. 8(b). In this simulation the parameters are
ε0 = 0.1 and β = 300, which means that at each step we conserve
the 300 best candidates. We observe that the algorithm is able to
identify correctly the optimal subgraph.

We have seen how to detect a regular or quasi-regular subgraph
in order to estimate their average. We propose to generalize
this approach, to detect several subgraphs and estimate different
averages. The next section presents an extension of the current
results to the multiple subgraphs case.

3.3 Multiple quasi-Regular Induced Subgraphs (mq-
RIS)
In the previous problems we tried to find one regular or quasi-
regular subgraph in order to estimate its average. We wonder,
now, to which extent it is possible to detect several regular or
quasi-regular subgraphs and estimate their respective average.
Considering the limitations posed by the regularity case evoked in
section 2.3, we focus only on the quasi-regular problem. However
a similar generalisation can be led for the regularity case. In the
RIS and q-RIS problems we wanted to have the minimum number
of nodes to measure leading to the minimisation problems 2 and 3.
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Here again we have the same objective to minimize the number
of measured nodes. Thus, we want to find disjoint quasi-regular
induced subgraphs GI1 , . . . , GIm maximizing the cardinality of
the union of all the subgraph. We denote I = [I1, . . . , Im] the
set of the subsets. Moreover these subgraphs can not share any
successors, i.e. nodes outside the subgraph and pointed by a node
of the subgraph. This is because the successors of a subgraph are
measured to estimate the average value of the subgraph. If a node
is pointed by two nodes belonging to two different subgraphs, the
condition for the reconstruction does not hold (see [9]).

Problem 4 (Multi quasi-regular induced subgraph detection). Let
G be a graph and ε0 > 0 a threshold for quasi-regularity. We
look for a set of quasi-regular subsets I minimizing the number
of nodes to measure, which is:

max
I=[I1,...,Im]

∣∣∣∣∣∣
⋃
j

Ij

∣∣∣∣∣∣ ,
s.t. ∀ i, ε(GIi) < ε0

∀ i, j, (Ii ∪Nout(Ii)) ∩ (Ij ∪Nout(Ij)) = ∅

(19)

The second constraint translates the non-overlapping of the
subgraphs and their successors. The quasi-RIS detection Algo-
rithm 4 presented in the previous section can be extended almost
straightforwardly to the multiple subgraphs case as follows: a
first quasi-regular subgraph is detected, the subgraph and its
neighborhood (which are the nodes to measure) are removed from
the graph and the process is repeated with the new graph. To
limit the number of nodes to measure it is interesting to limit the
number of neighbors of the subgraph selected at each iteration.
To this aim, we propose to find at each iteration the subgraph
maximizing |I|/|Nout(I)| i.e. the ratio between its size and the
size of its neighborhood instead of the subgraph minimizing ε(GI)
in Algorithm 4.

The algorithm for multi quasi-RIS detection is described in
Algorithm 5 where quasi-RIS? refers to the algorithm 4 where
line 9 has been replaced by

quasi- RIS = arg max
c∈Ω, ε(Gc)<ε0

|c|
|Nout(c)|

(20)

Algorithm 5 Multi quasi-RIS detection
Require: G: graph with n nodes, ε0 maximum acceptable error,

β beam width, imax maximum number of subgraph detected
1: I = []
2: I = quasi-RIS?(G, ε0, β)
3: while I is not empty do
4: I = I ∪ I
5: G = remove I ∪Nout(I) from G
6: I = quasi-RIS?(G, ε0, β)
7: end while

Ensure: I set of subsets inducing multiple quasi-RIS

Simulation 3. We propose here a simulation of Algorithm 5 for
the mq-RIS detection. To this end, we consider an initial graph
(fig. 9) designed with five zones more regular than the average.
This aims to test the capacity of the algorithm to detect regular
subgraphs which are almost invisible to the naked-eye. The result
of the simulation is displayed in fig. 10. In this case, the quasi-RIS

Fig. 9. The initial graph is a grid with some irregularities making certain
zones more regular. The algorithms aims to find these zones.

detection algorithm is applied five times before no more satisfying
subgraphs can be found. At each step, we can see that the subgraph
and its out-neighborhood found at the previous step is removed
and the algorithm is applied to the remaining part of the graph.

4 APPLICATION TO NETWORK EPIDEMICS

In this last section we apply the mq-RIS algorithm to a real-world
case: we consider the spreading of a disease over a contact network
of the main cities in France and we aim to estimate the evolution
of the proportion of infected people in different areas.

4.1 The epidemical model

Several models have been developed to capture the mechanisms
of disease spreading, the most common ones are the so-called
compartmental models. In these models, the population is divided
in compartments representing the state (infected, susceptible, re-
covered, ...) of the individuals [28], [29], [30]. Moreover these
type of models may have an underlying network structure. In
this case, nodes represent individuals or group of individuals and
edges represent interactions between individuals or between the
groups. A state is assigned to each node and a dynamical equation
describes the evolution in function of the state of the node, the
state of its neighbors and the parameters of the disease. Among
this network compartmental models, we consider here one of the
most commonly used: the deterministic SIS model. In this model,
individuals can be susceptible (S) or infected (I) and can pass from
one state to another with a certain probability: as shown in fig. 11,
an infected individual may recover with probability δ (the recovery
rate) and a susceptible individual may be infected with probability
β (the infection rate) scaled by the state of its neighborhood. If we
define as pi(t) the probability of node i to be infected at time t,
the SIS dynamics postulate

ṗ(t) = (AB −∆)p(t)− P (t)ABp(t), p(0) = p0, (21)

where p = [p1, . . . , pn] are the proportions of infected peo-
ple in each group (and P = diag(p)), A is the adjacency
matrix of the underlying network, B = diag(β1, . . . , βn),
∆ = diag(δ1, . . . , δn) are the parameters of the epidemic and p0

is the initial proportion of infected people in each group. In order
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(a) A first subgraph is found (in blue). On the right the evolution of the
regularity error through the iterations. The red dot corresponds to the iteration
where the subgraph maximizing (20) is found.

(b) The first subgraph found and its successors are removed and the algorithm
is applied again to detect a second subgraph (in blue).

(c) The second subgraph found and its successors are removed and the
algorithm is applied again to detect a third subgraph (in blue).

(d) The graph obtained when merging the subgraphs obtained at each steps. By
measuring the remaining nodes, the average of the subgraphs detected can be
estimated.

Fig. 10. (a-c) left: in blue the subgraph within the current graph; right: the evolution of the regularity error of the best candidate is displayed through
the iteration. Moreover a red dot shows the iteration of the selected subgraph. Two other subgraphs are found but it is not shown here. (d) represents
the graph obtained by merging the different subgraphs. This reduced graph offers an estimation of the initial graph, and thus can be seen as an
aggregation of it.

Infected Susceptible

β

δ

Fig. 11. Sketch of the SIS model

to use the approach developed before, we consider a linearized
version [30] of the dynamics in (21):

ṗ(t) = (AB −∆)︸ ︷︷ ︸
A

p(t), p(0) = p0 (22)

It is apparent that this system is positively uniform with negative
self-loop as discussed in Remark 1. In order to include sources
of infection that are external to the population (such as travellers
from contaminated areas), we define matrix B ∈ {0; 1}n×b to
identify nodes that are in contact with a source of infection and
function u(t) ∈ Rb×1 to represent the temporal evolution of these
sources of infection. By including these inputs u, the dynamics

becomes
ṗ(t) = Ap(t) + Bu(t), p(0) = p0. (23)

It is clear how important it is to estimate the evolution of a
disease, for instance in order to take appropriate sanitary measures
or to study the efficiency of a treatment. As it is very costly
to determine the state of each individual, one needs methods
to reconstruct the spreading of the epidemic per areas and with
relatively few measurements.

We propose here to use our approach to estimate the evolution
of the proportion of infected people in different areas, by mea-
suring the state of few groups. In order to construct a concrete
example, we shall consider the above linearized SIS dynamics
over a contact network beween the main French cities.

4.2 Case study: Construction of the graph
We consider a graph of interaction between groups of individuals
at a country scale. The graph is structured at two different scales:
a level within the cities and a level between cities. It is known
that at the level of a city, individuals are strongly interconnected
and tend to form clusters [31], [32]. Here we use the Watts-
Strogatz model [33] to capture the features of social networks.
At the level of the country, there are fewer connections between
groups of different cities and the number of connections between
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Fig. 12. Graph of interaction of the main cities of France. It is composed
of 1404 nodes, each representing a population of 5000 individuals.
The subgraphs within the cities is based on the Watts-Strogatz model
while the graph between cities is a random graph where the probability
of connection between two nodes decreases exponentially with the
distance.

Population
Number of groups (nodes) 1404
Pop. per groups 5000
Number of cities 22
Graph
Model within cities Watts-Strogatz
Mean degree K 10
Prob. rewire β 0.1

Prob. connection inter-cities ed
2/10

850
Number of input 323

SIS model
Infection rate β 0.05
Recovery rate δ 0.98

TABLE 1
Parameters for the graph of interaction and the SIS model

two cities is proportional to their number of inhabitants and
inversely correlated to their distance. We generate such a network
by considering twenty-two of the most populated cities in France
(fig. 12). The details of the construction of the graph are given in
table 1.

4.3 Simulation

Once the graph is obtained, we are ready to apply our algorithms.
We begin by Algorithm 5, whose output is presented in Figure 13.
The graph has been divided in 11 subgraphs containing 1112
nodes in total. Thus, only 292 nodes remains to measure which
represents only 20.80% of the nodes. Some of the parts fit cities
while others include a whole region. The figure gives also the
regularity error ε, the number of nodes |V| and the mean degree k
for each subgraph.

Next, since we have this partition where each subgraph is
quasi-regular, it is possible to estimate the value of the average
inside the subgraphs. We choose β = 0.05 and δ = 0.98 and we
add 323 inputs which correspond to the sources of infection.The
inputs are uniformly distributed in the territory and, as previously,
are random sine waves. We use as initial conditions the situation
presented in Fig. 14 and available on www.sentiweb.fr. Figure 15
shows the evolution of the proportion of infected individuals

Fig. 13. Partition obtained via the mq-RIS algorithm 5. The legend gives
the error of regularity, the number of nodes and the mean degree for
each subgraph detected.

Fig. 14. Interpolating map of the number of individual infected with flu
for 100000 inhabitants in January 2019 in France. Map available on
www.sentiweb.fr Réseau Sentinelles, INSERM, Sorbonne Université.

inside each subgraph and the estimation made with the open-
loop observer x̂av2 described in (7). The solid lines are the actual
averages while the dotted lines are the estimated average. Figure
16 shows the evolution of the absolute error for each subgraph. We
observe that, as expected, the estimations errors decrease quickly
and remain relatively small. However, as we did not find exact
regular subgraphs, the system is not detectable and the error does
not converge to zero. Instead there is a small residual error which
is acceptable.

5 CONCLUSION

Based on the recently proposed notion of average detectability [9],
[10], we proposed three methods to choose which nodes to
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Fig. 15. Proportion of infected individuals within each subgraph. The
solid lines are the ground-truth values and the dotted lines are the
average estimated from the measurements.

Fig. 16. Semi-log representation of absolute errors between the ground-
truth value and the estimated value for each subgraph. The errors
decrease but they do not converge to zero.

measure in order to estimate the average state of a system defined
on a graph. Considering a particular type of system, the first
method finds a regular induced subgraph to reach exact average
detectability, i.e. the estimation of the average is asymptotically
unbiased. Due to the limitation of this first problem, we proposed
a relaxation: we focused on the detection of quasi-regular induced
subgraph which results in an estimation of the average with a
bias which depends on the quasi-regularity. The second method
achieves this task. The third method allows to detect several quasi-
regular induced subgraphs to estimate the averages of different
subsets of the system. Finally, we applied our tools to estimate the
evolution of a disease spreading in a contact network in France.
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