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Abstract. The asymptotic behavior of dissipative evolution problems, deter-
mined by complex networks of reaction-diffusion systems, is investigated with
an original approach. We establish a novel estimation of the fractal dimension
of exponential attractors for a wide class of continuous dynamical systems,
clarifying the effect of the topology of the network on the large time dynamics
of the generated semi-flow. We explore various remarkable topologies (chains,
cycles, star and complete graphs) and discover that the size of the network does
not necessarily enlarge the dimension of attractors. Additionally, we prove a
synchronization theorem in the case of symmetric topologies. We apply our
method to a network of competing species systems, for which the coupling
is relevant and propose a series of numerical simulations which underpin our
theoretical statements.

Keywords. Dynamical system; reaction-diffusion; complex network; exponen-
tial attractor; fractal dimension; synchronization; competing species.

2010 Mathematics Subject Classification: 35A01, 35B40, 35B41, 35K57.

§1. Introduction

In this article, we aim to bring a novel contribution to the study of the asymptotic behavior of
dissipative evolution problems, by establishing an innovative estimation of the dimension of their
possible attractors. We focus on evolution problems determined by complex networks of reaction-
diffusion systems. Those complex networks can be constructed in concordance with a finite graph,
whose vertices are associated with non-identical instances of a given reaction-diffusion system, as will
be shown below. Under reasonable assumptions which cover a wide class of systems, we show that such
complex networks generate continuous dynamical systems whose asymptotic behavior can be described
by a family of exponential attractors of finite fractal dimension. Furthermore, we establish an estimate
of this dimension in terms of the topology of the graph associated to the complex network. Up to our
knowledge, this estimate has never been proved before.

A huge number of studies have been devoted to complex networks of dynamical systems given by
ordinary differential equations (ODE), but only a few works are studying complex networks of dynam-
ical systems given by partial differential equations (PDE). Those studies are motivated by numerous
applications of great interest, including neural networks, epidemiological networks or geographical net-
works (see for instance [2], [5], [7], [8], [39], [42]). Emergent properties and self-organization, such as
synchronization, which is a form of control of the asymptotic behavior, are some of the topics which
are commonly analyzed (see [3], [4], [10], [17], [32] or [35]); but the question to determine the dy-
namics of the network, assuming that the dynamics of each vertex is known and that the topology
of the subsequent graph is given, remains open in the general case. Furthermore, complex networks
of reaction-diffusion systems have also been studied in [6], in order to approximate a fourth order
parabolic problem, which shows again the wide potential of application of complex networks. In the
case of the finite dimension, that is, when the complex network is determined by a system of ODE, it
is sometimes possible to describe partially the asymptotic behavior of the resulting dynamical system.
Nevertheless, in the case of the infinite dimension, that is, when the complex network is given by a
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system of PDE, only sporadic results have been proved. Recently, conditions of synchronization have
been obtained in [2] for a neural network built with the FitzHugh–Nagumo reaction-diffusion system.
Thus it appears essential to develop a novel approach in order to analyze the asymptotic behavior of
complex networks in the case of infinite dimension and to generalize what has been proved in particular
cases.

Here, we establish an upper bound on the fractal dimension of exponential attractors for complex
networks of reaction-diffusion systems. Our main result is stated in Theorem 4, in which we prove the
following asymptotic estimate

dF (M) ≤ 1 + C |Ω|
(
Cg
)d/2

where dF (M) denotes the fractal dimension of an exponential attractor M of the complex network,
Cg is the Lipschitz constant of the coupling operator of the network, Ω is a bounded domain in Rd
with d ∈ {1, 2, 3} and C is a positive constant. Additionally, the Lipschitz constant Cg is estimated
in terms of the number of vertices in the network and the maximal coupling strength (see Proposition
3). In order to derive the estimate of dF (M), we revisit the method proposed in [13]. This technique
has been used several times for the analysis of various parabolic problems in a Hilbert setting (see [15]
for instance) and has been extended to Banach spaces and non-autonomous systems (for instance in
[9], [14], [16]). Furthermore, this method overcomes the well-known defects of robustness of the global
attractor (see [24], [21], [37] or [25]). Here, the main difficulty we face consists in isolating the effect
of the topology of the graph underlying the complex network, with respect to other parameters of the
system. Estimating the dimension of attractors for complex networks can be of great interest in regard
to the synchronization topic, which also makes our contribution original; roughly speaking, complex
networks admitting small attractors are susceptible to exhibit synchronization. However, we emphasize
that synchronization is likely to occur even in the case of complex networks admitting large attractors;
the most relevant example of that situation is analyzed in [3], where it is shown that chaotic dynamics
can be synchronized. Here, we prove that synchronization can be reached in the case of symmetric
topologies (i.e. with bi-directed couplings) , in particular for the complete bi-directed graph topology;
this result is stated in Theorem 5 below. Furthermore, we analyze the effect of remarkable asymmetric
topologies corresponding to oriented chains, cycles and star graphs, and discover that the number of
vertices does not necessarily enlarge the size of the attractors (see Proposition 4). Our framework is
concentrated around reaction-diffusion systems which admit a rich variety of solutions, and can model
a great number of real-world applications (see for instance [19], [26], [27], [29], [33], [40]). In particular,
we apply our theoretical results to a complex network built with multiple instances of a competing
species model (presented in [20] or [22]) for which the coupling is relevant. However, our method can
easily be applied to other parabolic problems.

This paper is organized as follows. In the next section, for the self-sufficiency of the paper, we recall
some important results of functional analysis concerning interpolation spaces, sectorial operators and
semi-linear equations. We also present the concept of exponential attractor of finite fractal dimension
and recall the main assumptions required for using the technique given by [13]. In section 3, we show
how to construct a complex network of non-identical systems, stemming from a reaction-diffusion
system and a finite graph. We briefly demonstrate the existence and uniqueness of local solutions, and
set a minimal number of hypotheses under which the complex network generate a continuous dynamical
system admitting a family of exponential attractors. Our main results are presented in section 4,
where we establish an estimate of the fractal dimension of those attractors in terms of the coupling
parameters. Additionally, we establish sufficient conditions on the topology for synchronization in the
network. We complete our results with the analysis of several remarkable asymmetric topologies. In
the final section, we apply our theoretical statements to a competing species model and illustrate our
approach with numerical simulations.

§2. Preliminaries

In this section, we present some important results of functional analysis that will be used in the present
work, so as to guaranty the self-sufficiency of the article and the comfort of the reading.
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2.1. Functional spaces and interpolation theory

Throughout this paper, the symbol C will denote an absolute positive constant, whereas the symbol
Cα will design a positive constant depending on a given object α.

We will use the classical notations for Lebesgue spaces Lp(Ω) and Sobolev spaces W k,p(Ω), where
Ω denotes an open bounded domain in Rd with regular boundary ∂Ω, p ∈ [1, ∞] and k ∈ N. Those
functional spaces are Banach spaces whose norms will be denoted ‖·‖Lp(Ω) and ‖·‖Wk,p(Ω) respectively.
For p = 2, we simply note Hk(Ω) = W k,2(Ω); Hk(Ω) is a Hilbert space whose inner product will be
denoted

(
· , ·
)
Hk(Ω).

Let X0 and X1 denote two Banach spaces, with dense and continuous embedding X1 ⊂ X0. Several
methods have been proposed (see for instance [1], [38] or [28]) in order to construct a family of Banach
spaces which are called interpolation spaces and denoted

(
[X0, X1]α

)
0≤α≤1. The interpolation spaces

satisfy the following properties:

(i) [X0, X1]0 = X0 and [X0, X1]1 = X1 with isometries;

(ii) X1 ⊂ [X0, X1]α ⊂ X0 with dense and continuous embeddings, for all α ∈]0, 1[;

(iii) for α ∈]0, 1[, it holds that ‖x‖[X0, X1]α ≤ ‖x‖
1−α
X0
‖x‖αX1

,∀x ∈ X1;

(iv) [X0, X1]β ⊂ [X0, X1]α with dense and continuous embeddings, for all coefficients α, β such that
0 ≤ α < β ≤ 1.

Those interpolation spaces can be used in order to define Sobolev of fractional order Hs(Ω) where
exponent s ≥ 0 is not necessarily an integer. In order to avoid any misunderstanding, it is worth
noting that some authors prefer to write (X1, X0)α instead of [X0, X1]α.

2.2. Continuous dynamical systems generated by semi-linear parabolic equations

Here, we recall the definition of a sectorial operator and present an existence theorem for semi-linear
parabolic equations. We refer to [41] or [18] for details concerning this class of equations. Then we
show how semi-linear parabolic equations can generate a continuous dynamical system.

Let X be a Banach space and A a closed linear operator, densely defined in X. Assume that the
spectrum of A satisfies σ(A) ⊂ {λ ∈ C∗, |arg(λ)| < ω}, for ω ∈]0, π] and furthermore that∥∥(λ−A)−1∥∥

L (X) ≤
M

|λ|
,

for all λ ∈ C such that |arg(λ)| ≥ ω, with M ≥ 1. Then A is said to be sectorial in X. If A is a sectorial
operator in X, it is seen that there exists a minimum coefficient ω satisfying the above properties; it
is denoted ωA and called angle of A. Sectorial operators admit fractional powers whose domains can
be described in terms of interpolation spaces (see for instance [41], Theorems 16.7 and 16.9). Let A be
a sectorial operator in X of angle ωA < π

2 , 0 < η < 1, and F a non-linear operator defined in D(Aη)
with values in X. We consider the Cauchy problem

du

dt
+Au = F (u), t > 0,

u(0) = u0,
(1)

with u0 ∈ X. We assume that F fulfills the property:

‖F (u)− F (v)‖X ≤ CF (1 + ‖Aηu‖X + ‖Aηv‖X) ‖u− v‖X , (2)

for all u, v ∈ D(Aη), for a positive constant CF . The following theorem is proved in [41].
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Theorem 1. For all u0 ∈ X, there exists Tu0 > 0 such that problem (1) admits a unique solution
u = u(t, u0) in function space

u ∈ C
(
(0, Tu0 ] ; D(A)

)
∩ C

(
[0, Tu0 ] ; X

)
∩ C 1((0, Tu0 ] ; X

)
,

where Tu0 depends only on ‖U0‖X . Furthermore, u satisfies

‖U(t)‖X + t ‖AU(t)‖X ≤ Cu0 , 0 < t ≤ Tu0 ,

where Cu0 > 0 depends only on ‖U0‖X .

Note that many other existence results have been established for semi-linear equations using semi-
groups methods (see for instance [23] or [30]).

Now we continue with the presentation of the concept of continuous dynamical system generated
by a semi-linear parabolic equation. If Φ is a compact subset of X such that the solutions of problem
(1) stemming from initial conditions in Φ are global and remain in Φ, then Φ is said to be positively
invariant. In that case, one can define the mapping

G : (0, +∞)× Φ −→ Φ
(t, u0) 7−→ S(t)u0

(3)

where S(t) denotes the semi-flow generated by problem (1), defined by S(t)u0 = u(t, u0) for all u0 ∈ Φ
and t ≥ 0. Note that S(t) satisfies S(0) = Id (idendity in X) and S(t) ◦ S(s) = S(t + s) for all non-
negative t and s. Furthermore, Φ admits a metric structure since it can be equipped by the distance
induced by X. If the mapping G is continuous in (0, +∞)×Φ, then the triplet

(
S(t), Φ, X

)
is called

a continuous dynamical system. X is called the universal space and Φ is called the phase space.

2.3. Exponential attractors of finite fractal dimension

Let X be a Banach space and
(
S(t), Φ, X

)
denote a continuous dynamical system with compact phase

space Φ ⊂ X. It is well-known (see for instance [37]) that
(
S(t), Φ, X

)
possesses a global attractor

A = ∩t≥0S(t)Φ, which is used in order to describe the asymptotic behavior of the considered dynamical
system. However, it is seen that the global attractor A may present some defects. Indeed, the rate
of convergence of the solutions towards the global attractor A is not always known; furthermore, A
can react discontinuously to a small perturbation of the dynamical system. For those reasons, the
concept of exponential attractor has been proposed in [13]. Namely, a subset M ⊂ Φ is said to be
an exponential attractor of

(
S(t), Φ, X

)
if it is a positively invariant, compact subset of Φ containing

the global attractor A, which attracts bounded subsets of Φ at an exponential rate for the Haussdorff
pseudo-distance ρH defined by

ρH(A, B) = sup
a∈A

inf
b∈B
‖a− b‖X .

Note that M is not unique, since its image by S(t) is another exponential attractor.
Since M is compact, for any ε > 0, it can be covered by a finite number of closed balls of radius ε.

Let N(ε) denote the minimal number of balls of radius ε which cover M. Then the fractal dimension
of M is defined by

dF (M) = lim sup
ε→0

logN(ε)
log 1

ε

.

The existence of exponential attractors can be established by virtue of the following theorem, which
is proved in [13].

Theorem 2. Assume that the mapping G defined by (3) satisfies the Lipschitz condition

‖G(t, u)−G(s, v)‖X ≤ C
(
|t− s|+ ‖u− v‖X

)
, t > 0, s > 0, u, v ∈ Φ,

for a given positive constant C. Assume furthermore that there exists a positive time t∗, a real coeffi-
cient δ∗ ∈

(
0, 1

8
)

and an orthogonal projection P ∗ of rank N∗ such that either

‖S(t∗)u− S(t∗)v‖X ≤ δ
∗ ‖u− v‖X (4)
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or ∥∥(Id− P ∗)
(
S(t∗)u− S(t∗)v

)∥∥
X
≤
∥∥P (S(t∗)u− S(t∗)v

)∥∥
X

(5)

holds for each pair u, v ∈ Φ. Then the dynamical system
(
S(t), Φ, X

)
admits an exponential attractor

M of finite fractal dimension dF (M). Moreover, the following estimate holds

dF (M) ≤ 1 +N∗max

1,
log
(

1 + 2L∗
δ∗

)
log
( 1

4δ∗
)

 , (6)

where L∗ denotes the Lipschitz constant of S(t∗) on Φ.

The dichotomy principle (4)-(5) is usually called the squeezing property. We shall apply the latter
theorem in Section 4 in order to derive an estimate of the fractal dimension of exponential attractors
for complex networks of reaction-diffusion systems. Note that the squeezing property is proved in [41]
for a wide class of systems, but the fractal dimension is not estimated.

§3. Semi-flow generated by the complex network

In this section, we first show how to construct a complex network of dynamical systems, stemming
from a reaction-diffusion system and a finite graph. Then we prove that the complex network problem
admits local in time solutions and present reasonable assumptions under which the solutions are global.

3.1. Construction of the complex network problem

Let Ω denote an open domain in Rd with d ∈ {1, 2, 3}. We assume that Ω admits a regular boundary
∂Ω and we consider a reaction-diffusion system of the form

∂u

∂t
= D∆u+ ϕ(u) in Ω× (0, ∞),

∂u

∂ν
= 0 on ∂Ω× (0, ∞),

u(x, 0) = u0(x) in Ω.

(7)

Here, u = (u1, . . . , um)T is defined in Ω× (0, ∞) with values in Rm; D is a diagonal matrix of order
m with positive entries; ϕ is a non-linear operator whose form will be detailed below and u0 is a given
initial condition.

Additionally, we consider a graph G =
(
N , E

)
made with a finite set N of n vertices (n ∈ N∗) and

a finite set E of edges. We associate each vertex j of G with an instance of the latter reaction-diffusion
system (7), and we define a coupling operator g as follows. We define the matrix of connectivity
L =

(
Li,j

)
1≤i,j≤n, in concordance with the set E of edges, by setting

Lj,k = +1 if (k, j) ∈ E with k 6= j, Lk,k = −
n∑
j=1
j 6=k

Lj,k, (8)

thus L is a matrix of order n whose sum of coefficients of each column is null. We assume that the set
of edges E does not possess any loop. We also introduce a matrix of coupling strengths H of order m
defined by

H = diag
(
σ1, . . . , σm

)
, (9)

with σi ≥ 0, 1 ≤ i ≤ m. We introduce the notation

Huj =
(
σ1u1,j , . . . , σmum,j

)T
, 1 ≤ j ≤ m,
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and finally define the coupling operator g by setting

gj(u) =
n∑
k=1

Lj,kHuk, 1 ≤ j ≤ m. (10)

In this way, the equations of the complex network can be written
∂uj
∂t

= Dj∆uj + ϕj(uj) + gj(u1, . . . , un) in Ω× (0, ∞),

∂uj
∂ν

= 0 on ∂Ω× (0, ∞),
uj(x, 0) = uj,0(x) in Ω,

(11)

for 1 ≤ j ≤ n, where uj = (u1,j , . . . , um,j)T is defined in Ω × (0, +∞) with values in Rm. In
our notation ui,j , the first subscript i (1 ≤ i ≤ m) refers to the i-th component of uj , whereas the
second subscript j refers to the vertex j (1 ≤ j ≤ n) of G associated with one instance of system (7).
The subscript j in Dj and ϕj means that the values of the parameters involved in D and ϕ can be
different from one instance of system (7) to another, which justifies the expression complex network of
non-identical systems.

Remark 1. Complex networks of the form (11) have been considered for a great number of applications.
For instance, in neural networks of FitzHugh–Nagumo type, we have u = (v, w), where v is the
membrane voltage and w is a recovery variable of a given neuron; in that case, the couplings correspond
to chemical exchanges which occur for instance in the synapses. Otherwise, in epidemiological networks,
u stores the states of several subgroups of a population affected by a disease; in that second example,
the couplings correspond to physical displacements of individuals from one vertex in the network to
another. In the final section of this paper, we will apply our method to a network of competing species
models, where the couplings will similarly correspond to migrations of biological individuals.

3.2. Abstract formulation of the complex network problem

We handle the complex network problem (17) in Hilbert space X =
(
L2(Ω)

)n×m, equipped with the
product norm

‖u‖X =

 n∑
j=1

m∑
i=1
‖ui,j‖2L2(Ω)

 1
2

,

for all u ∈ X. For each j ∈ {1, . . . , n}, we consider the diagonal operator Aj = diag {A1,j , . . . , Am,j},
where Ai,j , 1 ≤ i ≤ m, is the realization of −Di,j∆ui,j + ui,j in L2(Ω), under Neumann boundary
condition on ∂Ω. The operators Ai,j , 1 ≤ i ≤ m, are sectorial and positive definite self-adjoint
operators of L2(Ω), with angles strictly lesser than π

2 (see for instance [41], Theorem 2.6). They admit
a common domain given by

H2
N (Ω) =

{
u ∈ H2(Ω) ; ∂u

∂ν
= 0 on ∂Ω

}
. (12)

Hence, A = diag {Ai, 1 ≤ i ≤ n} is a sectorial and positive definite self-adjoint operator of the product
space X, with angle strictly lesser than π

2 .
We fix η ∈

( 3
4 , 1

)
, and consider the fractional power operator Aη, whose domain is given by the

interpolation space (see [41], Theorem 16.7):

D(Aη) =
([
L2(Ω), H2

N (Ω)
]
η

)nm
=
(
H2η
N (Ω)

)nm
, (13)

with the norm equivalence:

1
C
‖u‖H2η(Ω) ≤ ‖(Ai,j)

ηu‖L2(Ω) ≤ C ‖u‖H2η(Ω) , (14)
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for all u ∈ D ((Ai,j)η), 1 ≤ i ≤ m, 1 ≤ j ≤ n, for a given constant C > 0. Since 2η > 1 and Ω is
bounded, the embedding theorems for Sobolev spaces [1] guarantee that:

H2η(Ω) ⊂ C
(
Ω
)
, (15)

with continuous embedding. Additionally, due to the boundedness of Ω, it is clear that

C
(
Ω
)
⊂ L∞(Ω) ⊂ L2(Ω), (16)

with continuous embeddings.
The complex network problem (11) can be written

du

dt
+Au = f(u) + g(u), t > 0,

u(0) = u0,
(17)

where u, f and g are given by

u =
(
(ui,1)1≤i≤m, . . . , (ui,n)1≤i≤m

)T
,

f(u) =
(
u1 + ϕ1(u1), . . . , un + ϕn(un)

)T
,

g(u) =
(
g1(u), . . . , gn(u)

)T
.

Next, we assume that the non-linear operator f satisfies the estimation

‖f(u)− f(v)‖X ≤ Cf (1 + ‖Aηu‖X + ‖Aηv‖X) ‖u− v‖X , (18)

for all u, v in D(Aη). In parallel, we assume that the coupling operator g satisfies

‖g(u)− g(v)‖X ≤ Cg ‖u− v‖X , (19)

for all u, v in X. Obviously, assumption (19) is always fulfilled by virtue of the definition (10) of g;
we will see below that Cg can be estimated in terms of the number of vertices in the network and the
maximal coupling strength.

Remark 2. We emphasize that the n instances of the reaction-diffusion system (7), which compose
the complex network problem (11), are all set in the same domain Ω, thus problem (11) can be seen
as a multi-layer model. The case of a complex network of systems defined in distinct domains Ω1, . . . ,
Ωn should be handled in

(
L2(Ω1 × · · · × Ωn)

)m×n and will be treated in a separate paper.

The following theorem guarantees the existence and uniqueness of local solutions for the complex
network problem (17).

Theorem 3. For any u0 ∈ X, there exists Tu0 > 0 such that the abstract problem (17) admits a
unique solution u in the function space

C
(
(0, Tu0 ], D(A)

)
∩ C

(
[0, Tu0 ], X

)
∩ C 1((0, Tu0 ], X

)
. (20)

Furthermore, u satisfies the estimate

‖u(t)‖X + t ‖Au(t)‖X ≤ Cu0 , ∀t ∈]0, Tu0 ], (21)

where Cu0 is a positive constant depending only on ‖u0‖X .

Proof. We have already noticed that A is a sectorial operator of X with angle lesser than π
2 . Now, let

u, v ∈ D(Aη). We have

‖(f + g)(u)− (f + g)(v)‖X ≤ ‖f(u)− f(v)‖X + ‖g(u)− g(v)‖X
≤ Cf (1 + ‖Aηu‖X + ‖Aηv‖X) ‖u− v‖X + Cg ‖u− v‖X
≤ (Cf + Cg) (1 + ‖Aηu‖X + ‖Aηv‖X) ‖u− v‖X .

for all u, v in D(Aη). The conclusion directly follows from Theorem 1.
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3.3. Energy estimates and global existence

Here, we investigate sufficient conditions for proving that the local solutions of the complex network
problem (17) are global in time. It is well-known that the solutions of reaction-diffusion systems can
explode in finite time. However, it can be proved that the solutions are global if the non-linearities
satisfy an under-polynomial growth property (see for instance the survey given in [31]). Entropy
methods have also been used for studying this feature (see e.g. [12]). Recently, global existence
of weak solutions has been established for reaction-diffusion systems under the assumption that the
non-linearities enjoy a quadratic growth property [34]. Nevertheless, the analysis of the asymptotic
behavior of the solutions requires stronger hypotheses in order to guaranty the existence of exponential
attractors. For instance, weak solutions can be global in time, while blowing up in L∞ infinitely many
times. Thus we assume in the present work an a priori L2-type estimation of the local solutions, and
we list the consequences of that estimation: global existence of the local solutions, generation of a
continuous dynamical system, existence of a family of exponential attractors.

Proposition 1. Let u(t, u0) denote the solution of the complex network problem (17) stemming from
u0 ∈ X. Assume that there exist positive constants C1, C2 and δ such that

‖u(t, u0)‖X ≤ C1e
−δt ‖u0‖X + C2, 0 < t ≤ Tu0 . (22)

Then the solution u(t, u0) is global in X, that is Tu0 = +∞. Furthermore, the mapping

G : (0, +∞)×X −→ X
(t, u0) 7−→ u(t, u0)

generates a continuous dynamical system
(
S(t), Φ, X

)
defined in X, whose phase space Φ is a compact

subset of X and a bounded subset of D(A). Finally, the continuous dynamical system
(
S(t), Φ, X

)
admits exponential attractors.

Proof. First, it is clear that the a priori estimate (22) implies that the solution u(t, u0) stemming from
u0 ∈ X is global in X. Next, the continuity of the mapping G is a consequence of Proposition 6.2 in
[41]. Afterwards, let us consider a bounded subset B ⊂ X. One can find a positive constant CB such
that ‖u‖X ≤ CB for all u in B. Since δ > 0, there exists tB > 0 such that e−δtCB < 1. Indeed, it
suffices to set tB = 1+logCB

δ . We obtain

sup
u0∈B

sup
t≥tB
‖u(t, u0)‖X ≤ C1 + C2.

By virtue of Proposition 6.1 in [41], the latter inequality implies that the stronger dissipative condition
holds:

sup
u0∈B

sup
t≥tB
‖u(t, u0)‖D(A) ≤ C3, (23)

where C3 is a positive constant. Now we consider the closed ball

B = B
D(A)(0, C3),

where the closure is in D(A). By virtue of Proposition 6.4 in [41], it is seen that B is a compact set
of X. Furthermore, inequality (23) implies that B is an absorbing set. Finally, we consider

Φ =
⋃
t≥tB

S(t)B
X

, (24)

where the closure is in X, and tB denotes a positive time such that S(t)B ⊂ B for all t ≥ tB. We
easily verify that Φ is an invariant set for the semi-flow S(t) induced by the complex network problem
(17). In this way, we have proved that

(
S(t), Φ, X

)
is a continuous dynamical system. Finally, since Φ

is a compact set of X and a bounded set of D(A), we deduce from [41] (Section 5.3) that
(
S(t), Φ, X

)
admits exponential attractors. The proof is complete.
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We emphasize that the dissipation assumption (22) is fulfilled for a wide class of models, provided
that the non-linear operator f admits an under-polynomial growth and that the coupling operator g
satisfies a conservation law. This is the case of the competing species model which shall be presented
in section 5.

Energy estimates of type (22) can sometimes be established after proving that the solutions of the
complex network problem (17) satisfy the non-negativity property, that is, solutions stemming from
non-negative initial data remain non-negative in the future. This preservation of the non-negativity can
be demonstrated by assuming that the non-linear operator f is quasi-positive. To that aim, we recall
that a non-linear operator F = (Fi)1≤i≤m defined on Rm (with m ∈ N∗) is said to be quasi-positive if
it satisfies the property

Fi(u1, . . . , ui−1, 0, ui+1, . . . , um) ≥ 0, (25)
for all u = (u1, . . . , um) ∈ (R+)m and for all i ∈ {1, . . . , m}. Let us introduce the space of initial
conditions

X0 = {u ∈ X ; u(x) ≥ 0, ∀x ∈ Ω}, (26)
where the inequality u ≥ 0 has to be understood component-wise. We easily show that the sum of two
quasi-positive operators is quasi-positive. Thus we directly obtain the following proposition, which we
shall invoke in the final section for analyzing the solutions of a complex network of competing species
models.

Proposition 2. The coupling operator g defined by (10) is quasi-positive. Suppose moreover that f is
quasi-positive. Let u0 ∈ X0 and u be the solution of problem (17) starting from u0, defined on [0, Tu0 ].
Then, its components are non-negative on [0, Tu0 ].

§4. Fractal dimension of exponential attractors

In this section, we explore the influence of the topology of the graph underlying the complex network
problem (17), and of the coupling strengths σ1, . . . , σm, on the dimension of the exponential attractors
whose existence is guaranteed by proposition 1.

4.1. Estimate of the fractal dimension of exponential attractors for the complex network problem

Let
(
S(t), Φ, X

)
denote the continuous dynamical system generated by the complex network problem

(17). Under the assumptions (18), (19) and (22), it has been proved in Proposition 1 that
(
S(t), Φ, X

)
admits a family of exponential attractors. In the sequel, we denote by M one of those exponential
attractors. For estimating the fractal dimension of M, we shall apply the method given in [13]. This
method requires that the non-linearity f + g involved in (17) satisfies an estimation of the type

‖(f + g)(u)− (f + g)(v)‖X ≤ C
∥∥Aβ(u− v)

∥∥
X
,

for all u, v in Φ, with an exponent β lesser than 1
2 . Obviously, the coupling operator g defined by (10)

fulfills this requirement with β = 0. However, the non-linear operator f satisfies a weaker estimate
given by (18). We may obtain a stronger estimate of f , remarking that the phase space Φ is a bounded
subset of D(A), which guarantees that there exists a positive constant CΦ such that

‖Au‖X ≤ CΦ, u ∈ Φ. (27)

Using the above estimates, we obtain the following theorem.

Theorem 4. There exists a positive constant C∗ > 0 such that the fractal dimension of the exponential
attractor M satisfies

dF (M) ≤ 1 + C |Ω|
(
C∗
)−d/2

. (28)
Furthermore, C∗ is given by

C∗ =
1− exp

{
− C2

A

[
Cg + Cf (1 + 2CA,ηCΦ)

]}
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2 , (29)
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where the positive constants Cf , Cg, CΦ are defined by (18), (19) and (27) respectively. The positive
constant CA depends only on the diffusion operator A and the constant CA,η depends only on A and η,
where the exponent η is fixed in ( 3

4 , 1). |Ω| denotes the diameter of the open bounded domain Ω ⊂ Rd
with d ∈ {1, 2, 3}.

In particular, the following asymptotic estimate holds:

dF (M) ≤ 1 + C |Ω|
(
Cg
)d/2

, (30)

as Cg tends to infinity, where C is a positive constant.

Proof. Our goal is to prove that there exists t∗ > 0 such that S∗ = S(t∗) satisfies the squeezing
property (4)-(5). The proof is divided into three steps. First, we estimate the Lipschitz constant L∗
of S∗ on Φ, and we choose properly t∗. Next, we estimate the squeezing coefficient δ∗ involved in
(4)-(5) and finally, we choose the projection rank N∗ defined in Theorem 2 sufficiently large in order
to guaranty that δ∗ < 1

8 .

Step 1: estimation of the Lipschitz constant L∗. Let us consider a basis of X composed with
eigenvectors of operator A:

Awk = λkwk, k ≥ 1,

with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk → +∞. We set Xk = Span(w1, . . . , wk); we consider the orthogonal
projection Pk on Xk, and Qk = I − Pk. Let t∗ > 0. Our aim is to show that for all δ > 0, there exists
N∗ such that for all u, v in Φ:

‖QN∗(S∗u− S∗v)‖X > ‖PN∗(S∗u− S∗v)‖X ,

implies
‖S∗u− S∗v‖X < δ ‖u− v‖X .

We consider u0, v0 in Φ, and we denote u(t) = S(t)u0, v(t) = S(t)v0. Since Φ is positively invariant,
we have u(t) ∈ Φ and v(t) ∈ Φ for all t > 0. We introduce

w(t) = u(t)− v(t), λ(t) =
∥∥A1/2w(t)

∥∥2
X

‖w(t)‖2X
, w∗ = w(t∗), λ∗ = λ(t∗).

First, it is easily seen that
λ∗ >

1
2λN

∗+1,

where λN∗+1 denotes the smallest eigenvalue of A over QN∗+1X. Next, since u and v satisfy (17), the
inner product of dw

dt and w in X leads to

1
2
d

dt
‖w‖2X + λ ‖w‖2X =

(
f(u)− f(v), w

)
X

+
(
g(u)− g(v), w

)
X
,

where we omit the time dependence in order to lighten our notations. By virtue of assumption (19),
we have ∣∣(g(u)− g(v), w

)
X

∣∣ ≤ Cg ‖w‖2X .
Now our aim is to estimate the inner product

(
f(u)− f(v), w

)
X

. We have∣∣(f(u)− f(v), w
)
X

∣∣ ≤ ‖f(u)− f(v)‖X ‖w‖X
≤ Cf

(
1 + ‖Aηu‖X + ‖Aηv‖X

)
‖w‖2X .

The continuous embedding D(A) ⊂ D(Aη) guarantees that there exists a positive constant CA,η such
that ‖Aηu‖X ≤ CA,η ‖Au‖X for all u in D(A). It follows that∣∣(f(u)− f(v), w

)
X

∣∣ ≤ Cf(1 + CA,η ‖Au‖X + CA,η ‖Av‖X
)
‖w‖2X .
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By virtue of (27), we finally obtain∣∣(f(u)− f(v), w
)
X

∣∣ ≤ Cf (1 + 2CA,ηCΦ) ‖w‖2X , t > 0.

Consequently, we have

1
2
d

dt
‖w‖2X + [λ− Cg − Cf (1 + 2CA,ηCΦ)] ‖w‖2X ≤ 0, t > 0.

It follows from Gronwall lemma that

‖w(t)‖X ≤ δ(t) ‖w(0)‖X , t > 0,

where
δ(t) = exp

{
−
∫ t

0
λ(τ)dτ +

[
Cg + Cf (1 + 2CA,ηCΦ)

]
t

}
.

Consequently, the Lipschitz constant of S(t) on Φ can be estimated by

LipΦ
(
S(t)

)
≤ exp

{[
Cg + Cf (1 + 2CA,ηCΦ)

]
t
}
.

Now we introduce t∗ > 0 given by

t∗ = 1
Cg + Cf (1 + 2CA,ηCΦ) . (31)

The Lipschitz constant L∗ of S∗ on Φ is finally estimated by

L∗ ≤ e. (32)

Step 2: estimation of δ∗. Now we estimate the quantity λ(τ) for τ ≤ t∗. Let us introduce
ξ(t) = w(t)× ‖w(t)‖−1

X . We have

1
2
d

dt
λ(t) = 1

‖w‖2X

[(
∂w

∂t
, Aw

)
X

−
(
∂w

∂t
, w

)
X

λ(t)
]

= 1
‖w‖X

(
−Aw +

[
f(u)− f(v) + g(u)− g(v)

]
, (A− λ)ξ

)
X
.

Basic computations show that

1
‖w‖X

(Aw, (A− λ)ξ)X = ‖(A− λ)ξ‖2X ,

from which we obtain

1
2
d

dt
λ(t) + ‖(A− λ)ξ‖2X ≤

1
‖w‖X

‖f(u)− f(v) + g(u)− g(v)‖X × ‖(A− λ)ξ‖X

≤ 1
‖w‖X

[
Cg + Cf (1 + 2CA,ηCΦ)

]
‖w‖X × ‖(A− λ)ξ‖X .

Now the continuous embedding D(A1/2) ⊂ X guarantees that a positive constant CA can be found
such that ‖w‖X ≤ CA

∥∥A1/2w
∥∥
X

for all w ∈ D(A1/2). It follows that

1
2
d

dt
λ(t) + ‖(A− λ)ξ‖2X ≤ CA

[
Cg + Cf (1 + 2CA,ηCΦ)

]√
λ× ‖(A− λ)ξ‖X .

By virtue of Young inequality, we obtain

1
2
d

dt
λ(t) + ‖(A− λ)ξ‖2X ≤ C

2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2λ
2 +

‖(A− λ)ξ‖2X
2 ,
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and consequently
d

dt
λ(t) ≤ θ λ(t), t > 0,

where θ = C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2. Applying once again Gronwall lemma leads to

λ(t) ≤ λ(s) exp
{∫ t

s

θdτ

}
,

for all s and t such that 0 ≤ s < t. Setting t = t∗ and inversing the above inequality leads to

λ(s) ≥ λ(t∗) exp
{
−
∫ t∗

s

θdτ

}
,

for all s ∈ [0, t∗). Since λ(t∗) > 1
2λN∗+1, we obtain∫ t∗

0
λ(s)ds ≥ 1

2λN
∗+1

∫ t∗

0
exp

{
−
∫ t∗

s

θdτ

}
ds.

Now we compute∫ t∗

0
exp

{
−
∫ t∗

s

θdτ

}
ds =

∫ t∗

0
exp

{
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2(s− t∗)
}

=

exp
{
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2(s− t∗)
}

C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
t
∗

0

=
1− exp

{
− C2

A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
t∗
}

C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
=

1− exp
{
− C2

A

[
Cg + Cf (1 + 2CA,ηCΦ)

]}
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
Let us introduce the positive constant C∗ defined by

C∗ =
1− exp

{
− C2

A

[
Cg + Cf (1 + 2CA,ηCΦ)

]}
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2 . (33)

Note that C∗ depends on f , g, η, A and Φ. It follows that∫ t∗

0
λ(s)ds ≥ C∗

2 λN∗+1,

and consequently we obtain the following estimation of δ∗:

δ∗ ≤ exp
{
−C

∗

2 λN∗+1 + 1
}
.

Additionally, basic computations show that the following asymptotic estimate holds

C∗ ∼ C−1
g

as Cg tends to infinity.

Step 3: choice of N∗. Now, in order to guaranty δ∗ < 1
8 , it suffices to choose N∗ so that

λN∗+1 >
2(1 + log 8)

C∗
.
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It is well-known [38] that

λN∗+1 = C

(
N∗

|Ω|

)2/d
,

so we choose a constant C > 0 such that

N∗ = C |Ω|
[

2(1 + log 8)
C∗

]d/2
implies δ∗ < 1

8 . It follows that there exists a positive constant C̃ such that

N∗ ∼ C̃ |Ω|
(
Cg
)d/2

as Cg tends to infinity, which leads to the expected estimate of dF (M) and completes the proof.

Remark 3. Estimate (30) shows that the fractal dimension of M is likely to grow with Cg. We shall
investigate in the next paragraph the effect of the topology and of the coupling strengths on the Lipschitz
constant Cg. The optimality of estimate (30) is not discussed in the present work. In a separate paper,
we aim to establish a lower bound of dF (M), by applying another method, which requires to construct
the unstable manifold of an unstable equilibrium of the complex network problem (17). However, it is
observed in numerous cases that the lower bounds of exponential attractors can have a commensurate
order with upper bounds (see [15] for instance).

4.2. Influence of the topology and of the coupling strengths on the coupling operator

Now our aim is to estimate the Lipschitz constant Cg of the coupling operator g defined by (10), in
terms of the number of vertices of the graph underlying the complex network problem (17), and of the
coupling strengths σi (1 ≤ i ≤ m) stored in the matrix H defined by (9). The following proposition
establishes a first bound which is valid for any topology.

Proposition 3. Let σmax = max(σi, 1 ≤ i ≤ m). The Lipschitz constant Cg of the coupling operator
g defined by (10) satisfies

Cg ≤ n(n− 1)σmax,

where n denotes the number of vertices of the graph G underlying the complex network problem (17).

Proof. Let u, v ∈ X. By virtue of (10), we have for each j ∈ {1, . . . , n}

gj(u)− gj(v) =
n∑
k=1

Lj,kH(uk − vk).

Using (9), we obtain for 1 ≤ j ≤ n and 1 ≤ i ≤ m:

∥∥(gj(u)− gj(v)
)
i

∥∥2
L2(Ω) =

∥∥∥∥∥
n∑
k=1

Lj,kσi(ui,k − vi,k)

∥∥∥∥∥
2

L2(Ω)

≤ σ2
max(n− 1)2

∥∥∥∥∥
n∑
k=1

(ui,k − vi,k)

∥∥∥∥∥
2

L2(Ω)

≤ σ2
max(n− 1)2

(
n∑
k=1
‖ui,k − vi,k‖L2(Ω)

)2

≤ σ2
max(n− 1)2n

n∑
k=1
‖ui,k − vi,k‖2L2(Ω) ,

13



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Several graph topologies. (a) Star oriented from interior toward exterior. (b) Oriented chain. (c)
Oriented cycle. (d) Oriented complete topology. (e) Star oriented from exterior toward interior. (f) Bi-directed
chain. (g) Bi-directed cycle. (h) Bi-directed complete topology.

since (x1 + x2 + · · ·+ xn)2 ≤ n(x2
1 + x2

2 + · · ·+ x2
n) for all (x1, . . . , xn) ∈ Rn. Consequently, we have

‖gj(u)− gj(v)‖2L2(Ω)m =
m∑
i=1

∥∥(gj(u)− gj(v)
)
i

∥∥2
L2(Ω)

≤ σ2
max(n− 1)2n

m∑
i=1

n∑
k=1
‖ui,k − vi,k‖2L2(Ω)

≤ σ2
max(n− 1)2n

n∑
k=1

m∑
i=1
‖ui,k − vi,k‖2L2(Ω)

≤ σ2
max(n− 1)2n

n∑
k=1
‖uk − vk‖2L2(Ω)m

≤ σ2
max(n− 1)2n ‖u− v‖2X .

Finally, we obtain

‖g(u)− g(v)‖2X ≤ σ
2
max(n− 1)2n

n∑
j=1
‖u− v‖2X

≤ σ2
max(n− 1)2n2 ‖u− v‖2X ,

which leads to the desired estimate of Cg.

It is worth noting that in the latter proof, each diagonal coefficient of the matrix of connectivity L
has been estimated by (n− 1). However, we can obtain better estimates of the constant Cg when the
topology of the graph admits a remarkable structure. The following proposition establishes a bound
for the cases of an oriented chain, an oriented cycle and an oriented star (see figure 1). We emphasize
that in the case of an oriented chain, an oriented cycle or a star oriented from exterior toward interior,
the upper bound of the Lipschitz constant does not depend on the number of vertices of the graph G .

Proposition 4. If the graph G is given by an oriented chain, an oriented cycle or a star oriented
from exterior toward interior, we have

Cg ≤ 2σmax.
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If the graph G is given by a star of n vertices (n ≥ 3) oriented from interior toward exterior, we have

Cg ≤ σmax
√
n2 − n− 2.

Proof. Let u, v ∈ X. First, assume that the graph G is given by an oriented chain. After rearranging
the labels of the vertices of G , we may without loss of generality assume that the oriented chain has
the form

(1)→ (2)→ · · · → (n).
Consequently, the matrix of connectivity L can be written

L =



−1 0 0 . . . 0
+1 −1 0 0

0 +1
. . . . . .

...
...

. . . . . . −1 0
0 . . . 0 +1 0

 . (34)

Hence we have for each i ∈ {1, . . . , m}

∥∥(g1(u)− g1(v)
)
i

∥∥2
L2(Ω) = σ2

i

∥∥∥∥∥
n∑
k=1

L1,k(ui,k − vi,k)

∥∥∥∥∥
2

L2(Ω)

= σ2
i ‖ui,1 − vi,1‖

2
L2(Ω) ,

since |L1,1| = 1 whereas L1,k = 0 for k > 1. We can deduce from the latter inequality that

‖g1(u)− g1(v)‖2L2(Ω)m ≤ σ
2
max ‖u1 − v1‖2L2(Ω)m .

Similarly, we have for 1 < j < n

‖gj(u)− gj(v)‖2L2(Ω)m ≤ 2σmax

(
‖uj−1 − vj−1‖2L2(Ω)m + ‖uj − vj‖2L2(Ω)m

)
,

where we have used the inequality (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R. Finally, we have for j = n:

‖gn(u)− gn(v)‖2L2(Ω)m ≤ σ
2
max ‖un−1 − vn−1‖2L2(Ω)m .

We obtain

‖g(u)− g(v)‖2X ≤ σ
2
max

[
‖u1 − v1‖2L2(Ω)m

+ 2
∑

1<j<n

(
‖uj−1 − vj−1‖2L2(Ω)m + ‖uj − vj‖2L2(Ω)m

)
+ ‖un−1 − vn−1‖2L2(Ω)m

]
≤ 4σ2

max ‖u− v‖
2
X ,

which yields the desired estimate of Cg in the case of an oriented chain. For an oriented cycle, L can
be written

L =



−1 0 . . . 0 +1
+1 −1 0 . . . 0

0 +1
. . . . . .

...
...

. . . . . . −1 0
0 . . . 0 +1 −1

 . (35)

For an oriented star, L can be written

L =


−(n− 1) 0 . . . 0

+1 0 . . . 0
...

...
...

+1 0 . . . 0

 or L =



0 +1 +1 . . . +1
0 −1 0 . . . 0
...

. . . −1
. . .

...
...

. . . . . . 0
0 . . . . . . 0 −1

 , (36)
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for a star which is oriented from interior toward exterior and from exterior toward interior respectively.
The other estimates are obtained using similar computations.

4.3. Symmetric topologies and synchronization

Here we focus on symmetric topologies (i.e. topologies corresponding to bi-directed edges) and prove
that the attractor M, even if large, is likely to contain synchronization states, provided the coupling
strengths σi (1 ≤ i ≤ m) are sufficiently strong. Those synchronization states correspond to the
situation when all the vertices of the complex network, whose evolutions are determined by the variables
uj ∈ L2(Ω)m, exhibit the same asymptotic dynamics, that is

‖uj(t)− uk(t)‖L2(Ω)m → 0 as t→ +∞,

for 1 ≤ j, k ≤ n (the latter definition corresponds to identical synchronization [3]). We assume that
the topology of the complex network is determined by a symmetric graph, such that the diagonal
coefficients of the matrix L satisfy

Lj,j = −p, 1 ≤ j ≤ n, (37)

with 1 ≤ p ≤ n− 1, and such that

Lj,l = Lk,l, 1 ≤ l ≤ n, l 6= j, l 6= k, (38)

for all j, k in {1, . . . , n}. One example of a topology satisfying the above properties is that of a
complete bi-directed graph (see figure 1 (h)); in that case, the matrix of connectivity can be written

L =


−(n− 1) +1 . . . +1

+1
. . . . . .

...
...

. . . . . . +1
+1 . . . +1 −(n− 1)

 .
We assume that the non-linear operator ϕ involved in the native reaction-diffusion system (7) satisfies

‖ϕ(u)− ϕ(v)‖L2(Ω)m ≤ Cϕ ‖u− v‖L2(Ω)m , (39)

for all u, v in D(ϕ), where Cϕ denotes a positive constant; note that this requirement is straightly
satisfied if the non-linear operator f enjoys property (18). Furthermore, we assume that the matrices
of diffusion Dj , 1 ≤ j ≤ n, are identical, that is

Dj = D, ∀j ∈ {1, . . . , n}. (40)

Note that condition (40) does not imply that the diffusion coefficients of the components uj,1, . . . , uj,m
should be identical (1 ≤ j ≤ n). More precisely, assumption (40) implies that di,j = di,k for all
i ∈ {1, . . . , m} and j, k ∈ {1, . . . , n}, but we can still have di1,j 6= di2,j for some i1, i2 ∈ {1, . . . , m}
and j ∈ {1, . . . , n}; thus non trivial dynamics leading for example to the formation of Turing patterns
are likely to occur. The following theorem generalizes the result presented in [2].

Theorem 5. Assume that L is a symmetric matrix and that properties (37)-(38)-(39)-(40) are fulfilled.
Then for any u0 ∈ Φ, the solution u(t, u0) synchronizes in the following sense

‖uj(t)− uk(t)‖L2(Ω)m → 0 as t→ +∞,

for all j, k ∈ {1, . . . , n}, provided the coupling strengths satisfy

2(p− 1)σi > 1 + C2
ϕ, (41)

for all i ∈ {1, . . . , m}.
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Remark 4. In the case of a bi-directed complete topology, the sufficient condition (41) becomes

2(n− 2)σi > 1 + C2
ϕ,

for all i ∈ {1, . . . , m}. Roughly speaking, this condition is satisfied in small networks with a strong
coupling strength (that is, n small and σi large), or in large networks with weak coupling (that is, n
large and σi small). Hence the size of the network and the coupling strength are linked by an inverse
power law which is characteristic of emergent properties of complex systems (see [2] for instance).

Proof. Let us introduce the energy functions defined by

Ei,j,k = 1
2

∫
Ω

(ui,j − ui,k)2dx,

for i ∈ {1, . . . , m} and j, k ∈ {1, . . . , n}. We compute the derivative of Ei,j,k with respect to t:

dEi,j,k
dt

=
∫

Ω
(ui,j − ui,k)∂(ui,j − ui,k)

∂t
dx

=
∫

Ω
(ui,j − ui,k)

(
di,j∆ui,j − di,k∆ui,k

)
dx

+
∫

Ω
(ui,j − ui,k)

(
ϕi,j(uj)− ϕi,k(uk)

)
dx

+
∫

Ω
(ui,j − ui,k)

(
gi,j(u)− gi,k(u)

)
dx.

By virtue of assumption (40), we have di,j = di,k, from which we can deduce∫
Ω

(ui,j − ui,k)
(
di,j∆ui,j − di,k∆ui,k

)
dx = −di,j

∫
Ω
|∇(ui,j − ui,k)|2 dx ≤ 0.

Next, using assumption (39) and Young inequality, we have∫
Ω

(ui,j − ui,k)
(
ϕi,j(uj)− ϕi,k(uk)

)
dx ≤ Ei,j,k + 1

2 ‖ϕi,j(uj)− ϕi,k(uk)‖2L2(Ω) ≤ (1 + C2
ϕ)Ei,j,k.

Finally, we examine the effect of the coupling operator:

gi,j(u)− gi,k(u) = σi

(
n∑
l=1

Lj,lui,l −
n∑
l=1

Lk,lui,l

)

= σi

∑
l 6=j

Lj,lui,l − pui,j −
∑
l 6=k

Lk,lui,l + pui,k


= σi

 ∑
l 6=j,l 6=k

Lj,lui,l + ui,k − pui,j −
∑

l 6=k,l 6=j
Lk,lui,l − ui,j + pui,k


= −σi(p− 1)(ui,j − ui,k).

We obtain
dEi,j,k
dt

+
[
2(p− 1)σi − 1− C2

ϕ

]
Ei,j,k ≤ 0, t > 0.

Applying Gronwall lemma leads to the conclusion.

§5. Application to a complex network of competing species models

In this section, we handle a complex network problem built with non-identical instances of a competing
species model. This model is set in a bounded domain Ω ⊂ R2, whose boundary ∂Ω is assumed to be
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regular; it is given by the following system of two reaction-diffusion equations:
∂u

∂t
= d1∆u+ α1u− β1u

2 − γ1uv,

∂v

∂t
= d2∆v + α2v − β2v

2 − γ2uv.

(42)

Here, u and v correspond to the densities of some biological individuals. The coefficients di, αi, βi
and γi (i ∈ {1, 2}) are assumed to be positive. The terms α1u − β1u

2 and α2v − β2v
2 correspond to

the logistic growths of both species, whereas the terms γ1u v and γ2u v represent competition between
those two species. This model has been widely studied and one can find a detailed presentation of its
dynamics in [20] or [22] for instance. In the sequel, we study a complex network of multiple instances
of system (42), with Neumann boundary condition modeling the situation where biological individuals
cannot leave the domain Ω. The couplings are assumed to model migrations of individuals from one
region to another, which makes sense from the biological point of view.

System (42) can be rewritten
∂U

∂t
= D∆U + ϕ(U),

with U = (u, v)T , D = diag {d1, d2} and

ϕ(U) =
(
α1u− β1u

2 − γ1uv, α2v − β2v
2 − γ2uv

)T
.

Following the framework presented in section 2, we consider a graph G of n vertices and build a
complex network problem by introducing

U = (U1, . . . , Un)T , Uj = (uj , vj)T , 1 ≤ j ≤ n,

fj(Uj) =

(α1,j + 1)uj − β1,ju
2
j − γ1,jujvj

(α2,j + 1)vj − β2,jv
2
j − γ2,jujvj

 ,

f(U) =
(
f1(U1), . . . , fn(Un)

)T
,

αj = max(α1,j ; α2,j), βj = max(β1,j ; β2,j), γj = max(γ1,j ; γ2,j), 1 ≤ j ≤ n.

(43)

Finally, we consider the Hilbert space X = L2(Ω)2n, the diffusion operators Ai,j defined in X by
Ai,j = −di,j∆uj + uj with Neumann boundary condition (i ∈ {1, 2}, 1 ≤ j ≤ n) and the diagonal
operator A = diag {Ai,j , 1 ≤ i ≤ 2, 1 ≤ j ≤ n}.

5.1. Existence and fractal dimension of exponential attractors

First we show that the non-linear operator f defined in (43) satisfies property (18). We emphasize
that the constant Cf in estimation (44) below depends on the number n of vertices in G .

Proposition 5. The non-linear operator f defined in (43) satisfies∥∥f(U)− f(Ũ)
∥∥
X
≤ Cf

(
1 + ‖AηU‖X +

∥∥AηŨ∥∥
X

) ∥∥U − Ũ∥∥
X
, (44)

for all U, Ũ ∈ D(Aη), with
Cf ≤ C

√
n max

1≤j≤n
(αj , βj , γj),

where C denotes an absolute positive constant.

Proof. Let U, Ũ ∈ D(Aη), with U = (U1, . . . , Un)T , Uj = (uj , vj)T and Ũ = (Ũ1, . . . , Ũn)T ,
Ũj = (ũj , ṽj)T . Using the identity a2 − b2 = (a − b)(a + b) for a, b ∈ R and the continuous em-
bedding H2η(Ω) ⊂ L∞(Ω) (see (15) and (16)), we obtain∥∥u2

j − ũ2
j

∥∥
L2(Ω) ≤

(
‖uj‖L∞(Ω) + ‖ũj‖L∞(Ω)

)
‖uj − ũj‖L2(Ω)

≤
(
‖(A1,j)ηuj‖L2(Ω) + ‖(A1,j)ηũj‖L2(Ω)

)
‖uj − ũj‖L2(Ω) ,
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for each j ∈ {1, . . . , n}. Similarly, using the triangular inequality, we can write

‖ujvj − ũj ṽj‖L2(Ω) ≤ ‖uj‖L∞(Ω) ‖vj − ṽj‖L2(Ω) + ‖ṽj‖L∞(Ω) ‖uj − ũj‖L2(Ω)

≤ ‖(A1,j)ηuj‖L2(Ω) ‖vj − ṽj‖L2(Ω) + ‖(A2,j)η ṽj‖L2(Ω) ‖uj − ũj‖L2(Ω) ,

for 1 ≤ j ≤ n. Summing the latter inequalities for 1 ≤ j ≤ n leads to the desired estimate.

Estimate (44) guarantees that Theorem 3 can be applied. Hence the complex network of non-
identical systems (42) admits local solutions in function space (20). Afterwards, we easily verify that
the non-linear operator f defined in (43) is quasi-positive. By virtue of proposition 2, we can deduce
that the solutions of the complex network enjoy the non-negativity preservation property. We shall use
this preservation property in order to derive an estimation in X of the solutions; this result is stated
in the following proposition.

Proposition 6. Let U0 ∈ X denote any initial condition with non-negative components. There exist
positive constant δ, C1 and C2 which do not depend on U0, such that the solution U(t) of the complex
network of systems (42) stemming from U0 satisfies

‖U(t)‖X ≤ C1e
−δt ‖U0‖X + C2, t > 0. (45)

Proof. We introduce

E1(t) =
n∑
j=1

1
2

∫
Ω
u2
j (x, t)dx = 1

2

n∑
j=1
‖uj‖2L2(Ω) , t > 0.

We compute the derivative of E1 with respect to t:

dE1

dt
(t) =

n∑
j=1

uj
∂uj
∂t

dx

=
n∑
j=1

∫
Ω
uj

(
d1,j∆uj + α1,juj − β1,ju

2
j − γ1,jujvj + σ1

n∑
k=1

Lj,kuk

)
dx,

where we omit the variables x and t in order to lighten our notations. The maximum principle for
diffusion operators with Neumann boundary condition implies that∫

Ω
uj∆ujdx = −

∫
Ω
|∇uj |2 dx ≤ 0, 1 ≤ j ≤ n.

Furthermore, the non-negativity of the solution guarantees that∫
Ω

(−γ1,jujvj)dx ≤ 0, 1 ≤ j ≤ n.

We obtain

dE1

dt
(t) ≤

n∑
j=1

∫
Ω

α1,ju
2
j − β1,ju

3
j + σ1Lj,ju

2
j + σ1

∑
k 6=j

Lj,kukuj

 dx

≤
n∑
j=1

∫
Ω

α1,ju
2
j − β1,ju

3
j + σ1Lj,ju

2
j + σ1

2
∑
k 6=j

Lj,ku
2
j + σ1

2
∑
k 6=j

Lj,ku
2
k

 dx,

where we have used the Young inequality ujuk ≤
u2
j

2 + u2
k

2 , and the non-negativity of the off-diagonal
terms Lj,k for j 6= k. After rearranging the finite sums over k and j, we obtain

dE1

dt
(t) ≤

n∑
j=1

∫
Ω

(ζ1,ju2
j − β1,ju

3
j )dx,
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with ζ1,j ∈ R, 1 ≤ j ≤ n. Next, we use the polynomial inequality

ζ1,ju
2
j − β1,ju

3
j ≤ −

1
2u

2
j + (2ζ1,j + 1)3

27β2
1,j

, 1 ≤ j ≤ n,

which leads to
dE1

dt
(t) + E1(t) ≤ |Ω|

n∑
j=1

(2ζ1,j + 1)3

27β2
1,j

,

and consequently, by using Gronwall lemma
n∑
j=1
‖uj(t)‖2L2(Ω) ≤ e

−t
n∑
j=1
‖uj(0)‖2L2(Ω) + 2 |Ω|

n∑
j=1

(2ζ1,j + 1)3

27β2
1,j

.

We can similarly obtain
n∑
j=1
‖vj(t)‖2L2(Ω) ≤ e

−t
n∑
j=1
‖vj(0)‖2L2(Ω) + 2 |Ω|

n∑
j=1

(2ζ2,j + 1)3

27β2
2,j

,

with ζ2,j ∈ R, 1 ≤ j ≤ n. Summing the above inequalities leads to the desired estimate of ‖U(t)‖X ,
with

δ = 1, C1 = 1, C2 = 2 |Ω|
n∑
j=1

(
(2ζ1,j + 1)3

27β2
1,j

+ (2ζ2,j + 1)3

27β2
2,j

)
.

Estimate (45) guarantees that proposition 1 and Theorem 4 can be applied. Consequently, the
complex network of systems (42) generates a continuous dynamical system

(
S(t), Φ, X

)
which admits

a family of exponential attractors of finite fractal dimension. Furthermore, the fractal dimension of
those attractors can be estimated by (28). It is the purpose of the next section to illustrate the estimate
of the fractal dimension by numerical simulations.

5.2. Numerical simulations

Here, we present a series of numerical simulations of the complex network of competing species models
(42). Those numerical simulations have been obtained by the implementation of a splitting scheme
with discretization of time and finite elements in space (see [11], [36]). The computations have been
performed with the free software FreeFem++, on the calculation server of the Laboratory of Applied
Mathematics of Le Havre Normandy, in a GNU/Linux environment. It is worth noting that attractors
of infinite dimensional dynamical systems cannot be easily observed; thus our aim is not to completely
visualize the attractors, but only to illustrate the estimate of the fractal dimension, by showing that
the couplings are likely to create new equilibrium states. We also show a numerical simulation of a
complete bi-directed topology with strong coupling strengths, in order to illustrate the synchronization
theorem (Theorem 5).

We consider a circular domain Ω of radius L = 250 and a graph of four vertices. We experiment 4
topologies: the first topology corresponds to the absence of coupling, whereas the three other topologies
are depicted in figure (2). We set the diffusion coefficients to the non trivial case d1 6= d2 with

d1 = 15, d2 = 1, (46)

for each vertex; the numerical values of other parameters of the competing species model (42) are
indicated in table 1. Finally, we introduce various possible initial conditions by setting

ψ1(x, y) = 20
1 + 0.1(x− 3L/4)2 + 0.1(y − L/2)2 ,

ψ2(x, y) = 20
1 + 0.1(x− L/4)2 + 0.1(y − L/2)2 ,

ψ3(x, y) = 20
1 + 0.1(x− L/2)2 + 0.1(y − L/2)2 .
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(a) (b) (c)

Figure 2: Three topologies for a complex network of competing species. (a) Oriented chain. (b) Star oriented
from center toward periphery. (c) Bi-directed complete graph.

Table 1: Values of the parameters for a complex network of 4 non-identical competing species models.

Vertex 1 Vertex 2 Vertex 3 Vertex 4
Parameter Value

α1,1 1.0
α2,1 1.0
β1,1 0.1
β2,1 1.0
γ1,1 0.1
γ2,1 1.0

Parameter Value
α1,2 1.0
α2,2 1.0
β1,2 1.0
β2,2 0.1
γ1,2 1.0
γ2,2 0.1

Parameter Value
α1,3 0.5
α2,3 0.5
β1,3 0.1
β2,3 0.1
γ1,3 0.5
γ2,3 0.5

Parameter Value
α1,4 10.0
α2,4 10.0
β1,4 5.0
β2,4 5.0
γ1,4 4.0
γ2,4 4.0

The numerical results of the first scenario, corresponding to the absence of couplings, are presented
in figure 3, in which we give the values of u1, u2, u3 and u4 for 3 different times. We observe that
u1 persists on vertex (1), whereas u2 vanishes on vertex (2). In parallel, u3 and v3 coexist on vertex
(3), and similarly, u4 and v4 coexist on vertex (4). Note that the asymptotic phase is rapidly reached
on vertex (4). Those dynamics can obviously be predicted by examining the values of the parameters
chosen for each vertex (see table 1).

The numerical results of the complex network built on an oriented chain (4) → (1) → (2) → (3)
are presented in figure 4. The coupling strengths have been set to σ1 = 0.5 and σ2 = 0.0. First,
we remark that the transitional phase is completely modified. Additionally, the asymptotic phase
is perturbed: the domination of u1 on vertex (1) is attenuated; u2 seems to persist on vertex (2),
whereas u2 vanishes in absence of coupling; u3 dominates on vertex (3), whereas u3 and v3 coexist in
absence of coupling; u4 and v4 still coexist. Changing the order of the vertices in the oriented chain
generates other dynamics. This example illustrates that the couplings of the complex network create
new equilibrium states, which roughly speaking corresponds to an enlarged attractor.

Next we present in figure 5 the numerical results obtained with a star centered at vertex (4), oriented
towards vertices (1), (2) and (3). The coupling strengths have been set to σ1 = 0.1 and σ2 = 0.9. Once
again, we observe that the asymptotic dynamics are modified; in particular, u2 persists on vertex (2),
whereas u2 vanishes in absence of coupling.

Finally, we present in figure 6 the numerical results obtained with a bi-directed complete graph
topology. The coupling strengths have been set to σ1 = σ2 = 2.0. The synchronization of the four
vertices is eloquent and occurs rapidly, which illustrates Theorem 5. As mentioned before, we recall
that synchronization is not contradictory with enlarged attractors.

Conclusion

In this paper, we have studied the asymptotic behavior of complex networks of reaction-diffusion
systems. Under reasonable assumptions which cover a wide class of systems, we have proved that
those complex networks generate continuous dynamical systems which admit exponential attractors
of finite fractal dimension. An innovative estimate of the fractal dimension of those attractors has
been established, which clarifies the effect of the topology on the asymptotic dynamics of the complex
network. Furthermore, we have proved that a symmetric topology with strong couplings leads to
synchronization and we have investigated the effect of asymmetric topologies.

In a future work, we aim to complete the main result of the present work, by establishing a lower
bound of the fractal dimension of exponential attractors for similar complex networks of reaction-
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Figure 3: Numerical simulation of a complex network of competing species models in absence of coupling:
u1 persists on vertex (1), whereas u2 vanishes on vertex (2); in parallel, u3 and v3 coexist on vertex (3), and
similarly, u4 and v4 coexist on vertex (4).

diffusion systems. It is known that such an estimation can be obtained by approximating the dimension
of the unstable manifold of a given equilibrium of the system. It is reasonable to expect that such a
lower bound would reveal what kind of topology would enlarge the dimension of attractors.
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