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ABSTRACT 

To determine mobility properties is one of the most challenging issue in the analysis and synthesis of parallel 
manipulators (PMs). However, currently, the most used methods mainly rely on experiences and manual analysis, 
which led to inefficient implementation. The motivation of this paper is to present an automatic mobility analysis 
algorithm and software package for the researchers and designers with an effective and practical means. According 
to the topological design theory of PMs based on position and orientation characteristic (POC) equations, this 
paper proposes a set of computer algorithmic rules and procedures for automated mobility analysis of PMs in the 
most user-friendly and efficient way. Firstly, a complete digital information model for topological structures which 
has a mapping relationship with the POC of a PM is proposed. This model not only describes the dimension of the 
motion outputs, but also includes the mapping relationship between the output orientation and the axes of the 
kinematic joints. Secondly, algorithmic rules are established that convert the union and intersection operations of 
POC into binary logical operations and then the detailed algorithmic procedures for an automatic mobility analysis 
are presented. In what follows, a corresponding software for automatic mobility analysis is described. The software 
package is equipped with a GUI that facilitates the input and allows the visualization of the results. Finally, four 
typical examples are provided to show the effectiveness of the software package for most of parallel mechanisms 
(not including some paradoxical mechanisms). 

Keywords: mobility analysis; degree of freedom; position and orientation characteristic; parallel mechanisms 
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1. Introduction 

Nowadays, parallel manipulators or mechanisms (in short, PMs) can be found in industrial machines because of 
important mechanical and kinematic properties over their serial counterparts[1], such as higher stiffness, better 
load weight ratio, lower inertia, higher accuracy. In their design, mobility analysis is a fundamental issue for the 
research on mechanical synthesis, kinematic and dynamic analysis. Here, mobility analysis includes the calculation 
of the number of degree of freedom (in short, DOF) and the evaluation the output motion properties of a 
manipulator. 

It is well known that the conventional mobility analysis based on the Chebyshev-Grubler-Kutzbach (CGK) [2] 
criterion fails in some PMs, this is due to neglecting the geometrical relationships between joints axes. In recent 
years, different approaches to the mobility analysis of PMs have been studied systematically, and various formulas 
and methods have been derived and presented [3-26]. But many of these formulas and methods may be reducible 
to the same original formula and the existing methods can be grouped into four categories: methods based on 
screw theory [5-12], methods based on Lie group theory [13-17], methods based on the theory of Position and 
Orientation Characteristics (POC) [18-23], and methods based on linear transformations [2,24].  

Most of existing methods for mobility analysis of PMs are performed manually. This task is often complex and 
difficult because much experience is required to deal with dependency or deep mathematical knowledge is required 
to establish the kinematic model. An advanced algorithm for the automatic mobility analysis of PMs is an effective 
solution to afore mentioned problems. However, as far as the authors of the paper know, computer-aided mobility 
analysis can be found only in very few papers [12,13,17,29,30]. In order to compare the feasibility of 
computerization of mobility analysis for PMs, the principle and characteristics of the existing relevant methods are 
listed in Table 1. 

The approach using screw theory has been successfully applied in many PMs. The computation of the degree of 
freedom utilizes the reciprocal relation between twist and wrench defined by the mechanical constraints [5-11], and 
mainly involves the linear solution of systems of screws. In this sense, this method has some potential for automatic 
analysis. However, it is difficult to obtain the screw system automatically for the average designer. Cao [12] took the 
first joint of a leg as a reference to establish the system of all screws of the leg, and realized an automatic analysis of 
the mobility of symmetrical PMs.  

The mobility analysis using Lie Group theory is based on the “multiplication” operation and the “intersection” 
operation of Euclidean subgroups [13-16]. There are too many operation rules involved in this process (over 107 
rules [14] ). This method is therefore not suitable to be implemented directly in an automated algorithm. By 
translating group theory and subsets and subgroups into the Lie algebra and its vector subspaces and its 
subalgebras, a computer-aided method for mobility analysis was proposed by Daniel[17]. But the datum describing 
the infinitesimal screws associated with each kinematic pair of the kinematic chain in an arbitrary position should 
be entered manually. 

The method based on the theory of linear transformations, relates the number of degree of freedom of a chain 
or a PM to the rank of the Jacobian matrix. Using this method, Angeles and Gosselin [24] obtained the mobility of 
several over-constraint mechanisms including the Bennet mechanism. But the Jacobian matrix, which maps a vector 
in joint velocity space into external velocity space, needs to develop the kinematic equations. From this point, this 
method is quite complicated, and to the best of the authors’ knowledge, there exist no general methods that can be 
automatically used for the PMs. 

With the last twenty years, algebraic methods have become successful in solving problems in mechanism 
analysis and synthesis, and it is also called GA-based method. Husty and Schröcker [25] used methods from 
algebraic geometry to define the DOF of a PM as Hilbert Dimension of a set of nonlinear polynomial kinematic 
constraint equations. By introducing Clifford algebra, Huo et al., [26,27] proposed an analytical approach for the 
determination of the motions/constraints, mobility and singularity of PMs. Based on the screw theory and the 
Chasles’ theorem, Yang [28] presented a method for the type synthesis of 3T1R PMs with variable rotational axis. 
One main advantage of the GA-based method is that subspace can be added, subtracted, and intersected in its 
framework, which is beneficial to be carried out in automatic way. However, the establishment of algebraic forms 
or algebraic equations needs the designers to have the abstruse mathematical knowledge. 

So-called POC theory for PMs means the topological design theory for PMs based on Position and Orientation 
Characteristics (POC) equations [18]. The mobility analysis method based on the POC theory, has clear formulas and 
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judgment criteria that are easy to use and program. To solve the mobility analysis problems, based on POC theory, a 
computer-aided software tool for the mobility analysis of PMs will be implemented in this work. The initial digital 
model and the revelent algorithms of mobility analysis were investigated in [29,30] for the PMs constituted only by 
revolute joints and prismatic joints. Considering the geometric properties of multi-DOF pairs and the coupling 
between rotations and translations, this paper presents a complete representation of topological structure of PMs, 
and gives the systematic rules for performing the union and intersection operations of POC. Furthermore, the 
algorithms of mobility analysis for serial and parallel mechanisms are proposed. Finally, a software package for 
automatic mobility analysis is described and some typical examples of PMs are presented to illustrate its 
effectiveness. 

Table 1 The methods of mobility analysis and their main features 

Methods Traditional CGK 
criterion 

Based on screw theory Based on displacement 
Subgroup/Submanifold  

Based on POC set 

Math tool --- Screw algebra Lie algebra Set theory 

Representation Real number Motion/constraint screw 
system 

Symbol of subgroup 
/submanifold 

POC Set 
Number of DOF 

DOF formula 
1
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 

I
 

( 1)

1 =1

+m

i Lj

i= j

F f -


    

j i ( j 1)

j

L b b
i 1

dim.(( M ) M )




  I U  

Algorithm Elementary algebra Operations of screw system: 
 Linear operations 
 Independence criterion of 

screw systems 

Operation of displacement 
subgroup 
 Union operations (107) 
 Intersection operations 

(107) 

Operation of POC set 
 Union operations (8 

linear, 2 nonlinear) 
 Intersection operations 

(12 linear, 2 nonlinear) 

Main featrues  Easy to perform 
 Fail to most 

spatial PMs 

 Simple linear operations 
 Local DOF 
 Need verification of full-

cycle DOF  
 Including paradoxical 

mechanisms 

 Too many rules 
 Complicated math tool 
 Full-cycle DOF 
 Excluding paradoxical 

mechanisms 

 Simple linear 
operations  

 Fewer rules  
 Full-cycle DOF 
 Excluding paradoxical 

mechanisms 

Table 1 (Continued) 

Methods Based on linear 
transformations 

Based on GA 

Math tool Linear algebra Study’s kinematic mapping Conformal geometric algebra 

Representation Rank of Jacobian matrix Dimension of local tangent spaces of 
kinematic varieties 

Linear-independent constraints 

DOF formula 
=11 =1

dim( ) dim( )
m k k

i Aj Aj

ji= j

F f - R + R  I  Hilbert dimension Number of linear-independent 
constraints 

Algorithm Linear algebra Study’s kinematic mapping Inner product, Outer product,  
Dual product, Shuffle product 
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Main featrues  Including singular 
configurations 

 Instantaneous DOF 
 Need verification of full-

cycle DOF  
 Solving of high dimensional 

equations 
 Time consuming 

 Including singular configurations 
 Instantaneous DOF 
 Calculation of high dimensional 

matrix  
 Time consuming 
 Need advanced algebraic knowledge 

 Simple operations 
 Including singular 

configurations 
 Instantaneous DOF 
 Need advanced algebraic 

knowledge 

It should be pointed out that the software package described in this paper currently could not analyze some 
“paradoxical” mechanisms, for example Bennett and Bricard mechanisms since the mobility of these mechanisms is 
not only related to their geometric topological structure, but also related to the dimensional constraint parameters 
(i.e., link length and skew angle comply with a certain functional relationship) which can not be expressed in the 
matrices of topological structure proposed here.  

2. POC theory for PMs  

This section briefly introduces some basics of POC theory for PMs, which are necessary in the mobility analysis 
of PMs. 

2.1 Definition and related equations of POC 

2.1.1 Definition of POC 

To describe the relative motion characteristics between any two components in a mechanism, the POC is 
introduced in [18] as 

t1 t 2

r1 r 2

t (dir.) {t (dir.)}
M=

r (dir.) {r (dir.)}

 

 

 
 

 
 (1) 

ξ=ξt1+ξr1≤F (2) 

where  
M -- POC of the output motion link of the PM. 
tξt1(dir.) -- Independent output translation elements. 
tξt2(dir.) -- Non-independent output translation elements. 
rξr1(dir.) -- Independent output rotation elements. 
rξr2(dir.) -- Non-Independent output rotation elements. 
ξt1 (ξr1) -- Number of the independent output translation (rotation) elements (ξt1, ξr1=0,1,2 or 3). 
(dir.) -- Direction of output translation (or rotation) with respect to joints axes. 
ξ -- Number of independent output elements in the POC. 
F -- DOF of the mechanism.  
For most mechanisms, the non-independent output element is constant (excluding the singular configurations) 

and therefore not considered. 

2.1.2 POC equation for serial mechanism 

The POC of a serial leg is expressed as 

m

L Ji
i=1

M = MU  (3) 

where 
ML -- POC of the output motion link (e.g. end link of the serial leg). 
MJi -- POC of the ith joint of the serial leg. 
m -- Number of joints in the serial leg.  
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∪-- “Union” operation [18]. 

2.1.3 POC equation for parallel mechanism 

The POC of a parallel mechanism is  

n

pa Lj

j 1

M M



 I  (4) 

where 
Mpa -- POC of the output motion link (e.g. moving platform of the PM). 
n -- Number of serial legs of the PM.  
MLj -- POC of the jth leg referred to the same base point.  
∩ -- “Intersection” operation [18]. 

2.2 Equation of mobility 

A PM with (ν+1) serial legs can be considered as a combination of ν independent single-loop-chains (in short, 
SLC). The structure composition of a PM based on SLC [18] is shown in Fig.1. Two serial legs are chosen to form the 
first independent loop (named as SLC1), and the moving platform is considered as an active component of this loop. 
Then, SLC1 is regarded as a whole (i.e., an equivalent sub-PM), and combined with another leg to form a second 
independent loop (named as SLC2); and in the same way, the (ν+1)th leg is combined with SLC(ν-1) to form the νth 
independent loop (named as SLCν).  

According to the theory based on POC, the number of the mobility F, i.e., the DOF of a PM can be calculated by 
Eq.(5), and the property of mobility can be evaluated by POC of the moving platform with respect to the fixed 
platform. 

j j

m 1

i L j L

i 1 j 1 j=1 j 1

F J = f
  

  

         (5) 

where, 

j i ( j 1)

j

L L L
i 1

dim.(( M ) M )




  I U  (6) 

ν=m–n+1 (7) 

where 
F -- DOF of the PM.  
Ji -- DOF of the ith joint in the PM. 
m -- Number of joints in the PM. 
ξLj -- Number (or rank) of the independent displacement equations of the jth independent loop.  
ν -- Number of the independent loops of the PM. 
fj -- DOF of all joints of the jth leg.  
n -- Number of components of the PM. 

j

Li
i 1

M


I -- POC of the equivalent sub-PM composed by the first j legs. 

ML(j+1) -- POC of the (j+1)th leg. 

 

Equivalent sub-PM 
SLC(ν-1) 

ν+1 

…ν 

ν+1 
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Fig. 1. Basic independent loops composed of PMs 

2.3 Key steps for computer-aided mobility analysis 

① The topological description of PM is one of the most significant issues in the analysis of a PM. It should 
include the complete topological information of the PM with the most concise representation so that it can be 
recognized and extracted automatically. 

② POC description for a leg and for a PM is a fundamental problem in automatic mobility analysis. Although 
the symbolic description as in Eq.(1) is good for expressing the geometric meaning, it is difficult to realize the 
transitivity of the joint orientation relation. 

③ The most critical issue is how to establish algorithmic rules for POCs suitable for computer programming 
to implement the “union” and “intersection” operations. In essential, these operations for POCs mainly involve 
determining spatial linear independency or not. 

3. Representation of a PM and its POC 

Generally, a PM consists of a moving platform connected to a fixed platform by several serial legs, and its 
mobility (including number and property) is completely affected by the types of kinematic joints and the 
geometrical relationships between the joint axes. Thus, the topology definition of a PM must be carried out before 
analyzing the mobility. 

First of all, it needs to be emphasized that in the following the legs of the studied PMs do not include 
redundant kinematic pairs.  

The pair types considered in the digital topological description of PMs are only 1-DOF (i.e. fi=1) revolute (R) and 
prismatic (P) pair, as any multi-DOF kinematic pair can be produced as a combination of R and P pairs. For instance, 
universal (U), spherical (S) and cylindrical (C) pairs can be regarded as combinations of two R pairs with orthogonal 
axes, three R pairs with concurrent axes, and one R pairt and one P pair with collinear axes, respectively.  

Mobility analysis of a PM (not includign some paradoxical mechanisms) deals only with the dimensional 
constrained types, i.e. the geometrical relationships between joints axes. In a serial leg or between legs, there are 
six basic geometrical relationships proposed by the authors in [18] as: parallel, orthogonal, coaxial, spatial common 
point, coplanar and arbitrary, here denoted symbolically using “||”, “⊥”, “/”, “*”, “#” and “-”, respectively. 

3.1 Digital representation of a serial leg and its POC 

3.1.1 Digital matrix of serial leg 

As described in [30], a digital ordered topological structure matrix representation is proposed including not only 
what type of pairing the joint has, but also what pair of orientations the joint characterizes. The ordered topology 
matrix (L) of a serial leg is expressed as an f×f matrix, where f is the number of 1-DOF joints in the leg. 

1 1i 1f

i1 i if

f1 f i f

J

L J

J

N N

N N

N N

 
 
 
 
 
  

L L

M O M

M O M

L L

 (8) 

The diagonal element Ji (i=1~f) denotes the type of joint i labeled from the fixed platform to the moving 
platform in sequence. J1 is connected to the fixed platform and Jf is connected to the moving platform. 

The non-diagonal element Nij (i, j=1~f) represents the geometrical relationship between joint i and joint j (6 
kinds of geometric relationship above-mentioned). So, the topological structure matrix L is symmetrical. 

For convenience of programming, each element of matrix L is expressed numerically so that the ordered 
topological structure matrix can be handled mathematically. Here, Nij is transformed into a number 0~5 respectively 
as shown in Table 2. In the same way, let Ji, (i.e., R and P joint) be 8 and 9. Thus, the topological structure of a leg 
can be expressed as an integer matrix. 

Table 2. Numbers of geometrical relationships of joints axes 

Geometrical relationship Corresponding number 
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Geometrical relationship Corresponding number 

parallel 1 

orthogonal 2 

coaxial 3 

common point 4 

coplanar 5 

arbitrary 0 

For example, the UP leg listed in Fig.2(a) has three pairs labeled with the numbers 8, 8, and 9. The axes 

relationships are R1⊥R2, R1⊥P3, and R2⊥P3 respectively. Based on the above definition, the ordered topological 

matrix of this leg is  

8 2 2

L 2 8 2

2 2 9

 
 
 
 

 (9) 

 

(a) UP          (b) RRC       (c) PRRRR 

Fig. 2. Typical legs not including S pair 

Generally, the multi-DOF kinematic pairs C, U and S, can be equivalent to the combinations of R1
(C)|P2

(C), 

R1
(U)⊥R2

(U) and R1
(S)

*R2
(S)*R3

(S) respectively. But the directions of the three equivalent axes of S pair should be 

calibrated according to the following criteria:  

(1) When R pair and S pair are connected by a link, or connected by a prismatic pair or connected by a planar 
sub-chain, taking an equivalent R(S) pair parallel to the R pair, as shown in Fig.3(a).  

(2) When two S pairs are connected by a link, or connected by a prismatic pair, there is a local rotation DOF 
around the line connecting two points of the spherical centers. Then, one S pair is treated as two R pairs, and 
denoted as R1

(S)
*R2

(S). Meanwhile, its axes are calibrated according to the above criteria (1), as shown in Fig.3(b). 

           

(a) RR-S-R||R                              (b) S1-S2 

Fig. 3. Equivalent axes of S pair 

For example, the RPS leg listed in Fig.4(a) with R and S pairs, can be replaced with the topologically equivalent 

leg R1(⊥P2)||R3-(R4*R5), as shown in Fig.4(b). Based on the above definition, the ordered topological matrix of this 

leg is 

R1 

R2 

P3 

P1 

R2 

R3 

R4 

R5 
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(#)

8 2 1 0 0

2 9 2 0 0

L 1 2 8 0 0

0 0 0 8 4

0 0 0 4 8

 
 
 
 
 
  

 (10) 

where, the subscript symbol ‘#’ indicates the serial number of the spherical center. Particularly, when different S 
pairs (or three equivalent revolute pairs) have the same center, the serial number is the same. 

 

(a) RPS             (b) RPRRR 

Fig. 4. Typical legs including S pair and its equivalent leg 

 

3.1.2 Definition of POC matrix of leg 

The POC matrix of a leg should include not only the dimension of output motion, but also the corresponding 
orientation of the motion. So, considering the relations between the topological structure and POC of a leg, a 2×f 
POC matrix (ML) is developed to match with its ordered topology matrix L, that is 

1 i f
L

1 i f

t t t
M

r r r
 

   

L L

L L
 (11) 

The defining of ML shall abide by the following criteria: 
(1) ti (ri) (i=1~f) denotes translation (rotation) output respectively, and ti ( ri) =0, 1, 2 or 3. 
(2) ti (ri) ≠0 indicates the existence of independent translation (rotation) output. 
(3) when ti=3 or ri=3, the dimension of translation or rotation output is 3. The directions are arbitrary in space 

and need not to be specified. 

(4) The dimension of translation/rotation output is 
f

r i
i 1

= r

 /

f

t i
i 1

= t

 , and the total dimension of output at 

the end link of the leg is ξ=ξr+ξt. 
(5) Output direction of column i is related to the axis of the ith joint in the ordered topological structure matrix 

L. 
 ti=1 means there is an independent translation along the direction of the ith joint axis (if ri=0) or in the 

normal plane of the ith joint axis(if ri=1). 
 when ti=2, there are two independent translations in the normal plane of the ith joint axis. 
Take the same UP leg as an example (Fig.2(a)). Its ordered topological structure matrix is Eq.(9), i.e. 
8 2 2

L 2 8 2

2 2 9

 
 
 
 

. According to the definition, the POC can be expressed as L
0 0 1

M
1 1 0
 

   
. This matrix indicates as 

follows,  
(1) The none-zero elements of ML mean the existing translation output (the first row) and the existing rotation 

output (the second row).  
(2) The sum of the non-zero elements corresponds to the number of DOF of this leg. 

R  

P  

S  

O’  
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(3) Each column of ML implies the motion orientation, such as r1=1 denotes that the rotation direction 
corresponds to the axis of the 1st pair (i.e. R1 joint) in the leg. Similarly, r2=1 corresponds to the R2 joint and t3=1 
(with r3=0) corresponds to the translation direction along the P3 joint axis. 

3.1.3 POC matrix of a sub-chain 

More commonly, planar sub-chains (2-DOF G2 and 3-DOF G3) or spherical sub-chains (2-DOF S2 and 3-DOF S3) 
may constitute a leg or part of a leg consisting of parallel or orthogonal R joints and/or P joints. It is not difficult to 
see that, no matter which point on the end link is chosen, the end link of a planar sub-chain has always a one-
dimensional rotation and a one-dimensional or two-dimensional independent translations in the normal plane of 
the R joint axis. On the contrary, for a spherical sub-chain (2-DOF S2 and 3-DOF S3), different points of an end link 
have different characteristics of POC.  

In order to express the motion output direction more clearly and facilitate subsequent operations of POCs, it is 
necessary to extract the sub-chains and to mention the specific point of the end-effectors. In accordance with the 
definition of a POC matrix, 9 type matrices for the 12 sub-chains is illustrated in Table 3, where POC of the sub-
chains R1*R2 and R1*R2*R3 have two different forms. Here, we take the sub-chain R1*R2*R3 as an example to 
illustrate what the two matrices mean and how to choose in the calculation. The specific description is given as 
follows, 

(1) If the intersection point of three R joints’ axes is selected as base point O’, there exist three independent 

finite rotations parallel to the axes of R1, R2 and R3 respectively. So the POC is written as 
0 0 0

1 1 1
 
  

.  

(2) If base point O’ is selected outside the axis of the end joint (R3), there are also two derivative finite 
translations within a plane perpendicular to radius vector ρ shown in Fig.5. Therefore, in addition to the three finite 
rotations mentioned above, two non-independent translations should be considered (See detailed proof in [18]). So 

the POC can be expressed as 
0 0 0

1 1 1
 
  

+
2

#
 
  

, where the symbol ‘#’ denotes the No. of intersection point, and the 

number 2 indicates the two-dimensional derivative translations, which is non-independent. 

Table 3 Twelve Sub-chains and their POCs 

No. Type Symbol Dimension Topology Matrix POC matrix 

1 

G2 

R||R 2 
8 1

1 8
 
  

 
1 0

1 0
 
  

 

2 R⊥P 2 
8 2

2 9
 
  

 
1 0

1 0
 
  

 

3 P⊥R 2 
9 2

2 8
 
  

 
0 1

0 1
 
  

 

4 

G3 

R//R//R 3 
8 1 1

1 8 1

1 1 8

 
 
 
 

 
2 0 0

1 0 0
 
  

 

5 R//R⊥P 3 
8 1 2

1 8 2

2 2 9

 
 
 
 

 
2 0 0

1 0 0
 
  

 

6 P⊥R//R 3 
9 2 2

2 8 1

2 1 8

 
 
 
 

 
0 2 0

0 1 0
 
  

 

7 R(⊥P)//R 3 
8 2 1

2 9 2

1 2 8

 
 
 
 

 
2 0 0

1 0 0
 
  

 

8 R(⊥P)⊥P 3 
8 2 2

2 9 2

2 2 9

 
 
 
 

 
2 0 0

1 0 0
 
  
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No. Type Symbol Dimension Topology Matrix POC matrix 

9 P(⊥P)⊥R 3 
9 2 2

2 9 2

2 2 8

 
 
 
 

 
0 0 2

0 0 1
 
  

 

10 P(⊥R)⊥P 3 
9 2 2

2 8 2

2 2 9

 
 
 
 

 
0 2 0

0 1 0
 
  

 

11 S2 R*R 2 
8 4

4 8
 
  

 

0 0

1 1
 
  

 

0 0

1 1
 
  

+
2

#
 
  

 

12 S3 
R1*R2*R3 

(Not coplanar) 
3 

8 4 4

4 8 4

4 4 8

 
 
 
 

 

0 0 0

1 1 1
 
  

 

0 0 0

1 1 1
 
  

+
2

#
 
  

 

 

Fig. 5. The sub-chain of R1*R2*R3 

3.1.4 Topology matrix and POC matrix of some typical legs 

Table 4 displays seven typical legs and their topological matrices and the corresponding POC matrices, among 
which the structures of legs No.3~No.6 are shown in Fig.2(a)-(c) and Fig.4(a). Clearly, the representation of the 
topological structure and the POC of a leg exhibits an orderly one-to-one correspondence among the sequence of 
the pairs and the motion output orientations. 

Table 4. Topology matrix and POC matrix of typical legs 

No. Symbol Topology Matrix POC matrix Commentary 

1 R L=[8] L
0

M
1
 

   
 Rotation around R axis 

2 P L=[9] L
1

M
0
 

   
 Translation along P axis 

3 
UP 

(R1R2P3) 

8 2 2

L 2 8 2

2 2 9

 
 
 
 

 L
0 0 1

M
1 1 0
 

   
 

 One-translation along P3 axis 
 Two-rotations about axes of R1 and R2 joints 

4 
RRC 

(R1R2R3P4) 

8 1 1 1

1 8 1 1
L

1 1 8 1

1 1 1 9

 
 

  
 
 

 L
3 0 0 0

M
1 0 0 0
 

   
 

 Three-translations along arbitrary directions in 
space 

 One-rotation about R1 joint axis 

5 P1R2R3R4R5 

9 2 2 1 1

2 8 1 2 2

L 2 1 8 2 2

1 2 2 8 1

1 2 2 1 8

 
 
 
 
 
  

 L
3 0 0 0 0

M
0 1 0 1 0
 

   
 

 Three-translations along arbitrary directions in 
space 

 Two-rotations about R2 and R4 joints axes 
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No. Symbol Topology Matrix POC matrix Commentary 

6 
RPS 

(R1 P2R3R4R5) 

8 2 1 0 0

2 9 2 0 0

L 1 2 8 0 0

0 0 0 8 4

0 0 0 4 8

 
 
 
 
 
  

 L
2 0 0 0 0

M
3 0 0 0 0
 


  

+
1

#
 
  

 

 Two-translations in the normal plane of R1 axis 
 Three--rotations around the point # 
 One derivative translation in the plane 

perpendicular to radius vector ρ# 

7 
UPS leg 

(R1R2P3R4R5R6) 

8 2 2 0 0 0

2 8 2 1 0 0

2 2 9 2 0 0
L=

0 1 2 8 0 0

0 0 0 0 8 4

0 0 0 0 4 8

 
 
 
 
 
 
  

 L
3 0 0 0 0 0

M
3 0 0 0 0 0
 

   
 

 Three-translations along arbitrary directions in 
space 

 Three--rotations around arbitrary axes in space 

3.2 Description of a PM and its POC 

As mentioned previously, the mobility of a PM depends not only on the geometrical axes relationships in one 
leg, but also on the geometrical axes relationships between legs. Therefore, in addition to the topological structures 
of all legs, the topological relations between the legs of a PM are needed to be considered in digital form for the 
mobility analysis.  

In most cases, the geometrical axes relationships between legs depend on the invariant geometric relations 
between joints axes respectively on the moving platform and on the fixed platform. 

To make information concise, the representation of PMs is developed to clearly represent the composition of 
legs and the relationships of axes pairs on the two platforms. 

3.2.1 Description of PM 

The representation of the topological structure for a given PM with n legs is expressed in the following four 
steps. 

Step 1  Label all n legs comprising the PM in turn with numbers 1~n. 
Step 2  Obtain the ordered topological matrix Li (i=1~n) of all n legs.  
Step 3  Definite two virtual legs MP and BP constituted by the pairs on the moving platform and on the fixed 

platform in the order of legs. 
Step 4  Obtain the ordered topological matrix LMP and LBP of the virtual legs MP and BP. 
Then, the topological composition of the PM can be expressed as 

PM=(L1, L2, ..., Ln, LMP, LBP) (12) 

It should be pointed out that if a leg is connected to the fixed platform or to the moving platform by a P pair of 
a planar sub-chain, the normal of the sub-chain is represented rather than the axis of the P pair. This is because the 
output direction of planar sub-chain is represented by the axis of the R pair which is perpendicular to the P pair 
( See No. 3, 6, 9 and 10 in Table 3). 

Three examples are given here to illustrate how the proposed representation works. 
(1) 3-UPS & 1-UP PM 
The PM in Fig.6(a) has 3-UPS legs and 1-UP leg. First, replace composite pairs S and U with three R pairs with 

concurrent axes and two R pairs with orthogonal axes respectively. Then, label the legs as shown in Fig.6(a). In what 
follows, obtain the two virtual legs MP and BP as R-R-R-R and R-R-R-P, and indicate that the axes relationships of all 
joints on the two platforms are arbitrary.  

Accordingly, the topological composition of this PM is PM=(L1, L2, L3, L4, LMP, LBP). 
The topology matrix Li(i=1~3) for 3-UPS legs and the matrix L4 for the UP leg are expressed as follows. 

i

8 2 2 0 0 0

2 8 2 1 0 0

2 2 9 2 0 0
L

0 1 2 8 0 0

0 0 0 0 8 4

0 0 0 0 4 8

 
 
 
 
 
 
  

 (i=1~3), 4

8 2 2

L 2 8 2

2 2 9

 
 
 
 
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Matrix LMP and LBP are 

MP

8 0 0 0

0 8 0 0
L

0 0 8 0

0 0 0 9

 
 

  
 
 

, BP

8 0 0 0

0 8 0 0
L  

0 0 8 0

0 0 0 8

 
 

  
 
 

 

 

(a) 3-UPS&1-UP            (b) 3-RRC                (c) 3-RPS 

Fig.6. Four PMs 

(2) 3-RRC PM 
The 3-RRC PM in Fig.6(b) has three identical RRC legs. First, replace composite pairs C with one R joint and one 

P joint with collinear axes. Then, label the legs as shown in Fig.6(b) and obtain the two virtual legs MP and BP as P-
P-P and R-R-R, and the axes relationships of all joints on the two platforms are coplanar. 

Accordingly, the topological composition of 3-RRC PM is PM=(L1, L2, L3, LMP, LBP). 
The topological structure matrices Li(i=1~3) for 3-RRC legs are 

i

8 1 1 1

1 8 1 1
L

1 1 8 1

1 1 1 9

 
 

  
 
 

 (i=1~3) 

Matrix LMP and LBP are 

MP

9 5 5

L 5 9 5

5 5 9

 
 
 
 

 and BP

8 5 5

L 5 8 5

5 5 8

 
 
 
 

 

(3) 3-RPS PM 
The 3-RPS PM in Fig.6(c) has three identical RPS legs. First, replace composite pairs S with one R joint and two 

intersecting R joints. Then, label the legs as shown in Fig.6(c) and obtain the two virtual legs MP and BP both as R-R-
R, and the axes relationships of all joints on the two platforms are arbitrary. 

Thus, the topological composition of 3-RPS PM is PM=(L1, L2, L3, LMP, LBP). 
The topological structure matrices Li(i=1~3) for 3-RPS legs are 

i

(i)

8 2 1 0 0

2 9 2 0 0

L 1 2 8 2 2

0 0 2 8 4

0 0 2 4 8

 
 
 
 
 
  

 (i=1~3) 

where, the subscript i represents the No. of intersection point of the last two revolute joints axes. 
Matrix LMP and LBP are 

MP

8 0 0

L 0 8 0

0 0 8

 
 
 
 

 and BP

8 0 0

L 0 8 0

0 0 8

 
 
 
 

 

3.2.2 Description of POC of a PM 
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According to the intersection property of sets, the direction of translation/rotation output of a PM is related to 
one or more joints in one of the legs. Thus, the number of this leg should be recorded for reference. So, the POC of 
a PM can be completely expressed by adding the number of reference to the legs on the basis of POC of a serial leg. 
It is defined as 

1 i nj
pa j

1 i nj

t t t
M L

r r r

 
     

 

L L

L L
, (nj≤6) (13) 

where, Lj is the number of the reference leg specifying the direction of translation/rotation output, nj is the number 
of 1-DOF pairs in leg Lj. 

We show this representation with three PMs shown in Fig.6. The PM shown in Fig.6(a) has 2-rotational outputs 

and 1-translational output, and the POC matrix of this PM can be expressed as  pa
0 0 1

M 4
1 1 0
 

   
. The right 

element “4” indicates that the 4th leg (UP leg) is the reference leg for the output directions of the moving platform, 
which means that this mechanism has a translation output along the P43 joint axis, and the directions of rotation 
outputs are around R41 and R42 joint axes.  

The 3-RRC PM shown in Fig.6(b) has 3-translations and its POC is  pa
3 0 0

M 1
0 0 0
 

   
, which shows that 3-RRC 

has a 3-dimensional translation output and the element ‘1’ indicates the 1st leg is the output reference. In fact, 3-
dimensional translation output can translate along arbitrary space direction and needs not to be specified.  

For the PM in Fig.6(c), point O’ on the moving platform is selected as the base point, and its POC is 

 pa
2 0 0

M 1
3 0 0
 


  

, which shows that 3-RPS has a 3-dimensional rotation outputs and 2-dimensional translation 

outputs perpendicular to the axis R11. In fact, since DOF of the PM is three, the POC has just three independent 
elements, and the other two elements are non-independent.  

4. Automatic analysis of POC and dimension of independent displacement equations 

4.1 Automatic POC analysis of a leg 

4.1.1 Algorithm principle 

Based on Eq.(3), the POC of a leg is the union operation on POCs of all joints. 
Each leg can be considered as a combination of a series of independent constituent units, such as plane sub-

chains (G3 and G2), spherical sub-chains (S3 and S2) and the remaining 1-DOF R and P joints. Each component unit 
has a unique corresponding POC matrix (Listed in Table 3 and Table 4). Thus, according to the topological structure 
matrix defined above, calculating the POC of a leg can be mapped into simply combining the POC matrices of these 
independent constituent units.  

Table 3 and Table 4 show that the POC matrices of these independent constituent units have different 
dimensions. For convenience of programming, POC matrices of these units (named as MG3, MG2, MS3, MS2 and MJ) 
will be supplemented to a 2×6 matrix to be dimensionally consistent. 

1 2 3 4 5 6
*(sp)

1 2 3 4 5 6

t t t t t t
M

r r r r r r
 


  

 (14) 

The symbol ‘*’ is to be used to represent G3, G2, S3, S2 or J. 
The specific complement rule must preserve the order of the constituent units in the leg. Take a P1R2R3R4R5 leg 

shown in Fig.2(c) as an example. 

In Fig.2(c), the two serial sub-chains G3 (P1⊥R2//R3) and G2 (R4//R5) can be extracted. Their original POC 

matrices and the supplemented POC matrices are as follows: 
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Similarly, for the leg of RPS in Fig.4(a), sub-chains G3 (R1⊥P2//R3) and S2 (R4*R5) can be extracted. If point O’ is 

selected as the base point, their original POC matrices and the supplemented POC matrices are described by 

G3
2 0 0

1 0 0
M

 
  

 (sG3 p)
2 0 0 0 0 0

1 0 0 0 0 0
M

 


  
  

S2
0 0 0

1 1 0
M

 
  

 (sS2 p)
0 0 0 0 0 0

0 0 0 1 1 0
M

 


  
  

It can be seen that the sequence of joints is retained while expressing the POC. 
Thus, the POC of a leg can be calculated as 

3 2 3 2(sp)L(sp) G (sp) G S (sp) S (sp) J(sp)M M ||M ||M ||M ||M   (15) 

where MG3(sp), MG2(sp), MS3(sp), MS2(sp) and MJ(sp) are the supplemented forms of the POC matrices of G3, G2, S3, S2 and 
1-DOF joints. The symbol ‘||’ denotes the logical ‘or’ operation in each bit of the matrices. As long as one 
corresponding bit is 1, the result is ‘1’; otherwise, is ‘0’.  

Hence, one can reason that the process of POC analysis of a leg will be converted into the process of extracting 
sub-chains and supplementing POC matrices. 

4.1.2 Analysis algorithm procedure for the POC of a leg 

Here, based on the topology matrices of legs and the extracted sub-chains and 1-DOF joints, an automatic POC 
analysis method of a leg is presented. 

Step 1  Determine the topology matrix of the leg, and extract successively G3, G2, S3, S2 and the remaining 1-
DOF joints. 

Step 2  Select base point O’. 
Step 3 Determine the supplemented matrix of the extracted G3, G2, S3, S2 and the matrix of remaining 1-DOF 

joints. 
Step 4 Carry out the bitwise “or” operation on the supplemented matrices of G3, G2, S3, S2 and 1-DOF joints, 

and obtain the initial POC matrix, which is denoted as 
1 2 3 4 5 60

L
1 2 3 4 5 6

t t t t t t
M

r r r r r r
 

   
, 

6
0

i r
i 1

r =ξ

 , 

6
0

i t
i 1

t =ξ

 . 

Step 5 Generate the final POC matrix by converting redundant parallel revolute output into translation output 

according to the following three rules. The result is recorded as 
1 2 3 4 5 6

L
1 2 3 4 5 6

t t t t t t
M

r r r r r r
 

   
, 

6

i r
i 1

r =

 , 

6

i t
i 1

t =

 . 

 If ξr
0>3, then correct ξr=3 and ξt=ξt

0+ξr
0-3, and the translation direction newly augmented lies in the normal 

plane of the parallel revolute joints. 
 If ξr

0≤3, the final POC matrix is ML=ML
0, i.e., ξt=ξt

0 and ξr=ξr
0. 

 If ξt=2 (or 3), and the leg exists a two-dimensional derivative translations, then the two-dimensional 
translations will be reduced to one (or zero) dimension. 

4.1.3 Examples of POC analysis of a leg 

Example 1 Determine the POC of the leg P⊥R//R⊥R//R, which is shown in Fig.2(c).  
Step 1  Recognize and sequentially extract sub-chains. There is one G3 sub-chain P⊥R//R and one G2 planar 

sub-chain R//R. 
Step 2  Select base point O’ outside the axis of the end R pair. 

G3
0 2 0

0 1 0
M

 
  



G2
1 0

1 0
M 

 
  

(sG3 p)
0 2 0 0 0 0

0 1 0 0 0 0
M

 
   



G2(sp)
0 0 0 1 0 0

M
0 0 0 1 0 0
 

   

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Step 3  Generate the supplemented POC matrices of G3 and G2 as G3
0 2 0 0 0 0

M
0 1 0 0 0 0
 

   
, 

G2
0 0 0 1 0 0

M
0 0 0 1 0 0
 

   
. 

Step 4  Carry out bitwise “or” operation on MG3 and MG2, thus the initial POC matrix is 

0
L

0 0 2 0 0 0 0 1 0 0 0 0 0 2 0 1 0 0
M

0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
   

       

P P P P P P

P P P P P P , and ξr
0=2, and ξt

0=3. 

Step 5  ξt
0=3 and ξr

0=2 , so ML=ML
0, that means L

3 0 0 0 0 0
M

0 1 0 1 0 0
 

   
, and ξt=3 indicates that the leg has three 

independent translation outputs along arbitrary space directions, ξr=2 indicates that it has two rotational outputs, 
r2=r4=1 means the two rotations axes are around the joints of R2 and R4, respectively. 

 
Example 2 Determine the POC of the RPS leg shown in Fig.4(a).  
Step 1  Recognize and sequentially extract sub-chains. There is one G3 sub-chain R⊥P//R and one S2 sub-chain 

R*R. 
Step 2  Select base point O’ outside the axis of the end R pair. 

Step 3 Generate the supplemented POC matrices of G3 and G2 as G3
2 0 0 0 0 0

M
1 0 0 0 0 0
 


  

, 

S2
0 0 0 0 0 0 2

M
0 0 0 1 1 0 #1
   

 
      

. 

Step 4  Carry out bitwise “or” operation on MG3 and MG2, thus the initial POC matrix is 

0
L

2 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 2
M

1 0 0 0 0 0 0 1 0 1 0 0 #1 3 0 0 0 0 0 #1
       

   
              

P P P P P P

P P P P P P , and ξr
0=3, and ξt

0=2, 
2

#1
 
  

. 

Step 5 ξr
0=3, ξt

0=2 and 
2

#1
 
  

, so L
2 0 0 0 0 0 1

M
3 0 0 0 0 0 #1
   

 
      

. Therefore, the leg has two independent 

translational outputs in the normal plane of axis R1 and three rotational outputs around the spherical center #1, and 

1

#1
 
  

shows that the effector has one derivative translation within the plane perpendicular to radius vector ρ1.  

4.2 Automatic POC analysis of a PM 

POC of a PM is the result of the intersection operations on all legs in the PM. Among them, the translation 
output of the PM is the intersection of translational outputs of all legs, and the same works for the rotation outputs. 

According to the kinematic characteristics of rigid body, the rotational outputs has no effect on the translational 
output, but the translational outputs affect the position of the rotation axis. So intersection rules for rotation 
outputs of POC will be more complicated. 

Given are two legs L1 and L2, numbered as l1 and l2 respectively. The POC matrices of these legs are described as 

i1 i2 i3 i4 i5 i6
Li

i1 i2 i3 i4 i5 i6

t t t t t t
M

r r r r r r

 
  
 

. According to Eq.(11), the dimensions of translation and rotation outputs will 

be ξti=
6

ij
j 1

t

  and ξri=

6

ij
j 1

r

  (i=1, 2), and the non-zero elements of MLi imply the corresponding directions. 

For convenience of description, the translation and rotation output of leg li are denoted by Gi=(ξti, ei) and Hi=(ξri, 
si), where ei and si are the directions of translation/rotation output of this leg. According to the above definition, 
ei/si can be divided into four different types:  

(1) if ξti=0/ξri=0, then ei/si=Φ (empty set); 
(2) if ξti=1/ξri=1, then ei/si is a spatial line;  
(3) if ξti=2/ξri=2, then ei/si is a plane;  
(4) if ξti=3/ξri=3, then ei/si is denoted as “-” (arbitrary in space). 
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Suppose the intersection result is described as 1 2 3 4 5 6
pa(1~2) j

1 2 3 4 5 6

t t t t t t
M l

r r r r r r

 
     

 
(j=1 or 2), where j is 

the number of reference leg.  

Similarly, the dimension of translation/rotation output is denoted by ξt(1~2)=
6

i
i 1

t

 /ξr(1~2)=

6

i
i 1

r

 .  

The translation and rotation output can be expressed as G(1~2)=(ξt(1~2), e(1~2)) and H(1~2)=(ξr(1~2), s(1~2)), where e(1~2) 
and s(1~2) are the corresponding directions. 

Note that the legs L1 and L2, which were used to introduce the computation algorithm, can be either the legs 
constituting a PM or a sub-PM composed by several legs. Similarly, the result of the above intersection operation 
can also be regarded as the POC of a sub-PM continuing to participate in other operations. The intersection output 
of matrices of two POCs can be calculated following these two rules. 

4.2.1 Intersection rules for translation output of POCs 

In the process of intersection operation, since the rotation outputs have no influence on the translation 
outputs, the translation outputs can be intersected seperately. Actually, the intersection operation of translations of 
two legs is to solve G(1~2)=G1∩G2, which can be obtained according the rules shown in Table 5. 

Table 5 Intersection rules for translation output of POCs 

   L1 

L2 
ξt1=0 

ξt1=1  ξt1=2 
ξt1=3 

e1||e2 e1||e2  e1||e2 e1||e2 

ξt2=0 G2 G2 
 

G2 G2 

ξt2=1 G1 G2 ξt(1~2)=0, e(1~2)=Φ 
 

G2 ξt(1~2)=0, e(1~2)=Φ G2 

ξt2=2 G1 G1 ξt(1~2)=0, e(1~2)=Φ 
 

G2 ξt(1~2)=1, e(1~2)=e1∩e2 G2 

ξt2=3 G1 G1 
 

G1 G1 

4.2.2 Intersection rules for rotation output of POCs 

Similarly, the intersection of rotational output of two POC matrices is to solve H(1~2)=H1∩H2. However, as stated 
above, translation outputs affect the position of the rotation axis. Therefore, the translaotional outputs of a leg 
must be taken into account before establishing the intersection rules of the rotational output of POCs. 

It is well known, if a leg has 2-dimensional translations and 1-dimensional rotation perpendicular to the 2D 
translation plane, no matter where the revolute joint is, the end link of the leg can rotate around any axis to be 
perpendicular to the 2D plane. Likewise, if a leg has 3-dimensional translations and rotations, no matter where the 
rotation joints are, the end link of the leg can rotate around any axes parallel to the rotational joints. This type of 
rotational output is called as a fully-free output (Denoted as FF-type), and anything else is called a non-fully-free 
output (Denoted as non-FF-type). Generally, for the 3-DOF non-FF-type rotation type, it is usually caused by pair S, 
so it is considered that the three axes intersect at one point, i.e., the spherical center. 

On the basis of defining the type of rotational output, the intersection operation rules for rotation output can 
be divided into three types and listed in Table 6. It is noted that, the symbol “*” in the table indicates that the three 
axes have intersection points, and the superscript “a” indicates that the output axis will pass through the 
intersection point. 

It should be noted that the number of the reference leg (lj) can be concluded directly from the result of the 
intersection operations. As it can be seen from Table 5 and Table 6, the result of G1 or G2 indicates that lj is L1 or L2 
correspondingly. In particular, when the result of intersection is not capable of motion, the output will be shown 
as‘Φ’ (Empty set). 
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Table 6 Intersection rules for rotation output 

L1: FF-type, L2: FF-type 

L1 

L2 
ξr1=0 

ξr1=1  ξr1=2  

ξr1=3 s1||s2 or 

s1 | s2 
s1||s2 and 

s1 | s2 
 

s1||s2 or 

s1 | s2 
s1||s2 and 

s1 | s2 
 

ξr2=0 H1 H2  H2  H2 

ξr2=1 H1 H1 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2 

ξr2=2 H1 H1 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2 
ξr(1~2)=1, 

s(1~2)=s1∩s2 
 H2 

ξr2=3 H1 H1  H1  H2 

L1: FF-type, L2: non-FF-type 

 L1 

L2 
ξr1=0 

ξr1=1  ξr1=2  
ξr1=3 s1||s2 or 

s1 | s2 
s1||s2 and 

s1 | s2 
 

s1||s2 or 

s1 | s2 
s1||s2 and 

s1 | s2 
 

ξr2=0 H1 H2  H2  H2 

ξr2=1 H1 H1 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2 

ξr2=2 H1 H1
a 

ξr(1~2)=0, 
s(1~2)=Φ 

 H2 
ξr(1~2)=1, 

s(1~2)=s1∩s2 
 H2 

ξr2=3* H1 H1
a  H1

a  H2 

L1: non-FF-type, L2: non-FF-type 

 L1 

L2 
ξr1=0 

ξr1=1  ξr1=2  ξr1=3* 

s1 | s2 s1|s2  s1 | s2 s1|s2  s1 | s2 s1|s2 

ξr2=0 H1 H2  H2  H2 

ξr2=1 H1 H1 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2 
ξr(1~2)=0, 
s(1~2)=Φ 

ξr2=2 H1 H1 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2
a 

ξr(1~2)=0, 
s(1~2)=Φ 

ξr2=3*  H1 H1
a 

ξr(1~2)=0, 
s(1~2)=Φ 

 H1 
ξr(1~2)=0, 
s(1~2)=Φ 

 H2 
ξr(1~2)=1, 

s(1~2)=O1O2 

4.2.3 Analysis algorithm procedure for the POC of a PM 

In accordance with the analysis above, the fully-automatic POC analysis procedure of PMs is as follows. 

Step 1 Input the number of legs n and POC matrix of each leg MLi (i=1~n) including two virtual legs of the two 
platforms MMP and MLP. 

Step 2 Choose the 1st and the 2nd legs to form a sub-PM denoted as sub-PM(1~2). 

Step 3 Calculate the POC matrix Mpa(1~2) of sub-PM(1~2). 
 Obtain intersection of translation outputs G(1~2) 
 Obtain intersection of rotation outputs H(1~2) 
 Obtain the result of POC Mpa (1~2) of the sub-PM(1~2) 
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Step 4 Repeat Step 2 and Step 3 for constructing sub-PM(1~3) (consisted by sub-PM(1~2) and the 3rd leg), … , sub-
PM(1~n) (consisted by sub-PM(1~(n-1)) and the nth leg), and calculation of the corresponding Mpa(1~3) , … , Mpa(1~n). 

Step 5 Output the POC result of PM: Mpa=Mpa(1~n). 
Taking the 3-RRC PM for example, the structural sketch is shown in Fig.6(b). The topology matrices of legs, and 

joints on the two platforms have been described in Section 3.2.1. The POC of 3-RRC PM can be analyzed as follows. 
Step 1  Input the number of legs, and POC of each leg. 
Obviously the number of legs is n=3. 
According to Eq.(15), the topology matrices of 3-RRC legs can be determined as 

L i

i

i

2 0 0 0 0 0 0 0 0 1 0 0
M ||

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0 0 0 0 2 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

G3 0 0 0 0 0
=

1 0 0 0 0 0 H

   
       

   
       

  
      

P P P P P P

P P P P P P  (i=1,2,3). 

Thus, ξti=3 means that there are arbitrary translations in space, and ξri=1 is a one-dimension rotation around 
the Ri1 axis in the ith leg, i.e. si=Ri1. 

Step 2  Calculate the POC matrix Mpa(1~2) of sub-PM(1~2) constituted by the 1st and the 2nd legs. 
According to Table 5, ξt1=ξt2=3, then ξt(1~2)=3, and G(1~2)=G2. 
Since ξr1=ξr2=1, s1=R11, s2=R21, and R11||R21, we obtain s1||s2. According to Table 6, then ξr(1~2)=0, and 

s(1~2)=Φ. 

Then, the POC matrix of sub-PM(1~2) is 
~2)

1~2
~2

(1
pa( )

)(1

G2 0 0 1 0 0

0 0 0 0 0 0
M

H

  
       

. 

Step 3  Calculate the POC matrix Mpa(1~3) of sub-PM(1~3) constituted by the sub-PM(1~2) and the third RRC leg. 
According to Table 5, ξt(1~2)=ξt3=3, then ξt(1~3)=3, and G(1~3)=G3. 
According to Table 6, ξr(1~2)=0, ξr3=1, and s(1~2)=Φ, s3=R31, then, ξr(1~3)=0, s(1~3)=Φ. 

Thus, the POC matrix of sub-PM(1~3) is 
(1 ) 3

p
~3

a( )
(

1~3
)1~3

G G2 0 0 1 0 0 3 0 0 0 0 0
=

0 0 0 0 0 0 0 0 0 0 0 H
M

0

      
               

 

Step 4 Output the result of the POC of this PM 

Mpa=Mpa(1~3)=
3G 

  
 

The POC of the 3-RRC PM is a 3-dimensional translation, and this result is consistent with the result in [18].  

4.3 Calculating the number of independent displacement equations 

Eq.(6) shows that solving the number of independent displacement equations of an independent loop involves 
the union operation of POC matrices. For the legs L1 and L2 mentioned above, suppose the resulting matrix of the 
union operation to be 

1 2 3 4 5 6
L(1 2)

1 2 3 4 5 6

t t t t t t
M

r r r r r r

 
  
 

U  

The dimension of independent output is 

Lt 1 2

6

( ) i
i 1

ξ t


 U / Lr 1 2

6

( ) i
i 1

ξ r


 U  

The translation output is G(1∪2)= (ξLt(1∪2), e(1∪2)) and the rotation output is H(1∪2)= (ξLr(1∪2), s(1∪2)), where e(1∪2)/s(1∪2) is 
the direction of translation/rotation. Thus, the number of independent displacement equations of the independent 
loop is ξL(1∪2)= ξLt(1∪2) + ξLr(1∪2). 
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4.3.1 Rules for the dimension of translation output of SLC 

Solving the dimension of translation output of an SLC means essentially to calculate ξLt(1∪2)=dim(G1∪G2). The 
corresponding operation rules are shown in Table 7. 

Table 7. Rules for the dimension of the translation output of SLC 

   L1 

L2 
ξt1=0 

ξt1=1  ξt1=2 
ξt1=3 

e1||e2 e1||e2  e1||e2 e1||e2 

ξt2=0 0 1  2 3 

ξt2=1 1 1 2 
 

2 3 3 

ξt2=2 2 2 3  2 3 3 

ξt2=3 3 3 
 

3 3 

4.3.2 Rules for the dimension of rotation output of SLC 

Similarly, the dimension of the rotation output of SLC is to calculate ξLr(1∪2=dim(H1∪H2), and its operation rules 
are shown in Table 8. 

Table 8. Rules for the dimension of the rotation output of SLC 

   L1 

L2 
ξr1=0 

ξr1=1  ξr1=2 
ξr1=3 

e1||e2 e1||e2  e1||e2 e1||e2 

ξr2=0 0 1  2 3 

ξr2=1 1 1 2 
 

2 3 3 

ξr2=2 2 2 3  2 3 3 

ξr2=3 3 3 
 

3 3 

The rules described above does not only work for serial legs but also for equivalent sub-PMs. Therefore, it is 
emphasized once more that the legs L1 and L2, which were used to introduce the computation algorithm, can be 
either the legs constituting a PM or a sub-PM composed by several legs.  

5. Procedure of automatic mobility analysis of PMs 

Based on the POC algorithm for a leg, for a PM and for the number of independent displacement equations, 
the steps of mobility analysis of PMs are illustrated below. 

Step 1  Input topological structure of a PM. 
Number 1~(ν+1) of legs in sequence and input the corresponding topology matrix of each leg as L1, …, L(ν+1). 

Then, input the topology matrix between legs, LMP characterizes a virtual leg constituted by pairs of joints on the 
moving platform and LBP is analogously defined on the fixed platform. Based on above, the number of joints fi and 
the number of legs ν+1 can be obtained automatically. 

It should be pointed out that for the PM to be analyzed, the legs can be numbered arbitrarily and does not 
affect the result of the mobility analysis. However, once the legs are numbered, the order of the two virtual legs 
should be basic on the number. 

Step 2  Select base point O’ on the moving platform. 
Step 3  Calculate POC matrices of (ν+1) legs, denoted as ML1,...ML(ν+1). 

Step 4  Calculate the sum of all joints: f(1~(ν+1))=
ν+1

i
i 1

f

 . 
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Step 5  Calculate the POC matrix Mpa(1~j) of the sub-PM(1~j) composed by the front jth legs connected in parallel 
(j=2,...,ν). 

① Calculate the translation output G(1~j)=G(1~(j-1))∩G(j+1). 
② Calculate the rotation output H(1~j)=H (1~(j-1))∩H(j+1). 

③ Get 
1~ j

pa(1~ j)
1~ j

G
M

H

 
  
 

( )

( )
. 

Step 6  Calculate the number of the independent displacement equations ξj of the jth loop SLCj, which is 
composed by the sub-PM(1~j) and the (j+1)th leg connected in series (j=1,...,ν). 

① Calculate the dimension of the independent translation output of SLC1: ξLjt= dim(G(1~j)∪G(j+1)). 
② Calculate the dimension of the independent rotation output of SLC1: ξLjr= dim(H(1~j)∪H(j+1)). 
③ Calculate ξLj= ξLjt+ξLjr. 

Step 6  Calculate the number of DOF:  

ν

i1~(ν+1)
i=1

F=f - ξ . 

Step 7  Determine the mobility property of this PM: Mpa=Mpa(1~ν)=Mpa(1~(ν-1))∩ML(ν+1) .  
The corresponding flow process chart of an automatic mobility analysis is shown in Fig.7. 

 

Start 

Input the structural information: 
 Number of legs ν+1; 

 Topology matrix Li of ith leg; 

 Topology matrix LMP and LBP on two platforms. 

Calculate sum of joints in all legs fi (i=1~ν+1) 

Calculate the POC of legs MLi (i=1,…,ν+1). 
 Extract planar sub-chains; 

 Get the POC supplement matrix of the sub-chains and the 

remaining 1-DOF joints. 

 Obtain the initial POC matrix by bitwise “or” operation  

 Generate the finial POC matrix 

Calculate the POC matrix Mpa(1~j) of the sub-PM(1~j) (j=1,…,ν+1) 
 Mpa(1~1)=ML1 

 
1~ j

pa(1~ j)
1~ j

G
M

H

 
  
 

( )

( )
, G(1~j)=G(1~(j-1))∩G(j+1), H(1~j)=H(1~(j-1))∩H(j+1) (j>1) 

Calculate the number of the independent displacement equations ξLj of the 
j
th

 loop SLCj (j=1,…,ν) 
 ξLjt= dim(G(1~j)∪G(j+1)). 
 ξLjr= dim(H(1~j)∪H(j+1)). 
 ξLj= ξLjt+ξLjr. 

End 

Output:  
F and Mpa 

1

1 1

Li

i i

F f ζi

 

 

    

Mpa=Mpa(1~ν)∩ML(ν+1) 
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Fig. 7. Procedure of mobility analysis of a PM 

6. Software implementation and case study 

6.1 Software implementation 

Based on the basic principles, algorithmic rules and algorithmic procedures, a program which can analyze the 
mobility of PMs automatically has been developed on Windows platform with Visual C++6.0 software and object-
oriented programming language. Using the software, a large number of PMs listed in [18] have been analyzed 
automatically and the effectiveness of the presented method has been testified.  

Fig.8 presents the developed human-computer interactive interface. The input information is located at the top 
of the interactive interface. It mainly includes the number of legs, topological structure matrices of two virtual legs 
on the two platforms and the topology structure matrices of all legs. It is using integer arrays and is easy to operate. 

What needs to be added is that, as the topology matrices are symmetric, only upper triangular elements need 
to be input in the human-computer interaction interface for convenience. 

In addition to DOF and POC (i.e., Number of POC Elements, T-directions and R-directions), other topological 
features can be obtained, such as independent loops, independent displacement equations. Due to limited space, 
this work does not go into all details. 

6.2 Case study 

Detailed examples of the mobility analysis of four typical PMs are presented in this section. 

6.2.1 Mobility analysis of Tricept PM 

The Tricept non-overstrained PM shown in Fig.6(a) has 3-DOF which comprise one translation and two 
rotations. The legs are 3-UPS and 1-UP. The axes of the joints on the two platforms are arbitrary to each other. 
(1) Input topological structure matrices of this PM 

Topology matrix of UPS leg is i

8 2 2 0 0 0

2 8 2 1 0 0

2 2 9 2 0 0
L

0 1 2 8 0 0

0 0 0 0 8 4

0 0 0 0 4 8

 
 
 
 
 
 
  

, (i=1~3).  

Topology matrix of UP leg is 4

8 2 2

L 2 8 2

2 2 9

 
 
 
 

. 

Topology matrices of two virtual legs on the two platforms LMP and LBP are respectively, MP

8 0 0 0

0 8 0 0
L

0 0 8 0

0 0 0 9

 
 

  
 
 

, 

BP

8 0 0 0

0 8 0 0
L

0 0 8 0

0 0 0 8

 
 

  
 
 

. 

Number of legs ν+1=4. 
(2) Select an arbitrary point O’ on the moving platform as the base point. 
(3) Calculate POC matrices of legs ML1,...ML4. 

① 
i

Li
i

3 0 0 0 0 0 G
M =

3 0 0 0 0 0 H
   

       
, ξri=3, and ξti=3 (i=1~3) 

② 
4

L4
4

0 0 1 0 0 0 G
M =

1 1 0 0 0 0 H
   

       
, and ξt4=1, ξr4=2, e4=P43, s4=(R41,R42).  

(4) Get the sum of all joints in this PM: f(1-4)=6+6+6+3=21. 
(5) Calculate the POC matrices Mpa(1~j) of sub-PM(1~j) constituted by the front j legs in parallel (j=1~3). 

 Set Mpa(1~1)=ML1 



22 

 

 Calculate the POC matrix Mpa(1~2) of sub-PM(1~2) constituted by the 1st and the 2nd leg in parallel. 

① ξti=3, as shown in Table 5, G(1~2)= G(1~1)∩G2=G2 (i=1,2). 

② ξri=3, as shown in Table 6, H(1~2)=H(1~1) ∩H2=H2 (i=1,2). 

③ So, 
2

pa(1~2)
2

3 0 0 0 0 0 G
M

3 0 0 0 0 0 H
   

       
. 

 Calculate the POC matrix of sub-PM(1~2) composed by sub-PM(1~2) and the 3rd leg:  

Mpa(1~3)=Mpa(1~2)∩ML3=
2 3 3

2 3 3

G G G
=

H H H
∩

     
          

. 

(5) Calculate the number of the independent displacement equations ξLj of SLCj (j=1~3). 
 Calculate ξL1of the first loop SLC1 concatenated by 1st and 2nd leg, ξL1=dim(Mpa(1~1)∪ML2). 

① ξti=3, as shown in Table 7, ξL1t=3 (i=1,2). 

② ξri=3, as shown in Table 8, ξL1r=3 (i=1,2). 

③ So, ξL1=ξL1t+ξL1r=3+3=6. 
 CalculateξL2 of SLC2: ξL2=dim(Mpa(1~2)∪ML3). 

① ξt(1∩2)=3, and ξt3=3, then ξL2t=3. 

② ξr(1∩2)=3, and ξr3=3, then ξL2r=3. 

③ thus, ξL2=ξL2t+ξL2r=3+3=6. 
 Similarly, the number of the independent displacement equations of SLC3 is ξL3=ξL3t+ξL3r=3+3=6. 

(6) Get the number of DOF:  

3

i1~4
i 1

F=f - ξ =21- 6+6+6 =3( )

 . 

(7) Get the mobility property: 

Mpa=Mpa(1~3)∩ML4= 3G

H
 
  3

∩ 4G

H
 
  4

= 4G

H
 
  4

. 

The results show that this PM has 1T2R output, the rotation directions are around R41 and R42, and the 
translation direction is along the P43 joint. The result generated by the software is shown in Fig.8, which is consistent 
with the result in [18]. 

 

Fig. 8. Mobility analysis of Tricept 

6.2.2 Mobility analysis of 3-RRC PM 

Fig.6(b) shows a 3-RRC PM with overstrains. It has three identical RRC legs connecting the two platforms, 
labeled with the numbers 1~3 respectively. The topological structure of this PM is PM=(L1,L2,L3,LMP,LBP). The fixed 
platform is a triangle, and the axes of the joints on the two platforms are all coplanar. 
(1) Input topology matrices of the PM 
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Topology matrix of RRC leg is i

8 1 1 1

1 8 1 1
L

1 1 8 1

1 1 1 9

 
 

  
 
 

, (i=1~3). 

Topology matrices of two virtual legs on the two platforms LMP and LBP are MP

9 5 5

L 5 9 5

5 5 9

 
 
 
 

 and BP

8 5 5

L 5 8 5

5 5 8

 
 
 
 

 

respectively. 
Number of legs ν+1=3. 

(2)  Select an arbitrary point O’ on the moving platform as the base point. 
(3)  Calculate POC matrix of legs ML1, ML2 and ML3. 

① Recognize and sequentially extract planar and spherical sub-chains: one G3 sub-chain R//R//R and one 1-
DOF P joint. 

② Generate the POC supplemented matrices of G3 and P as G3
2 0 0 0 0 0

M
1 0 0 0 0 0
 

   
 and P

0 0 0 1 0 0
M

0 0 0 0 0 0
 

   
. 

③ Carry out “or” operation on POC matrices in the leg Li
2 0 0 1 0 0 3 0 0 0 0 0

M =
1 0 0 0 0 0 1 0 0 0 0 0
   

       
, ξr

0=1, and ξt
0=3 

(i=1~3) 

④ ξt=3 and ξr=1, then Li
3 0 0 0 0 0

M
1 0 0 0 0 0
 

   
, (i=1~3). That is to say, ξti=3 indicates that the leg has three 

translation outputs along arbitrary directions, ξri=1 indicates that it has one rotation output. ri1=1 means that the 
rotation is around the axes of Ri1, i.e. si=Ri1.  
(4) Calculate the sum of all joints in this PM: f(1-3)=4+4+4=12. 
(5) Calculate the POC matrix Mpa(1~j) of sub-PM(1~j) constituted by the front j legs in parallel. 

 Set Mpa(1~1) =ML1 
 Calculate the POC matrix Mpa(1~2) of sub-PM(1~2) with Mpa(1~2)= Mpa(1~1)∩ML2. 

① ξti=3, as shown in Table 5, G(1~2)=G2 (i=1,2). 

② ξri=1, and s1||s2, as shown in Table 6, H(1~2)=Φ (i=1,2). 

③ So,.
2

pa(1~2)
G

M
 

   
 

(6) Calculate the number of the independent displacement equations ξLj of SLCj (j=1~2). 
 Calculate ξL1of the first loop SLC1 concatenated by 1st and 2nd leg. 

① ξti=3, as shown in Table 7, ξL1t=3 (i=1,2). 

② ξri=1, as shown in Table 8, and s1||s2, then, ξL1r=2 (i=1,2). 

③ So, ξL1=ξL1t+ξL1r=3+2=5. 
 Calculate the number of the independent displacement equations ξL2 of SLC2 (ξL2=dim(Mpa(1~2)∪ML3)) 

① ξt3=3, and G(1~2)=G2, as shown in Table 6, ξL2t=3. 

② ξr3=1, and H(1~2)=Φ, as shown in Table 7, ξL2r=1. 

③ Thus, ξL2=ξL2t+ξL2r=3+1=4. 

(7) Get the number of DOF:  

2

i1~3
1

F=f - =12- 5+4 =3
i




 ( )  

(8) Get the mobility property: Mpa=Mpa(1-3)= Mpa(1-2)∩ML3=
3G 

  
. 

It shows that this PM has three translations and the DOF is three also. The automatically generated result is 
shown in Fig.9. and the result is consistent with the result in [18]. 
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Fig. 9. Mobility analysis of 3-RRC 

6.2.3 Mobility analysis of Exechon 

Fig.6(c) shows an Exechon PM with parasitic motion. It has three identical RPS legs, labeled with the numbers 
1~3 respectively. The topological structure is PM=(L1,L2,L3,LMP,LBP). The axes of the joints on the two platforms are all 
arbitrary. 
(1) Input topology matrices of the PM 

Topology matrix of RPS leg is i

(i)

8 2 1 0 0

2 9 2 0 0

L 1 2 8 0 0

0 0 0 8 4

0 0 0 4 8

 
 
 
 
 
  

 (i=1~3). 

where, the subscript i represents the No. of the intersecting point of the last two revolute joints in the ith leg. 

Topology matrices of two virtual legs on the two platforms are MP

8 0 0

L 0 8 0

0 0 8

 
 
 
 

 and BP

8 0 0

L 0 8 0

0 0 8

 
 
 
 

, respectively. 

Number of legs is 3(= ν+1). 
(2) Select center O13 of S13 as the base point O’. 
(3) Calculate POC matrix of legs ML1, ML2 and ML3. 

① Recognize and sequentially extract planar and spherical sub-chains: one G3 sub-chain R⊥P//R and one S2 

sub-chain through center Oi3 (i=1~3) respectively. 

② Generate the POC supplemented matrices of G3 and S2 as the follows, 

For the first leg: G3
2 0 0 0 0 0

M
1 0 0 0 0 0
 


  

 and S2
0 0 0 0 0 0 0

M
0 0 0 1 1 0 #1
   

 
      

. 

For the second (and third) leg: G3
2 0 0 0 0 0

M
1 0 0 0 0 0
 


  

 and S2
0 0 0 0 0 0 2

M
0 0 0 1 1 0 #i
   

 
      

(i=2 or 3). 

Among which, “#i” indicates the intersecting point of the last two R joints in the ith leg, and the number 2 
means two derivative translation outputs in the plane perpendicular to the line connecting point O’ and Oi3. 

③ Carry out “or” operation on POC matrices  

To the first leg: L1
(1)

2 0 0 0 0 0
M

1 0 0 1 1 0
 


  

, ξr
0=3, ξt

0=2 and ρi=O’O13; 

To the second and the third legs: Li
2 0 0 0 0 0 1

M
1 0 0 1 1 0 #i
   

 
      

, ξr
0=3, ξt

0=3 and ρi=O’Oi3 (i=2,3) 

④ Then, L1
2 0 0 0 0 0

M
3 0 0 0 0 0
 


  

 and Li
3 0 0 0 0 0

M
3 0 0 0 0 0
 


  

, (i=2,3). i.e., ξt1=2, ξt2=ξt3=3, ξri=3 (i=1~3), 

and e1=⊥(R11). 

(4) Calculate the sum of all joints in this PM: f(1-3)=5+5+5=15. 
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(5) Calculate the POC matrix Mpa(1~j) of sub-PM(1~j) constituted by the front j legs in parallel. 
 Set Mpa(1~1)=ML1 
 Calculate the POC matrix Mpa(1~2) of sub-PM(1~2) with Mpa(1~2)=Mpa(1~1)∩ML2. 

① ξt1=2, and ξt2=3,  as shown in Table 5, ξt(1~2)=2, and e(1~2)=e1. 

② ξr1=3, ξr2=3, as shown in Table 6, ξr(1~2)=3. 

③ So, pa(1~
1

2)
1

M
G

H
 


  

.  

(6) Calculate the number of the independent displacement equations ξLj of SLCj (j=1~2). 
 Calculate ξL1of the first loop SLC1 concatenated by the 1st and the 2nd leg. 

① ξt1=2, and ξt2=3, as shown in Table 7, ξL1t=3. 

② ξr1=3, ξr2=3, as shown in Table 8, then ξL1r=3. 

③ So, ξL1=ξL1t+ξL1r=3+3=6. 

 Calculate the number of the independent displacement equations ξL2 of SLC2 (ξL2=dim(Mpa(1~2)∪ML3)) 

① ξt3=3, and e(1~2)=G1, as shown in Table 7, ξL2t=3. 

② ξr3=3, and ξr(1~2)=3, as shown in Table 8, ξL2r=3. 

③ Thus, ξL2=ξL2t+ξL2r=3+3=6. 

(7) Get the number of DOF:  

2

i1~3
1

F=f - =15- 6+6 =3
i




 ( )  

(8) Get the mobility property: Mpa=Mpa(1-2)∩ML3=
1 1

1 1

3 0 0 0 0 0

3 0 0 0 0 0

G G

H H
     


          

I .  

The automatically generated result is shown in Fig.10 and the number of POC elements is 5. Since DOF of this 
PM is three, the POC has three independent elements and the other two are non-independent. The result is 
consistent with that in [18], where the axes of rotations outputs are selected as r1

(O13-O23)∪r1
(O13-O23)∪r1

(||◇(O13,O23,O33)).  

 

Fig. 10. Mobility analysis of Exechon 

6.2.4 Mobility analysis of 4-RPRRR PM 

Fig.11(a) shows a kind of 4-RPRRR PM. It has four identical R(⊥P)||R-R*R legs, labeled with the numbers 1~4 
respectively. The topological structure of this PM is PM=(L1,L2,L3,L4,LMP,LBP). The axes of the joints on the fixed 

platforms: R11||R21, R31||R41, R11⊥R31. Axes of R14, R15, R44 and R45 intersect at point O1’, and axes of R24, R25, R34 and 

R35 intersect at point O2’. 
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(a)                              (b) 

Fig. 10. Two kinds of 4-RPRRR PMs 

(1) Input topology matrices of the PM 

Topology matrix of the first (and the fourth) leg is, i

(1)

8 2 1 0 0

2 9 2 0 0

L 1 2 8 0 0

0 0 0 8 4

0 0 0 4 8

 
 
 
 
 
  

, (i=1, 4). 

Topology matrix of the second (and the third) leg is, i

(2)

8 2 1 0 0

2 9 2 0 0

L 1 2 8 0 0

0 0 0 8 4

0 0 0 4 8

 
 
 
 
 
  

, (i=2, 3). 

where, the subscript 1 and 2 represent the No. of intersection point of the last two revolute joints in the legs. 

Topology matrices of two virtual legs on the two platforms LMP and LBP are MP

8 0 0 4

0 8 4 0
L

0 4 8 0

4 0 0 8

 
 

  
 
 

 and 

BP

8 1 2 2

1 8 2 2
L

2 2 8 1

2 2 1 8

 
 

  
 
 

, respectively. 

Number of legs ν+1=4. 
(2) Select the point O1’ on the moving platform as the base point (O’). 
(3) Calculate POC matrix of legs ML1, ML2, ML3 and ML4. 

① Recognize and sequentially extract planar and spherical sub-chains: one G3 sub-chain R⊥P//R and one S2 

sub-chain R*R respectively. 

② Generate the POC supplemented matrices of G3 and S2 as the follows, 

For the first (or the fourth) leg: G3
2 0 0 0 0 0

M
1 0 0 0 0 0
 


  

 and S2
0 0 0 0 0 0 0

M
0 0 0 1 1 0 #1
   

 
      

. 

For the second (or the third) leg: G3
2 0 0 0 0 0

M
1 0 0 0 0 0
 


  

 and S2
0 0 0 0 0 0 2

M
0 0 0 1 1 0 #2
   

 
      

. 

Among which, subscript 1 (2) indicates the intersecting points of the last two revolute joints, the number 2 
means two derivative translational outputs in the plane perpendicular to the line connecting point O’ and O2’. 

③ Carry out “or” operation on POC matrices  

To the first (and the fourth) leg: Li
(1)

2 0 0 0 0 0
M

3 0 0 0 0 0
 


  

, so ξr
0=3, ξt

0=2 and ρi=OO1’ (i=1,4).  

To the second (and the third) leg: Li
2 0 0 0 0 0 2

M
3 0 0 0 0 0 #2
   

 
      

, so ξr
0=3, ξt

0=3 and ρi=O’O2’ (i=2,3). 

④ Then Li
2 0 0 0 0 0 0

M
3 0 0 0 0 0 #1
   

 
      

(i=1,4), and Li
3 0 0 0 0 0

M
3 0 0 0 0 0
 


  

(i=2,3), i.e., ξti=2, ei=⊥(Ri1) 

(i=1,4), and ξti=3 (i=2,3), and ξri=3 (i=1~4).  



27 

 

(4) Calculate the sum of all joints in this PM: f(1-3)=5+5+5+5=20. 
(5) Calculate the POC matrix Mpa(1~j) of sub-PM(1~j) constituted by the front j legs in parallel. 

 Set Mpa(1~1)=ML1 
 Calculate the POC matrix Mpa(1~2) of sub-PM(1~2) with Mpa(1~2)=Mpa(1~1)∩ML2. 

① ξt1=2, and ξt2=3, as shown in Table 5, ξt(1~2)=2, and e(1~2)=e1. 

② ξr1=3, ξr2=3, as shown in Table 6, ξr(1~2)= ξr1=3. 

③ So, pa(1~
1

2)
1

M
G

H
 


  

. 

 Calculate the POC matrix Mpa(1~3) of sub-PM(1~3) with Mpa(1~3)=Mpa(1~2)∩ML3. 

① ξt(1~2)=2, e(1~2)=e1, and ξt3=3, as shown in Table 5, ξt(1~3)=2, and e(1~3)=e1. 

② ξr(1~2)=3, ξr3=3, as shown in Table 6, ξr(1~3)=3. 

③ So, pa(1~
1

3)
1

M
G

H
 


  

.  

(6) Calculate the number of the independent displacement equations ξLj of SLCj (j=1~2). 
 Calculate ξL1of the first loop SLC1 concatenated by the 1st leg and the 2nd leg. 

① ξt1=2, and ξt2=3, as shown in Table 7, ξL1t=3 (i=1,2). 

② ξr1=3, ξr2=3, as shown in Table 8, then ξL1r=3 (i=1,2). 

③ So, ξL1=ξL1t+ξL1r=3+3=6. 

 Calculate the number of the independent displacement equations ξL2 of SLC2 (ξL2=dim(Mpa(1~2)∪ML3)) 

① ξt3=3, and e(1~2)=e1, as shown in Table 7, ξL2t=3. 

② ξr3=3, and ξr(1~2)=3, as shown in Table 8, ξL2r=3. 

③ Thus, ξL2=ξL2t+ξL2r=3+3=6. 

 Calculate the number of the independent displacement equations ξL2 of SLC3 (ξL3=dim(Mpa(1~3)∪ML4)) 

① ξt4=2, e(1~3)=e1, and e(1~3)||e4(⊥R41), as shown in Table 7, ξL3t=3. 

② ξr4=3, and ξr(1~3)=3, as shown in Table 8, ξL3r=3. 

③ Thus, ξL2=ξL2t+ξL2r=3+3=6. 

(7) Get the number of DOF:  

3

i1~4
1

F=f - =20- 6 6 6 =2
i




  ( )  

(8) Get the mobility property: Mpa=Mpa(1-3)∩ML4=
41 11

1 4

41

1

( ) ( )G

H H

G R

H

R     


      

 

   

I
I . 

The automatically generated result is shown in Fig.11 and the result is consistent with the result in [18]. Since 
DOF of this PM is 2, the POC has two independent elements, and the other two elements are non-independent. 
Without loss of generality, one translation along the common perpendicular of axes of R11 and R41, and one rotation 

around O1’-O2’ are selected as two independent elements, and the POC is written as 
'

11

1

41

'
2

1 2

,

(

(

)

1
)

Mpa
{ }

o

R R

o
r

t

r



 
 
 
 

U
 in [18]. 

(9) Discussion 
If the intersecting points of O1’ and O2’ coincide together, a new PM is obtained in Fig.10(b). Select the 

interseting point as the base point, and follow above steps (1) to (8). It is easy to determine that the POC is 

1 4
p

1
aM

H

G G 
 




I
 and DOF is four. 

Although this POC has the same form as that of the original PM, it should be noted that since DOF is four, the 
POC has four independent elements. So, the PM has three independent rotations and one independent translation 
along the common perpendicular of axis of R11 and axis of R41. 
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Fig. 11. Mobility analysis of the 4-RPRRR PM shown in Fig.10(a) 

7. Conclusions  

In this paper, a computer-aided method for mobility analysis of PMs is proposed. A matrix representation 
mapping the topological structure of a leg or a PM into their POC is established. This matrix includes not only the 
dimension of translation/rotation output, but also indicates the orientation of the output motion. By extracting 
planar and spherical sub-chains, calculating the POC for legs transforms into logical bitwise "or" operation of 
matrices. Algorithmic rules for computing the POCs of PMs are established without manual intervention. Based on 
the proposed method, the process of mobility analysis is performed by a computer program, and a human-
computer interactive interface has been developed for potential designers. four typical examples are provided in 
detail to show the effectiveness of the developed algorithms. The relevant study of this paper is expected to benefit 
the automation and computerization of the mechanical creative design and analysis. 

For the “paradoxical” mechanisms that the software mentioned here currently can not solve, the future work 
will concentrate on proposing the digital model of the dimensional constraint parameters (link length, axial distance 
between two joint axes, etc.) of the PMs, and then focus on establishing the mapping relationship between the 
model and the POC. Further, the automatic analysis for another important topological properties of PMs such as 
coupling degree will be presented. 
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