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Abstract

Sensitivity to carrier frequency offset, due to oscillator inaccuracy and terminal

mobility, is a key issue that modern multicarrier systems have to face. In that

respect, FBMC-PAM holds a specific position due to its short prototype filter: the

overlapping factor is K=2 and the width of the main lobe of its frequency response

is 3 times the sub-carrier spacing, while OFDM and FBMC-OQAMschemes have

frequency response whose main lobe width is 2 times the sub-carrier spacing. As

a consequence, it is shown in the present paper that FBMC-PAMoutperforms

other multicarrier techniques in terms of CFO sensitivity.In order to best exploit

this property in burst transmission, an efficient and accurate approach for joint

symbol timing and CFO estimation is proposed, based on a specific preamble. A

theoretical in-depth analysis of the scheme is provided as well as performance

validation in multipath channel through simulations.
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1. Introduction

Filter bank multicarrier (FBMC) techniques are proposed asalternatives to the

current orthogonal frequency division multiplexing (OFDM) schemes for emerg-

ing applications fields such as machine type communications(MTC) or cogni-

tive radio [1]. A critical parameter in these systems is the prototype filter which

controls performance and a number of operational aspects. Long filters yield-

ing high performance, particularly in terms of out-of-bandattenuation and user

coexistence, have been proposed. However, in the scenariosrequiring reduced

system latency or robustness to time-varying channels, short prototype filters are

preferred. A number of approaches based on prototype filterswith overlapping

factor K=2, i.e. only 2 adjacent multicarrier symbols overlap in time, have been

proposed [2, 3]. An additional important benefit of these techniques is a reduc-

tion of implementation complexity. However, when offset-quadrature amplitude

modulation (OQAM) is combined with short filters, the level of performance

achieved is limited, making the usefulness of such schemes questionable. That

is why FBMC-PAM has been introduced [4]. The scheme is based on pulse am-

plitude modulation (PAM) combined with a sine prototype filter with overlap-

ping factor K=2 and it achieves full orthogonality, like OFDM. Regarding mobile

communications and the issue of carrier frequency offset (CFO) sensitivity the

sine prototype filter exhibits a key characteristic, namelythe width of the main

lobe of its frequency response is 1.5 times that of OFDM and FBMC-OQAM

schemes. The consequence of this enlarged main lobe is that FBMC-PAM out-

performs other multicarrier techniques in sensitivity to CFO. Now, in order to

benefit from this intrinsic advantage in mobile communications, accurate yet ef-

ficient estimation and synchronization techniques for burst transmission must be

implemented. Such techniques have been developed for data-aided synchroniza-

tion of FBMC-OQAM systems [5–7]. They can be adapted to FBMC-PAM and
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optimized in the specific context. Here, preamble-based joint symbol-timing and

CFO estimation is retained and a synchronization algorithmexploiting the least

squares method is derived in AWGN channel and analyzed in standard multipath

channels. The considered preamble can be easily generated,allows to maintain

the appealing spectral-shaping properties of the FBMC-PAMsignal and assures

interesting performance in multipath channels.

The organization of the paper is as follows. In Section 2, thestandard FBMC-

PAM system is recalled while in Secion 3 its CFO sensitivity is analyzed. In Sec-

tion 4 the proposed preamble-based symbol timing and CFO estimation algorithm

is derived. The Cramér-Rao bound (CRB) on CFO and phase offset estimation

for the problem at hand is derived in Section 5. Numerical results are reported in

Section 6 and conclusions are drawn in the final Section.

Notation: j
△
=
√
−1, superscript (·)∗ and (·)T denote the complex conjugation,

and the transpose, respectively,ℜ[·] the real part,δ[k] the Kronecker delta,| · |
the absolute value,∠[·] the argument of a complex number in [−π, π), E[·] de-

notes statistical expectation, and modM(ℓ)
△
= ℓ − qM with q such that modM(ℓ) ∈

{0, 1, . . . ,M − 1}.

2. System Model

Let us consider an FBMC-PAM system [4] with 2M subcarriers. The received

signal in AWGN channel, in the presence of a timing offsetτ, a carrier-frequency

offset∆ f , a carrier phase offsetφ and an attenuationγ can be written as

r(t) = γs(t − τ)ej2π∆ f tejφ + n(t) (1)

where s(t) is the transmitted FBMC-PAM signal andn(t) denotes the circular

complex white Gaussian noise with two-sided power spectraldensity 2No. The
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FBMC-PAM signals(t) is equal to

s(t) =
Nb+Ns−1
∑

i=0

2M−1
∑

k=0

dk(i)e
j πT (k+ 1

2)(t−iT+ T
2 )h(t − iT ) (2)

where 2T is the FBMC-PAM symbol duration,Nb is the number of training sym-

bols, Ns is the number of payload symbols,dk(i) denotes the real data symbol

transmitted on thekth subcarrier during theith FBMC-PAM symbol, andh(t) is

the real pulse-shaping filter.

In the following we assume that the received signalr(t) is filtered with an ideal

low-pass filter with a bandwidth of 1/Ts, whereTs denotes the sampling period.

Note that, the FBMC-PAM symbol duration is equal to 2T = 2MTs.

The discrete-time low-pass version of the received signal can be written as

r[l] = γs[l − θ] ej 2π
2M ǫlejφ + v[l] (3)

whereθ = τ/Ts is the normalized delay (assumed to be an integer),ǫ = ∆ f 2T is

the CFO normalized to subcarrier spacingδ f = 1/(2T) and, moreover,v[l] is a

discrete-time zero-mean AWGN process with autocorrelation function

Rv[m] = E [v[l]v∗[l −m]] =
2No

Ts
δ[m]. (4)

In (3) the signal of interest can be written as

s[l] =
Nb+Ns−1
∑

i=0

2M−1
∑

k=0

dk[i]Tc[k, l − iM ] (5)

where

Tc[k, l]
△
= h[l] ej πM (k+ 1

2)(l+ 1
2+

M
2 ). (6)

In (6) the real prototype filterh[l] (equal to zero forl < K2M
△
= {0, 1, . . . , 2M − 1})

satisfies the following conditions

h[M + l] = h[M − l − 1] ∀ l, (7)
+∞
∑

m=−∞
h[l +mM]h[l +mM+ 2rM ] = δ[r] ∀ l, r. (8)
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In particular, (7) is a symmetry condition, while (8) represents a condition on the

zeros, at frequenciesFk = k/M, of the Fourier transform of the generator of the

periodic signal in the left hand side. Since the prototype filterh[l] is equal to zero

for n < K2M, condition (8) forr = 0 simply becomes

h2[l] + h2[l + M] = 1,∀l. (9)

Note that conditions (7) and (8) imply the orthogonality condition

1
M
ℜ















2M−1
∑

l=0

Tc[k, l]T ∗c [m, l − pM]















= δ[m− k]δ[p]. (10)

In this case, it follows from [4] that in AWGN channel (ǫ = θ = 0 in (3)) the

optimum (in the maximum likelihood sense) decision variable for estimating sta-

tistically independent information symbols can be writtenas

d̂m[i]
△
=

1
M
ℜ

{

e− jφzm(i)
}

(11)

where

zm(i)
△
=

2M−1
∑

l=0

r[iM + l]T ∗c [m, l] (12)

since conditions (7) and (8) assure the absence of intersymbol interference and

intercarrier interference. Specifically, the symmetry condition in (7) assures, in

the decisions on the data transmitted on them-th subcarrier, the absence of inter-

symbol interference and, moreover, the absence of intercarrier interference from

subcarriers whose indexk is such that∆ = mod2M(k − m) is an odd number. In

addition, condition (8) assures the absence of intercarrier interference from the

subcarriers whose indexk is such that∆ = mod2M(k−m) is an even number.

In the following it is considered the prototype filter

h[l] = sin

[

π

2M

(

l +
1
2

)]

l ∈ K2M , h[l] = 0 l < K2M . (13)

This prototype filter satisfies conditions (7) and (8), exhibits good spectral prop-

erties and simplifies the receiver as shown in [4].
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Let us observe that accounting for (6), (12) and (13) it follows that

zm(i) =
2M−1
∑

l=0

r[iM + l] h[l] e− j πM (m+ 1
2)(l+ 1

2+
M
2 )

= e− j πM (m+ 1
2)( 1

2+
M
2 ) [a∗Rm(i) + aRm+1(i)] (14)

where

a
△
= −e− j π4M

2 j
(15)

and

Rm(i)
△
=

2M−1
∑

l=0

r[iM + l]e− j 2π
2M lm. (16)

Thus, an efficient evaluation of the termzm(i) in (14) requires the evaluation of an

FFT over 2M points. In order to boost the performance of the frequency domain

channel equalizer, the 2M-FFT can be replaced by a 4M-FFT followed by deci-

mation. The scheme is denominated FBMC-PAM-4M and details are available in

[4].

3. Carrier frequency offset sensitivity of the FBMC-PAM modulation scheme

In this section we evaluate the sensitivity of the FBMC-PAM system to the

residual CFO. In particular, we obtain an approximate expression for the SIR, that

is the ratio between the power of the useful term and the powerof the interference

present in the decision variable due to the CFO.

Let us observe that the decision variable in (11) on the datumtransmitted on

the m-th subcarrier in thei-th multicarrier symbol, taking into account (12) and

(14), can be written as

d̂m[i] =
1
M
ℜ

{

e− jφe− j πM (m+ 1
2)( 1

2+
M
2 ) [a∗Rm(i) + aRm+1(i)]

}

. (17)

To evaluate the sensitivity of the FBMC-PAM to a normalized CFO ǫ, let us con-

sider the discrete-time received signal in (3) in the absence of noise forθ = 0 and,
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without loss of generality, forγ = 1. In this case them-th value of the DFT in (17)

depends also onǫ. Taking into account its expression derived in Appendix A, it

follows that

d̂m[i] =
1
M
ℜ

{

e− jπǫie− j π2ǫ(2− 1
M )e− j πM (m+ 1

2)( 1
2+

M
2 ) [a∗Rm(i, ǫ) + aRm+1(i, ǫ)]

}

=
1

4M
sin

(

π

2
ǫ

)

(−1)i
2M−1
∑

k=0

dk[i − 1]
{

Dm−k−1
2M (ǫ) + Dm−k+1

2M (ǫ)
}

+
1

4M

2M−1
∑

k=0

dk[i]
{

2D2(m−k)
4M (2ǫ) + D2(m−k−1)

4M (2ǫ) + D2(m−k+1)
4M (2ǫ)

}

cos

(

3π
2

(k−m)

)

+
1

4M
sin

(

π

2
ǫ

) 2M−1
∑

k=0

(−1)kdk[i + 1]
{

Dm−k−1
2M (ǫ) + Dm−k+1

2M (ǫ)
}

(18)

where

Dp
M(x)

△
=

sin
[

π
2(p− x)

]

sin
[

π
M (p− x)

] . (19)

Note that in (18) has been used the complex gainw = e− jπǫie− j π2ǫ(2− 1
M ) to compen-

sate for the phase offset and the CFO (constant on each subacarrier) accumulated

up to the considered multicarrier symbol. In this way, only the effect of the resid-

ual inter-channel interference (ICI) and inter-symbol interference (ISI) due to the

undesired factorej πM ǫl in the sums is accounted for (see e.g., [8]). The SIRρ(ǫ) is

given by

ρ(ǫ) =
Pu(ǫ)

PIS I(ǫ) + PICI (ǫ)
(20)

where (see (18))

Pu(ǫ) =
[

2D0
4M(2ǫ) + D−2

4M(2ǫ) + D2
4M(2ǫ)

]2
(21)

is the power of the useful term while

PIS I(ǫ) = 2
[

sin
(

π

2
ǫ

)]2 2M−1
∑

k=0

[

Dm−k+1
2M (ǫ) + Dm−k−1

2M (ǫ)
]2

(22)
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and

PICI (ǫ) =
2M−1
∑

k=0,k,m

[1 + (−1)k−m]
2

[

2D2(m−k)
4M (2ǫ) + D2(m−k−1)

4M (2ǫ) + D2(m−k+1)
4M (2ǫ)

]2

(23)

are the power of ISI and ICI contribution, respectively. In Appendix B it is shown

that, for| ǫ |≪ 1 andM ≫ 1, the power of the useful term in (21) can be approxi-

mated as

Pu(ǫ) ≃ 16M2 (24)

the ISI power can be approximated as

PIS I(ǫ) ≃ π2ǫ2M2

(

5
3
+

4
π2

)

(25)

while the ICI power can be approximated as

PICI (ǫ) ≃ π2ǫ2M212

(

10− π2

π2

)

. (26)

Thus, for| ǫ |≪ 1 andM ≫ 1, the SIR can be approximated as

ρ(ǫ) ≃ 1

π2ǫ2
[

5
48 +

1+3(10−π2)
4π2

] . (27)

Note that, for a given value ofǫ, the power of the interference is nearly equal

to that of the ISI contribution since from (25) and (26) it follows thatPICI (ǫ) ≃
0.076PIS I(ǫ).

It is of interest to compare the derived SIR expression for FBMC-PAM sys-

tems with the approximate expression for OFDM systems obtained in [8]

ρOFDM(ǫ) ≃ 1
π2ǫ2

3

. (28)

In Figure 1 are reported the approximate SIR in (27) (labeledas FBMC-PAM-

A) and the exact SIR (labeled as FBMC-PAM) obtained by using (21), (22) and

(23) in (20). Moreover, in the figure the exact SIR for an OFDM system (labeled
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as OFDM) and its approximate value given by (28) (labeled as OFDM-A) are

also reported. The results show that, in the considered range, of values ofǫ,

the obtained approximate expressions provide results nearly coincident with the

exact resuts. In particular, the gainα
△
=

ρ(ǫ)
ρOFDM(ǫ) of FBMC-PAM with respect to

OFDM in terms of SIR, expressed in dB, is nearly equal to 3.8 dB(the actual

value of the ratioα obtained by using the exact SIR expressions is nearly equal

to 4 dB). In addition, let us observe that the approximate SIRexpression in (27)

has the formρ(ǫ) ≃ 1/(k1ǫ
2) obtained in [8] for offset-QAM multicarrier systems.

Since for FBMC-PAMk1 ≃ 1.38 while for OFDM, SR-RC, SR-Nyquist, IOTA

and Hermite designs, the values ofk1 are (see [8]) 3.29, 2.3, 1.88, 1.54, and 1.55,

respectively, it follows that FBMC-PAM is superior to thesesystems provided that

they are subject to the same CFO. This is obtained by choosinga value of M for

FBMC-PAM equal to half of that of the other considered systems. In fact, in this

case the subcarrier spacing is the same and also the frequency offset for a given

normalized CFOǫ.

4. Joint symbol timing and carrier frequency offset LS estimator

Let us consider the case whereNb = 2 in (5), and, moreover,dk[1] = 0,∀k and

dk[0] = 0, for evenk, that is, the preamble is obtained by transmitting real data

only on odd subcarriers in the first multicarrier symbol of the burst. In this case,

the samples of the preamble in (5) can be written as

p[l] = h[l]z[l], l ∈ K2M (29)

where

z[l]
△
=

2M−1
∑

k=0

dk[0] ej πM (k+ 1
2)(l+ 1

2+
M
2 ). (30)
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Let us observe that (forl ∈ {0, 1, ...,M − 1})

z[l + M] =
2M−1
∑

k=0

dk[0] ej πM (k+ 1
2)(l+M+ 1

2+
M
2 ) =

2M−1
∑

k=0

dk[0] ej πM (k+ 1
2)(l+ 1

2+
M
2 )ej π2 (−1)k.

(31)

Since it is assumed that only odd subcarriers are modulated (i.e., dk[0] = 0, for

evenk) it immediately follows that the samples of the signalz[l] in (30) satisfy

(for l ∈ {0, 1, ...,M − 1}) the following property:

z[l + M] = − jz[l]. (32)

Taking into account (29) and (3) it follows that in the absence of noise and for

l ∈ {0, 1, . . . ,M − 1}
r[l + θ] = γh [l] z[l]ej 2π

2M ǫ(l+θ)ejφ (33)

and, moreover,

r[l + M + θ] = γh [l + M] z[l + M]ej 2π
2M ǫ(l+M+θ)ejφ. (34)

Therefore, taking into account the property in (32), from (33) and (34) and for

l ∈ {0, 1, . . . ,M − 1}, in the absence of noise we can write

r[l + M + θ] h[l] = − jejπǫr[l + θ] h[l + M]. (35)

Thus, from (35) it follows that the joint estimate of the timing-offsetθ and of the

normalized CFOǫ according to the LS approach is obtained as follows

(θ̂, ǫ̂) = arg min
θ̃,ǫ̃

{

U(θ̃, ǫ̃)
}

(36)

where

U(θ̃, ǫ̃)
△
=

M−1
∑

l=0

∣

∣

∣r[l + M + θ̃]h[l] + jr [l + θ̃] h[l + M] ejπǫ̃
∣

∣

∣

2
(37)

andθ̃ andǫ̃ are trial values for timing-offset and CFO, respectively.
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It can be easily shown that the CFO estimate is expressed in closed form by

ǫ̂ =
1
π
∠S(θ̂) +

1
2

(38)

where

S(θ)
△
=

M−1
∑

l=0

h[l]h[l + M]r∗[l + θ]r[l + M + θ]. (39)

In particular, taking into account the considered prototype filter in (13) it immedi-

ately follows that

S(θ) =
1
2

M−1
∑

l=0

sin
[

π

2M
(2l + 1)

]

r∗[l + θ]r[l + M + θ]. (40)

By substituting the CFO estimate (38) in (36), it follows that the timing-offset

estimate requires only a one-dimensional search and is given by

θ̂ = arg max
θ̃

{

∣

∣

∣S(θ̃)
∣

∣

∣ − 1
2

W(θ̃)

}

(41)

whereS(θ) is defined in (39) and

W(θ)
△
=

M−1
∑

l=0

[

∣

∣

∣r[l + M + θ̃]
∣

∣

∣

2
h2[l] +

∣

∣

∣r[l + θ̃]
∣

∣

∣

2
h2[l + M]

]

. (42)

To simplify the threshold setting (see [9] and references therein) in the next section

the following modified version of (41) is considered:

θ̂ = arg max
θ̃















2
∣

∣

∣S(θ̃)
∣

∣

∣

W(θ̃)















. (43)

Note that the proposed CFO estimator in (38) assures unambiguous estimates

provided thatǫ ∈ [−0.5, 1.5) while the proposed symbol timing estimator in (43)

assures unambiguous estimates in the whole rangeθ ∈ {0, 2M−1}. To enlarge the

CFO estimation range, a preamble symbol consisting ofL > 2 (weighted) iden-

tical parts can be exploited (see e.g., [10, 11] for the OFDM case). This can be

obtained by transmitting the real data on the subcarriers whose index is an integer
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multiple of L and setting zero on the remaining subcarriers. In fact, in this case

the CFO estimation range is multiplied byL. Moreover, although the proposed

joint preamble-based symbol-timing and CFO estimator has been derived by ex-

ploiting the LS approach with reference to an additive noisechannel model, in the

following its performance is assessed in standard multipath channels.

Figure 2 shows the behaviour, in a single run, of the proposedpreamble-based

symbol timing statistics in AWGN as a function ofθ̃ for Eb/No = 10dB and

M = 512. The proposed estimator presents a peak at the actual value of the delay

θ = M.

5. Derivation of CRB

In this section we assume that the symbol timing in (3) is perfectly known and

derive the expression of the CRB for joint CFO and phase estimation. Letr be the

observation vector,v = [ǫ, φ]T the parameters to be estimated, the (i, l)th entry of

the Fisher Information Matrix (FIM) is equal to

[F](i,l) = −Er

[

∂2 ln pr (r | v)
∂ [v] i ∂ [v] l

]

(44)

whereEr is the expectation with respect tor and (up to irrelevant additive factors)

ln pr (r | v) =
γTs

No

2M−1
∑

l=0

ℜ
{

r∗[l]p[l]ej 2π
2M lǫejφ

}

. (45)

It results that

∂2 ln pr (r | v)
∂ǫ2

= −γTs

No

(

π

M

)2 2M−1
∑

l=0

ℜ
{

l2 r∗[l]p[l]ej 2π
2M lǫejφ

}

, (46)

∂2 ln pr (r | v)
∂ǫ∂φ

=
∂2 ln pr ( r | v)
∂φ∂ǫ

= −γTs

No

π

M

2M−1
∑

l=0

ℜ
{

l r ∗[l]p[l]ej 2π
2M lǫejφ

}

, (47)

and, moreover

∂2 ln pr ( r | v)
∂φ2

= −γTs

No

2M−1
∑

l=0

ℜ
{

r∗[l]p[l]ej 2π
2M lǫejφ

}

. (48)
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Taking into account (46), (47), (48) and (44) we obtain

[F](1,1) =
γ2Ts

No

(

π

M

)2 2M−1
∑

l=0

l2 |p[l]|2 , (49)

[F](2,1) = [F](1,2) =
γ2Ts

No

π

M

2M−1
∑

l=0

l |p[l]|2 , (50)

and

[F](2,2) =
γ2Ts

No

2M−1
∑

l=0

|p[l]|2 . (51)

The CRB for normalized CFO and for phase is given by the corresponding diago-

nal element of inverse of FIM, that is

CRB(ǫ) =
[

F−1
]

(1,1)
=

1
(

π

M

)2 γ2Ts

No

2M−1
∑

l=0

|p[l]|2 β
(52)

and

CRB(φ) =
[

F−1
]

(2,2)
=

α

γ2Ts

No

2M−1
∑

l=0

|p[l]|2 β
(53)

where

α
△
=

2M−1
∑

l=0
l2 |p[l]|2

2M−1
∑

l=0
|p[l]|2

(54)

and

β
△
=

2M−1
∑

l=0
l2 |p[l]|2

2M−1
∑

l=0
|p[l]|2

−

































2M−1
∑

l=0
l |p[l]|2

2M−1
∑

l=0
|p[l]|2

































2

. (55)

Let us observe that the parametersα andβ, in (54) and (55), respectively, do

not depend on the preamble energy but only on its shape.
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6. Simulation results

In this section the performance of the proposed preamble-based joint symbol

timing and CFO estimator is assessed via computer simulations. The simulation

results are obtained under the following conditions:

1. the total number of subcarriers for the considered FBMC-PAM system is

2M = 1024, the number of active subcarriers is 912 and, moreover,the

transmitted data belong to a 2-PAM constellation;

2. the total number of subcarriers for the considered OFDM system isM =

1024, the number of active subcarriers is 840, and, moreover, the transmit-

ted data belong to a 4-QAM constellation;

3. the considered multipath channel model Extended Vehicular A (EVA) [12]

has the following power/delay profile: relative power (in dB) equal to

[0 − 1.5 − 1.4 − 3.6 − 0.6 − 9.1 − 7 − 12 − 16.9]T and delay (in

discrete samples) [0 1 3 6 7 14 22 35 50]T . Moreover, the considered

multipath channel model Extended Typical Urban (ETU) [12] has the fol-

lowing power/delay profile: relative power (expressed in dB) equal to

[−1 − 1 − 1 0 0 0 − 3 − 5 − 7]T and delay (expressed in discrete

samples) equal to [0 1 2 4 5 10 32 46 100]T ;

4. in each run the actual value of the symbol timing is a realization of a random

variable uniformly distributed in the set{0, 2M − 1} while each CFO value

is a realization of a random variable uniformly distributedin [−0.4, 1.4);

5. the normalized root-mean-square error (RMSE) values areobtained by av-

eraging over 104 independent channel realizations;

6. the BER values are obtained by averaging over bursts of 20 payload symbols

received in 104 independent channel realizations;

7. each channel realization remains constant in the whole burst, and, moreover,

the equalizer has a perfect knowledge of the channel with theresidual timing

14



offset.

Figure 3 shows the RMSE normalized toM of the proposed symbol timing

estimator as a function ofEb/No in AWGN and in multipath channels EVA and

ETU. The results show that a performance degradation is observed in multipath

channel with respect to that obtained in AWGN channel, in particular a floor is

observed. However, the timing estimate is quite accurate also in the highly fre-

quency selective ETU channel provided thatEb/No ≥ 5dB. Note that in this range

of values ofEb/No the RMSE value of the symbol timing estimate is nearly equal

to 3% of the FBMC-PAM symbol interval.

Figure 4 shows the RMSE of the proposed normalized CFO estimator as a

function of Eb/No in AWGN and in multipath channels EVA and ETU. In the

figure is also reported the derived CRB in (52). The results show that in AWGN

channel the proposed estimator achieves the derived CRB formoderate and high

values ofEb/No. A performance loss is observed in the considered multipath

channels, however, the CFO estimate is quite accurate forEb/No ≥ 5dB.

To gain some insight into the actual performance of the FBMC-PAM system

when the proposed synchronization algorithm is exploited,in Fig.5 and 6 the BER

of the perfectly synchronized FBMC-PAM-2M and FBMC-PAM-4Mreceivers in

multipath channels EVA and ETU, respectively, is compared with that obtained

in the case where the synchronization is performed with the proposed algorithm

(curves labeled as FBMC-PAM-2M-s and FBMC-PAM-4M-s). In particular, in

this first set of curves only the symbol timing is estimated while the CFO is as-

sumed to be known. Moreover, in all the figures, the performance of the perfectly

synchronized OFDM system with cyclic prefix CP= 1/16 in EVA channel and

CP= 1/8 in ETU channel, is reported. The results show that in both channels the

two considered receivers exploiting the proposed symbol timing estimation algo-

rithm assure a performance indistinguishable from that achieved when the timing

15



offset is perfectly known. Thus, also in the more frequency selective channel

ETU, as previously observed, the RMSE of the symbol timing estimate is quite

contained and, then, leads to a residual timing offset that the equalizer can handle.

The BER in multipath channels EVA and ETU of the FBMC-PAM-2M and

FBMC-PAM-4M receivers when both the symbol timing and the CFO are esti-

mated exploiting the proposed synchronization algorithm is reported in Fig.7 and

8, respectively. In the figures the labels FBMC-PAM-2M-s andFBMC-PAM-4M-

s refer to the case where the residual CFO is perfectly known and its effect (a

phase shift constant on each subcarrier that linearly increases with the FBMC-

PAM symbol index) is perfectly balanced. Note that the residual CFO can be

estimated in the frequency domain by exploiting pilot symbols inserted in the

payload symbols of the burst. An efficient frequency domain CFO compensation

algorithm for FBMC systems has been proposed in [13]. Moreover, in Fig.7 and

8 the labels FBMC-PAM-2M-nc and FBMC-PAM-4M-nc refer to thecase where

the residual CFO is not compensated. The results show that inboth channels

the two considered receivers exploiting the proposed synchronization algorithm

assure a performance similar to that observed in the case of perfect synchroniza-

tion (curves labeled as FBMC-APM-2M and FBMC-APM-4M), provided that the

residual CFO is compensated in the frequency domain. As one would expect a

performance degradation is observed in the absence of residual CFO compensa-

tion.

7. Conclusions

The FBMC-PAM transceiver with its capabilities in terms of spectral effi-

ciency, asynchronous access and protection of adjacent users, has the potential

to meet many requirements imposed by the future wireless systems. Here, the

scenario in mind is short burst transmission which is a challenge for FBMC sys-
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tems because of the required length of preambles. With the proposed preamble,

the initial loss of efficiency of FBMC-PAM with respect to the optimal 2M-OFDM

approach is at most 2M real data. This loss can be more than compensated over

the burst by the absence of the cyclic prefix.

In this paper, at first an analysis of the CFO sensitivity of the FBMC-PAM

system is provided. In particular, an approximate expression of the SIR has been

obtained and compared with the SIR of the OFDM system and of several offset-

QAM multicarrier systems. The results have shown that the FBMC-PAM system

is superior to the considered systems when all of them are subject to the same

CFO, that is when the total number of subcarriers of the FBMC-PAM system is

equal to that of OFDM and of offset-QAM systems.

Then, the problem of preamble-based joint symbol timing andCFO estimation

for FBMC-PAM transceivers has been considered. The derivedsymbol timing

estimator requires a one-dimensional maximization while the CFO estimator is

in closed form. Although the proposed algorithm is derived in AWGN channel,

its performance is assessed in standard multipath channels. BER curves obtained

via computer simulation have shown that when both the parameters are estimated

the performance loss with respect to the ideal case is negligible for moderate and

large values ofEb/No, provided that the residual CFO is accurately compensated

in the frequency domain.
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Appendix A

In this appendix we obtain the expression of them-th DFT value in (17). Since

it depends also on the CFO we denote it asRm(i, ǫ). Let us observe that, taking

into account (3) in the absence of noise forθ = 0 and, without loss of generality,

for γ = 1, it follows that

Rm(i, ǫ) =
2M−1
∑

n=0

r[n+ iM ]ej 2π
2M ǫ(n+iM)e− j 2π

2M mn = ejπǫi [Am(i, ǫ) + Bm(i, ǫ) +Cm(i, ǫ)]

(A.1)

where

Am(i, ǫ)
△
=

2M−1
∑

k=0

(−1)kdk[i − 1]ej πM (k+ 1
2)( 1

2+
M
2 )

M−1
∑

n=0

(

a− a∗ej πM n
)

e− j πM n(m−ǫ−k), (A.2)

Bm(i, ǫ)
△
=

2M−1
∑

k=0

dk[i]e
j πM (k+ 1

2)( 1
2+

M
2 )

2M−1
∑

n=0

(

a+ a∗ej πM n
)

e− j πM n(m−ǫ−k), (A.3)

and

Cm(i, ǫ)
△
=

2M−1
∑

k=0

(−1)kdk[i + 1]ej πM (k+ 1
2)( 1

2+
M
2 )

2M−1
∑

n=M

(

a− a∗ej πM n
)

e− j πM n(m−ǫ−k). (A.4)

After simple but tedious algebra it follows that

e− j πM (m+ 1
2)( 1

2+
M
2 ) [a∗Am(i, ǫ) + aAm+1(i, ǫ)] =

1
4

ej π2 ej π2ǫ(1− 1
M )(−1)i

2M−1
∑

k=0

dk[i−1]



















sin
[

π
2(m− ǫ − k− 1)

]

sin
[

π
2M (m− ǫ − k− 1)

] +
sin

[

π
2(m− ǫ − k+ 1)

]

sin
[

π
2M (m− ǫ − k+ 1)

]



















,

(A.5)

e− j πM (m+ 1
2)( 1

2+
M
2 ) [a∗Cm(i, ǫ) + aCm+1(i, ǫ)] =

1
4

e− j π2 ej π2ǫ(3− 1
M )

2M−1
∑

k=0

(−1)kdk[i+1]



















sin
[

π
2(m− ǫ − k− 1)

]

sin
[

π
2M (m− ǫ − k− 1)

] +
sin

[

π
2(m− ǫ − k+ 1)

]

sin
[

π
2M (m− ǫ − k+ 1)

]



















,

(A.6)

and

e− j πM (m+ 1
2)( 1

2+
M
2 ) [a∗Bm(i, ǫ) + aBm+1(i, ǫ)] =

1
4

ej π2ǫ(2− 1
M )

2M−1
∑

k=0

ej 3π
2 (k−m)dk[i]
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×



















2
sin [π(m− ǫ − k)]

sin
[

π
2M (m− ǫ − k)

] +
sin [π(m− ǫ − k− 1)]

sin
[

π
2M (m− ǫ − k− 1)

] +
sin [π(m− ǫ − k+ 1)]

sin
[

π
2M (m− ǫ − k+ 1)

]



















.

(A.7)

Taking into account (A.1), by using (A.5), (A.6) and (A.7), the expression in

(18) immediately follows.

Appendix B

In this appendix, we derive the approximate expressions of the power of the

useful term in (21), the ISI contribution in (22), and the ICIterm in (23), for

| ǫ |≪ 1 andM ≫ 1.

Let us consider at first the power of the useful term. Note that, taking into

account the definition in (19), forM ≫ 1 and| ǫ |≪ 1, it follows that

2D0
4M(2ǫ) + D−2

4M(2ǫ) + D2
4M(2ǫ) ≃ 4M

sin(πǫ)
πǫ

1
1− ǫ2 ≃ 4M. (B.1)

Thus, from (B.1) the expression in (24) is immediately obtained.

Let us now consider the power of the ISI contribution in (22).Note that, taking

into account the definition in (19), it follows that

Dp+2M
2M (ǫ) = (−1)MDp

2M(ǫ). (B.2)

From the previous relationship it follows that

2M−1
∑

k=0

[

Dm−k−1
2M (ǫ)

]2
=

2M−1
∑

k=0

[

Dm−k+1
2M (ǫ)

]2
=

2M−1
∑

p=0

[

Dp
2M(ǫ)

]2
(B.3)

and, moreover,

2M−1
∑

k=0

Dm−k−1
2M (ǫ) Dm−k+1

2M (ǫ) =
2M−1
∑

p=0

Dp−1
2M (ǫ) Dp+1

2M (ǫ). (B.4)

Thus, the power of the ISI contribution in (22) can be expressed as

PIS I(ǫ) = 4
[

sin
(

π

2
ǫ

)]2

{AIS I + BIS I} (B.5)
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where

AIS I
△
=

2M−1
∑

p=0

[

Dp
2M(ǫ)

]2
(B.6)

and

BIS I
△
=

2M−1
∑

p=0

Dp−1
2M (ǫ) Dp+1

2M (ǫ). (B.7)

In particular, taking into account the definition in (19), itfollows that

AIS I =

















sin(π2ǫ)

sin
(

π
2M ǫ

)

















2

+

2M−1
∑

p=1

















sin
(

π
2(p− ǫ)

)

sin
(

π
2M (p− ǫ)

)

















2

. (B.8)

For M ≫ 1 and| ǫ |≪ 1 it follows that

AIS I ≃ M2 +

2M−1
∑

p=1

















sin
(

π
2 p

)

sin
(

π
2M p

)

















2

= M2 +

M−1
∑

l=0

















sin
(

π
2(2l + 1)

)

sin
(

π
2M (2l + 1)

)

















2

= M2 +

M−1
∑

l=0

1
[

sin
(

π
M (l + 1

2)
)]2
. (B.9)

Since it can be shown that (forλ , mπ)

M−1
∑

k=0

1
[

sin
(

π
M k+ λ

M

)]2
=

M2

sin2(λ)
(B.10)

it results that

AIS I ≃ 2M2. (B.11)

Moreover, taking into account the definition in (19), it follows that

BIS I =

2M−1
∑

p=0

−1− cos(π(p− ǫ))
cos

(

π
M

)

− cos
(

π
M (p− ǫ)

) . (B.12)

For M ≫ 1 and| ǫ |≪ 1 it follows that

BIS I ≃
1+ cos(πǫ)

cos
(

π
M ǫ

)

− cos
(

π
M

) −
2M−1
∑

p=1

1+ (−1)p

cos
(

π
M

)

− cos
(

π
M p

)
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≃ 4M2

π2
−

2M−1
∑

p=1

1+ (−1)p

1− cos
(

π
M p

) =
4M2

π2
−

2M−1
∑

p=1

1+ (−1)p

2
[

sin
(

π
2M p

)]2

=
4M2

π2
−

M−1
∑

l=1

1
[

sin
(

π
M l

)]2
. (B.13)

Since it can be shown that

M−1
∑

k=1

1
[

sin
(

π
M k

)]2
=

M2 − 1
3

(B.14)

it results that

BIS I ≃
4M2

π2
− M2 − 1

3
≃ M2

(

4
π2
− 1

3

)

. (B.15)

By substituting (B.11) and (B.15) in (B.5), the expression in (25) is obtained.

Let us finally consider the power of the ICI contribution in (23). Note that,

taking into account the definition in (19) it follows that

D2(p+2M)
4M (2ǫ) = −D2p

4M(2ǫ). (B.16)

From the previous relationship it follows that

2M−1
∑

k=0,k,m

[

1+ (−1)m−k
]

2

[

D2(m−k)
4M (2ǫ)

]2
=

2M−1
∑

p=1

[1 + (−1)p]
2

[

D2p
4M(2ǫ)

]2
(B.17)

2M−1
∑

k=0,k,m

[

1+ (−1)m−k
]

2

[

D2(m−k+1)
4M (2ǫ)

]2
=

2M−1
∑

p=1

[1 + (−1)p]
2

[

D2p+2
4M (2ǫ)

]2
(B.18)

2M−1
∑

k=0,k,m

[

1+ (−1)m−k
]

2

[

D2(m−k−1)
4M (2ǫ)

]2
=

2M−1
∑

p=1

[1 + (−1)p]
2

[

D2p−2
4M (2ǫ)

]2
(B.19)

and, moreover,

2M−1
∑

k=0,k,0

[

1+ (−1)m−k
]

2
D2(m−k)

4M (2ǫ) D2(m−k+1)
4M (2ǫ) =

2M−1
∑

p=1

[1 + (−1)p]
2

D2p
4M(2ǫ) D2(p+1)

4M (2ǫ),

(B.20)
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2M−1
∑

k=0,k,0

[

1+ (−1)m−k
]

2
D2(m−k)

4M (2ǫ) D2(m−k−1)
4M (2ǫ) =

2M−1
∑

p=1

[1 + (−1)p]
2

D2p
4M(2ǫ) D2(p−1)

4M (2ǫ).

(B.21)
2M−1
∑

k=0,k,0

[

1+ (−1)m−k
]

2
D2(m−k−1)

4M (2ǫ) D2(m−k+1)
4M (2ǫ) =

2M−1
∑

p=1

[1 + (−1)p]
2

D2p−1
4M (2ǫ) D2(p+1)

4M (2ǫ).

(B.22)

Thus, the power of the ICI contribution in (23) can be expressed as

PICI (ǫ) = 4AICI + BICI +CICI + 4DICI + 4EICI + FICI (B.23)

where

AICI
△
=

2M−1
∑

p=1

[1 + (−1)p]
2

[

D2p
4M(2ǫ)

]2
=

M−1
∑

l=1

[

D4l
4M(2ǫ)

]2
, (B.24)

BICI
△
=

2M−1
∑

p=1

[1 + (−1)p]
2

[

D2p+2
4M (2ǫ)

]2
=

M−1
∑

l=1

[

D4l+2
4M (2ǫ)

]2
, (B.25)

CICI
△
=

2M−1
∑

p=1

[1 + (−1)p]
2

[

D2p−2
4M (2ǫ)

]2
=

M−1
∑

l=1

[

D4l−2
4M (2ǫ)

]2
, (B.26)

DICI
△
=

2M−1
∑

p=1

[1 + (−1)p]
2

D2p
4M(2ǫ) D2p+2

4M (2ǫ) =
M−1
∑

l=1

D4l
4M(2ǫ) D4l+2

4M (2ǫ), (B.27)

EICI
△
=

2M−1
∑

p=1

[1 + (−1)p]
2

D2p
4M(2ǫ) D2p−2

4M (2ǫ) =
M−1
∑

l=1

D4l
4M(2ǫ) D4l−2

4M (2ǫ), (B.28)

and, finally,

FICI
△
=

2M−1
∑

p=1

[1 + (−1)p]
2

D2p−2
4M (2ǫ) D2p+2

4M (2ǫ) =
M−1
∑

l=1

D4l−2
4M (2ǫ) D4l+2

4M (2ǫ). (B.29)

In particular, taking into account the definition in (19) it follows that

AICI =

M−1
∑

l=1

















sin
(

π
2(4l − 2ǫ)

)

sin
(

π
4M (4l − 2ǫ)

)

















2

. (B.30)

For M ≫ 1 and| ǫ |≪ 1, and moreover, accounting for (B.14), it follows that

AICI ≃ [sin(πǫ)]2
M−1
∑

l=1

1
[

sin
(

π
M l

)]2
= (πǫ)2 M2 − 1

3
. (B.31)
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Taking into account the definition in (19) it follows that

BICI =

M−1
∑

l=1

















sin
(

π
2(4l + 2− 2ǫ)

)

sin
(

π
4M (4l + 2− 2ǫ)

)

















2

. (B.32)

For M ≫ 1 and| ǫ |≪ 1, and moreover, accounting for (B.10), it follows that

BICI ≃ [sin(πǫ)]2
M−1
∑

l=1

1
[

sin
(

π
M (l + 1

2)
)]2
≃ (πǫ)2 M2

(

1− 4
π2

)

. (B.33)

Taking into account the definition in (19) it follows that

CICI =

M−1
∑

l=1

















sin
(

π
2(4l − 2− 2ǫ)

)

sin
(

π
4M (4l − 2− 2ǫ)

)

















2

. (B.34)

For M ≫ 1 and| ǫ |≪ 1, and moreover, accounting for (B.10), it follows that

CICI ≃ [sin(πǫ)]2
M−1
∑

l=1

1
[

sin
(

π
M (l − 1

2)
)]2
≃ (πǫ)2 M2

(

1− 4
π2

)

= BICI . (B.35)

Taking into account the definition in (19) it follows that

DICI =

M−1
∑

l=1

sin
(

π
2(4l − 2ǫ)

)

sin
(

π
4M (4l − 2ǫ)

)

sin
(

π
2(4l + 2− 2ǫ)

)

sin
(

π
4M (4l + 2− 2ǫ)

)

=

M−1
∑

l=1

cos(2πǫ) − 1

cos
(

π
2M

)

− cos
(

π
4M (8l + 2− 4ǫ)

) . (B.36)

For M ≫ 1 and| ǫ |≪ 1, and moreover, accounting for (B.10), it follows that

DICI ≃ − (πǫ)2
M−1
∑

l=1

1
[

sin
(

π
M (l + 1

4)
)]2
≃ − (πǫ)2 M2













2−
(

4
π

)2










. (B.37)

Taking into account the definition in (19) it follows that

EICI =

M−1
∑

l=1

sin
(

π
2(4l − 2ǫ)

)

sin
(

π
4M (4l − 2ǫ)

)

sin
(

π
2(4l − 2− 2ǫ)

)

sin
(

π
4M (4l − 2− 2ǫ)

)

=

M−1
∑

l=1

cos(2πǫ) − 1

cos
(

π
2M

)

− cos
(

π
4M (8l − 2− 4ǫ)

) . (B.38)
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For M ≫ 1 and| ǫ |≪ 1, and moreover, accounting for (B.10), it follows that

EICI ≃ − (πǫ)2
M−1
∑

l=1

1
[

sin
(

π
M (l − 1

4)
)]2
≃ − (πǫ)2 M2













2−
(

4
π

)2










= DICI . (B.39)

Taking into account the definition in (19) it follows that

FICI =

M−1
∑

l=1

sin
(

π
2(4l + 2− 2ǫ)

)

sin
(

π
4M (4l + 2− 2ǫ)

)

sin
(

π
2(4l − 2− 2ǫ)

)

sin
(

π
4M (4l − 2− 2ǫ)

)

=

M−1
∑

l=1

1− cos(2πǫ)

cos
(

π
M

)

− cos
(

π
4M (8l − 4ǫ)

) . (B.40)

For M ≫ 1 and| ǫ |≪ 1, and moreover, accounting for (B.14), it follows that

FICI ≃ (πǫ)2
M−1
∑

l=1

1
[

sin
(

π
M l

)]2
≃ (πǫ)2 M2 − 1

3
= AICI . (B.41)

By substituting (B.31), (B.33), (B.35), (B.37), (B.39), and (B.41) in (B.23) the

expression in (26) is obtained.

24



References

[1] Y. Medjahdi, S. Traverso, R. Gerzaguet, H. Shaı̈ek. R. Zayani, D. Demmer,
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Figure 1: SIR as a function of the normalized CFO.
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Figure 2: Behaviour of the proposed symbol timing statistics as a function of̃θ in a single run for

M = 512 andEb/No = 10dB.
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Figure 3: Normalized RMSE of the proposed symbol timing estimator over AWGN, EVA and

ETU channels versusEb/No.
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Figure 5: BER versusEb/No over EVA channel. The proposed symbol timing estimator is ex-

ploited while the CFO is assumed to be known.
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Figure 6: BER versusEb/No over ETU channel. The proposed symbol timing estimator is ex-

ploited while the CFO is assumed to be known.

33



0 5 10 15 20 25 30

Eb/No

10-3

10-2

10-1

100

B
E

R

OFDM
FBMC-PAM-2M
FBMC-PAM-2M-s
FBMC-PAM-2M-nc
FBMC-PAM-4M
FBMC-PAM-4M-s
FBMC-PAM-4M-nc

Figure 7: BER versusEb/No over EVA channel. Both the symbol timing and the CFO are esti-

mated.

34



0 5 10 15 20 25 30

Eb/No

10-3

10-2

10-1

100

B
E

R

OFDM
FBMC-PAM-2M
FBMC-PAM-2M-s
FBMC-PAM-2M-nc
FBMC-PAM-4M
FBMC-PAM-4M-s
FBMC-PAM-4M-nc

Figure 8: BER versusEb/No over ETU channel. Both the symbol timing and the CFO are esti-

mated.
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