
HAL Id: hal-02476250
https://hal.science/hal-02476250

Submitted on 12 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyticity of the semi-group generated by the Stokes
operator with Navier-type boundary conditions on L p

-spaces
Chérif Amrouche, Hind Al Baba, Miguel Escobedo

To cite this version:
Chérif Amrouche, Hind Al Baba, Miguel Escobedo. Analyticity of the semi-group generated by the
Stokes operator with Navier-type boundary conditions on L p -spaces. Communications in Contem-
porary Mathematics, 2016. �hal-02476250�

https://hal.science/hal-02476250
https://hal.archives-ouvertes.fr


Analyticity of the semi-group generated by the Stokes

operator with Navier-type boundary conditions on Lp-spaces

Hind Al Baba, Chérif Amrouche, and Miguel Escobedo

This paper is dedicated to Professor Hugo Beirao da Veiga on the occasion of his 70th birthday.

Abstract. In this paper we study the analyticity of the semi-group generated
by the Stokes operator with Navier-type boundary conditions on Lp-spaces.
This allows us to solve the evolution Stokes problems (1.1) together with the
boundary condition (1.3).

1. Introduction

We consider in a bounded cylindrical domain Ω×(0, T ) the linearised evolution
Navier-Stokes problem

(1.1)

{
∂u
∂t −∆u + ∇π = f , divu = 0 in Ω× (0, T ),

u(0) = u0 in Ω,

where the unkowns u and π stand respectively for the velocity �eld and the pressure
of a �uid occupying a domain Ω. Given data are the external force f and the initial
velocity u0.

To study Problem (1.1) it is necessary to add appropriate boundary conditions.
This problem is often studied with Dirichlet boundary conditions, which is not
always realistic since it does not re�ect necessarily the behavior of the �uid on or
near the boundary. In many problems of mathematical physics, Problem (1.1) is
studied with other types of boundary conditions called slip boundary conditions.

H. Navier [17] has suggested in 1824 a type of boundary conditions based on a
proportionality between the tangential components of the normal dynamic tensor
and the velocity

(1.2) u · n = 0, 2 ν [Du · n]τ + αuτ = 0 on Γ× (0, T ),

where ν is the viscosity and α ≥ 0 is the coe�cient of friction and Du = 1
2 (∇u +

∇uT ) denotes the deformation tensor associated to the velocity �eld u.
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The Navier boundary conditions de�ned above are often used to simulate the
�ows near rough walls as well as perforated walls. We also mention that such slip
boundary conditions are used in the simulation of turbulent �ows. Taking use of
the vorticity �eld w = curlu, and using classical identities, one can observe that
in the case of a �at boundary and when α = 0 the conditions (1.2) may be replaced
by

(1.3) u · n = 0, curlu× n = 0 on Γ× (0, T ).

We call them Navier-type boundary conditions.
Problem (1.1) together with the boundary conditions (1.3) has been studied by

several authors and the theory is in recent progress. In a two dimensional, simply
connected bounded domain Yudovich [21] has established the existence and unique-
ness of solution to this problem. These two-dimensional results are based on the
fact that the vorticity is scalar and satis�es the maximum principle. However this
techniques can not be extended to the three-dimensional case. On the other hand
Mitrea and Monniaux [15] have employed the Fujita-Kato approach and proved the
existence of a local mild solution to Problem (1.1) and (1.3).

In this paper we deal with the Stokes operator with the Navier-type boundary
conditions (1.3). Our goal is to obtain a good semi-group theory for the Stokes
operator with Navier-type boundary conditions (1.3) on Lp-spaces as it is well
known for Dirichlet boundary condition (for instance Giga and Sohr [1, 9, 10, 11,
12]). Our main result is the following:

Theorem 1.1. The Stokes operator with Navier-type boundary conditions gen-
erates a bounded analytic semi-group on Lpσ,τ (Ω).

To prove Theorem 1.1 we use a classical approach. We study the resolvent of
the Stokes operator. A key observation is that the Stokes operator with Navier-type
boundary conditions is equal to the Laplacian operator with Navier-type boundary
conditions. For this reason our work is reduced to study the following problem:

(1.4)

{
λu−∆u = f , divu = 0 in Ω,

u · n = 0, curlu× n = 0 on Γ,

where λ ∈ C∗ such that Reλ ≥ 0 and f ∈ Lpσ,τ (Ω) . We prove the existence of
strong solution to Problem (1.4) satisfying the resolvent estimate

(1.5) ‖u‖Lp(Ω) ≤
C(Ω, p)

|λ|
‖f‖Lp(Ω).

Notice that for p = 2 one has estimate (1.5) in a sector λ ∈ Σε for a �xed ε ∈ ]0, π[.
We recall that

Σε = {λ ∈ C∗; | arg λ| ≤ π − ε}.
In the literature, there are several results on the analyticity of the Stokes semi-

group with Dirichlet boundary condition in Lp-spaces. In fact, in bounded domains,
Giga [9] has studied the resolvent of the Stokes operator with Dirichlet boundary
condition using the theory of pseudo-di�erential operators and get the desired re-
sult. In exterior domains, Giga and Sohr [11] approximate the resolvent of the
Stokes operator with Dirichlet boundary condition with the resolvent of the Stokes
operator in the entire space to prove this analyticity.

More recently, the analyticity of the Stokes semi-group with Dirichlet boundary
condition is studied in spaces of bounded functions by Abe and Giga [1]. There
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approaches here is completely di�erent from the classical approaches. In fact, they
have proved a bound for

N(u, π)(x, t) = |u(x, t)| + t1/2 |∇u(x, t)| + t |∇2u(x, t)| + t |∂tu(x, t)| + |∇π(x, t)|,
which is a key to prove the analyticity result. More precisely, they have proved

‖N(u, π)‖L∞(Ω×]0,T0[) ≤ C ‖u0‖L∞(Ω).

To establish the last estimate they used a blow-up argument which is often used in
the study of nonlinear elliptic and parabolic equations.

Now, concerning the Navier-type boundary conditions, Mitrea and Monniaux
[14] have studied the resolvent of the Stokes operator with Navier-type bound-
ary conditions in Lipschitz domains and proved estimate (1.5) using the context
of di�erential forms on Lipschitz sub-domains of a smooth compact Riemannian
manifold. In addition, when the domain Ω has a su�ciently smooth boundary,
estimates of type (1.5) are proved using the fact that the boundary conditions (1.3)
are regular elliptic (e.g. [19]) and the so called "Agmon trick" (e.g. [3]). More-
over, when the domain Ω is of class C∞, [16] shows that the Laplacian with the
Navier-type boundary condions (1.3) on Lp(Ω) leaves the space Lpσ,τ (Ω) invariant
and hence generates a holomorphic semi-group on Lpσ,τ (Ω).

In this paper we prove estimate (1.5) using (see Lemma 2.6) a formula involving
the boundary conditions (1.3) and the following formula: For every u ∈ W 1,p(Ω)
such that ∆u ∈ Lp(Ω) one has

−
∫

Ω

|u|p−2∆u · udx =

∫
Ω

|u|p−2|∇u|2 dx + 4
p− 2

p2

∫
Ω

∣∣∣∇|u|p/2∣∣∣2 dx

+ (p− 2) i

3∑
k=1

∫
Ω

|u|p−4 Re
( ∂ u
∂xk
· u
)

Im
( ∂ u
∂xk
· u
)

dx −
〈∂ u
∂n

, |u|p−2u
〉

Γ
,

where 〈. , .〉Γ is the antiduality between W−1/p,p(Γ) and W 1/p,p′(Γ).
This paper is organized as follows. In section 2 we give the functional framework

and some preliminary results at the basis of our proofs. Next in section 3 we
de�ne the Stokes operator with Navier-type boundary conditions, we will see that
the Stokes operator with Navier-type boundary conditions (1.3) is equal to the
Laplacian operator with conditions (1.3). Section 4 is devoted to our main result
and its proof concerning the analyticity of the semi-group generated by the Stokes-
operator with Navier-type boundary conditions on Lp-spaces. Finally in section 5
we give a new version of the Stokes operator. We give extra assumptions on the
Stokes operator that allows us to obtain a bounded and compact inverse as well as
an exponential decay of the semi-group generated by the Stokes operator.

2. Notations and preliminary results

2.1. Functional framework. In this subsection we review some basic nota-
tions, de�nitions and functional framework which are essential in our work.

In what follows, if we do not state otherwise, Ω will be considered as an open
bounded domain of R3 of class at least C1,1 and sometimes of class C2,1. Then
a unit normal vector to the boundary can be de�ned almost everywhere it will be
denoted by n. The generic point in Ω is denoted by x = (x1, x2, x3).

We do not assume that the boundary Γ is connected and we denote by Γi,
0 ≤ i ≤ I, the connected component of Γ, Γ0 being the boundary of the only
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unbounded connected component of R3\Ω. We also �x a smooth open set ϑ with
a connected boundary (a ball, for instance), such that Ω is contained in ϑ, and
we denote by Ωi, 0 ≤ i ≤ I, the connected component of ϑ\Ω with boundary Γi
(Γ0 ∪ ∂ϑ for i = 0).

We do not assume that Ω is simply-connected but we suppose that there exist
J connected open surfaces Σj , 1 ≤ j ≤ J , called 'cuts', contained in Ω, such that
each surface Σj is an open subset of a smooth manifold, the boundary of Σj is

contained in Γ. The intersection Σi ∩Σj is empty for i 6= j and �nally the open set
Ω◦ = Ω\ ∪Jj=1 Σj is simply connected and pseudo-C1,1 (see [4] for instance).

We denote by [·]j the jump of a function over Σj , i.e. the di�erence of the traces

for 1 ≤ j ≤ J . In addition, for any function q in W 1,p(Ω◦), grad q is the gradient
of q in the sense of distribution in D′(Ω◦), it belongs to Lp(Ω◦) and therefore can
be extended to Lp(Ω). In order to distinguish this extension from the gradient of

q in D′(Ω◦) we denote it by g̃rad q.
Finally, vector �elds, matrix �elds and their corresponding spaces de�ned on Ω

will be denoted by bold character. The functions treated here are complex valued
functions. We will use also the symbol σ to represent a set of divergence free
functions. In other words If E is Banach space, then

Eσ =
{
v ∈ E; div v = 0 in Ω

}
.

Now, we introduce some functional spaces. Let Lp(Ω) denote the usual vector
valued Lp-space over Ω. Let us de�ne the spaces:

Hp(curl,Ω) =
{
v ∈ Lp(Ω); curlv ∈ Lp(Ω)

}
,

Hp(div,Ω) =
{
v ∈ Lp(Ω); divv ∈ Lp(Ω)

}
,

Xp(Ω) = Hp(curl,Ω) ∩Hp(div,Ω),

equipped with the graph norm. Thanks to [6] we know that D(Ω) is dense in
Hp(curl,Ω), Hp(div,Ω) and Xp(Ω).
We also de�ne the subspaces:

Hp
0(curl,Ω) =

{
v ∈Hp(curl,Ω); v × n = 0 on Γ

}
,

Hp
0(div,Ω) =

{
v ∈Hp(div,Ω); v · n = 0 on Γ

}
,

Xp
N (Ω) =

{
v ∈Xp(Ω); v × n = 0 on Γ

}
,

Xp
τ (Ω) =

{
v ∈Xp(Ω); v · n = 0 on Γ

}
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and
Xp

0(Ω) = Xp
N (Ω) ∩Xp

τ (Ω).

We have denoted by v×n (respectively by v·n) the tangential (respectively normal)

boundary value of v de�ned inW−1/p, p(Γ) (respectively inW−1/p, p(Γ)) as soon as
v belongs toHp(curl,Ω) (respectively toHp(div,Ω)). More precisely, any function
v inHp(curl,Ω) (respectively inHp(div,Ω)) has a tangential (respectively normal)

trace v×n (respectively v ·n) inW−1/p, p(Γ) (respectively in W−1/p, p(Γ)) de�ned
by:

(2.1) ∀ϕ ∈W 1, p′(Ω), 〈v × n, ϕ〉Γ =

∫
Ω

curlv ·ϕ dx −
∫

Ω

v · curlϕdx

and

(2.2) ∀ϕ ∈W 1, p′(Ω), 〈v · n, ϕ〉Γ =

∫
Ω

v · gradϕdx +

∫
Ω

divv ϕ dx,

where 〈., .〉Γ is the anti-duality between W−1/p, p(Γ) and W 1/p, p′(Γ) in (2.1) and

between W−1/p, p(Γ) and W 1/p, p′(Γ) in (2.2). Thanks to [6] we know that D(Ω) is
dense in Hp

0(curl,Ω) and in Hp
0(div,Ω).

Finally, we denote by [Hp
0(curl,Ω)]′ and [Hp

0(div,Ω)]′ the dual spaces of
Hp

0(curl,Ω) and Hp
0(div,Ω) respectively.

Notice that we can characterize these dual spaces as follows: A distribution

f belongs to [Hp
0(curl,Ω)]′ if and only if there exist functions ψ ∈ Lp

′
(Ω) and

ξ ∈ Lp
′
(Ω), such that f = ψ + curl ξ. Moreover one has

‖f‖[Hp
0(curl,Ω)]′ = max (‖ψ‖Lp′ (Ω), ‖ξ‖Lp′ (Ω)).

Similarly, a distribution f belongs to [Hp
0(div,Ω)]′ if and only if there exist ψ ∈

Lp
′
(Ω) and χ ∈ Lp′(Ω) such that f = ψ + gradχ and

‖f‖[Hp
0(div,Ω)]′ = max (‖ψ‖Lp′ (Ω) , ‖χ‖Lp′ (Ω)).

2.2. Preliminary results. In this subsection, we review some known results
which are essential in our work. First, We recall that the vector-valued Laplace
operator of a vector �eld v = (v1, v2, v3) is equivalently de�ned by

∆ v = grad (div v)− curl curl v .

Next, we have the following lemmas (see [6]):

Lemma 2.1. The spaces Xp
N (Ω) and Xp

τ (Ω) de�ned above are continuously

embedded in W 1,p(Ω).

Consider now the spaces

X2,p(Ω) =
{
v ∈ Lp(Ω); div v ∈W 1,p(Ω), curlu ∈W 1,p(Ω) and

v · n ∈W 1−1/p,p(Γ)
}

and

Y 2,p(Ω) =
{
v ∈ Lp(Ω); divv ∈W 1,p(Ω), curlv ∈W 1,p(Ω) and

v × n ∈W 1−1/p,p(Γ)
}
.

Lemma 2.2. Assume that Ω is of class C2,1, then the spaces X2,p(Ω) and

Y 2,p(Ω) are continuously embedded in W 2,p(Ω).
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Consider now the space

E p(Ω) = {v ∈W 1,p(Ω); ∆v ∈ [H p′

0 (div,Ω)]′},

which is a Banach space for the norm:

‖ v ‖E p(Ω)=‖ v ‖W 1,p(Ω) + ‖ ∆v ‖
[H p′

0 (div,Ω)]′
.

Thanks to [5, Lemma 4.1] we know that D(Ω) is dense in E p(Ω). Moreover
we have the following Lemma (see [5, Corollary 4.2]):

Lemma 2.3. The linear mapping γ : v −−→ curl v×n de�ned on D(Ω) can be
extended to a linear and continuous mapping

γ : E p(Ω) −−−−→W− 1
p ,p(Γ).

Moreover, we have the Green formula: for any v ∈ E p(Ω) and ϕ ∈ X p′

τ (Ω) such
that divϕ = 0 in Ω.

−〈∆v,ϕ〉Ω =

∫
Ω

curl v · curlϕ dx− 〈curlv× n,ϕ〉Γ.

where 〈., .〉Γ denotes the anti-duality between W− 1
p ,p(Γ) and W

1
p ,p

′
(Γ) and 〈., .〉Ω

denotes the anti-duality between [H p′

0 (div,Ω)]′ and H p′

0 (div,Ω).

Next we consider the problem:

(2.3) div (gradπ − f) = 0 in Ω, (gradπ − f) · n = 0 on Γ.

We recall the following lemma concerning the weak Neumann problem (see [18] for
instance).

Lemma 2.4. Let f ∈ Lp(Ω), the Problem (2.3) has a unique solution π ∈
W 1,p(Ω)/R satisfying the estimate

‖gradπ‖Lp(Ω) ≤ C1(Ω) ‖f‖Lp(Ω),

for some constant C1(Ω) > 0.

The following lemma plays an important role in the proof of the resolvent
estimate (1.5):

Lemma 2.5. Let u ∈W 1,p(Ω) such that ∆u ∈ Lp(Ω). Then

(2.4) −
∫

Ω

|u|p−2∆u · udx =

∫
Ω

|u|p−2|∇u|2 dx + 4
p− 2

p2

∫
Ω

∣∣∣∇|u|p/2∣∣∣2 dx

+ (p− 2) i

3∑
k=1

∫
Ω

|u|p−4 Re
( ∂ u
∂xk
· u
)

Im
( ∂ u
∂xk
· u
)

dx −
〈∂ u
∂n

, |u|p−2u
〉

Γ
,

where 〈. , .〉Γ is the antiduality between W−1/p,p(Γ) and W 1/p,p′(Γ).

Proof. Let u ∈ W 1,p(Ω) such that ∆u ∈ Lp(Ω). We recall that u =
( u1, u2, u3 ) is a vector complex valued function. We recall also that the
vectors u and Reu given by

u = ( u1, u2, u3 ), Reu = ( Reu1, Reu2, Reu3 )
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are the conjugate and the real part of the vector u respectively. We can easily
verify that for any 1 ≤ k ≤ 3 one has

∂ |u|2

∂xk
=

3∑
j=1

[∂ uj
∂xk

uj + uj
∂ uj
∂xk

]
= 2Re

( ∂ u
∂xk
· u
)
.

As a result
(2.5)
∂ |u|p−2

∂xk
= (p−2) |u|p−4 Re

( ∂ u
∂xk
·u
)

and
∣∣∣∂ |u|p/2
∂xk

∣∣∣2 =
p2

4
|u|p−4

[
Re
( ∂ u
∂xk
·u
)]2

.

Now, using (2.5) we have

3∑
k=1

∂ |u|p−2

∂ xk

∂ u

∂ xk
· u dx = 4

p− 2

p2

∫
Ω

∣∣∣∇|u|p/2∣∣∣2 dx +

(p− 2) i

3∑
k=1

∫
Ω

|u|p−4 Re
( ∂ u
∂xk
· u
)
Im
( ∂ u
∂xk
· u
)
dx.

Finally applying the Green-Formula one gets (2.4). �

Let us now consider any point P on Γ and choose an open neighborhood W of
P on Γ small enough to allow the existence of two families of C2 curves on W . The
lengths s1 and s2 along each family of curves, respectively, are a possible system
of coordinates in W . We denote by τ 1 and τ 2 the unit tangent vectors to each
family of curves respectively. With these notations we have vτ =

∑2
k=1 vk τ k,

where vk = v · τ k. We recall that for all v in D(Ω) the following formula holds:

(2.6) curlv × n = ∇τ (v · n) −
( ∂ v
∂ n

)
τ
−

2∑
j=1

( ∂ n
∂ sj
· vτ

)
τ j on Γ,

where ∇τ is the tangential gradient. More precisely we have the following lemma
(see [5]):

Lemma 2.6. Let v ∈W 1,p(Ω) such that ∆v ∈ Lp(Ω). Then curlv×n belongs

to W−1/p,p(Γ) and satis�es formula (2.6).

We end this subsection by the de�nition of a sectorial operator (see [8, Chapter
2, page 96]). Let 0 ≤ θ < π/2 and let Σθ be the sector

Σθ =
{
λ ∈ C∗; | arg λ| < π − θ

}
.

Definition 2.7. LetX be a Banach space. We say that a linear densely de�ned
operator A : D(A) ⊆ X 7−→ X is sectorial if there exists a constant M > 0 such
that

(2.7) ∀λ ∈ Σθ, ‖R(λ, A)‖L(X) ≤
M

|λ|
,

where R(λ, A) = (λ I − A)−1.

This means that the resolvent of a sectorial operator contain a sector Σθ for
some 0 ≤ θ < π/2 and for every λ ∈ Σθ one has estimate (2.7).

Moreover thanks to [8, Chapter 2, Theorem 4.6, page 101] we have the following
theorem:
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Theorem 2.8. An operator A generates a bounded analytic semi-group if and
only if A is sectorial.

Nevertheless, it is not always easy to prove that an operator is sectorial in
the sense of De�nition 2.7. For this reason in some cases we will use the result
of Yosida [20] who has proved that it su�ces to prove (2.7) in the half plane
{λ ∈ C∗; Reλ ≥ w}, for some w ≥ 0. This result is stated in [7, Chapter 1,
Theorem 3.2, page 30] and proved by K. Yosida .

Proposition 2.9. Let A : D(A) ⊆ X 7−→ X be a linear densely de�ned
operator, let w ≥ 0 and M > 0 such that

∀λ ∈ C∗, Reλ ≥ w, ‖R(λ, A)‖L(X) ≤
M

|λ|
.

Then A is sectorial.

3. The Stokes operator with Navier-type boundary conditions

Consider the space

(3.1) V p
τ (Ω) =

{
v ∈Xp

τ (Ω); divv = 0 in Ω
}
,

which is a Banach space for the normXp(Ω). The Stokes operator with Navier-type
boundary conditions is de�ned by

∀u ∈ V p
τ (Ω), ∀v ∈ V p′

τ (Ω), 〈Au , v〉
(V p

′
τ (Ω))′×V p

′
τ (Ω)

=

∫
Ω

curlu ·curlv dx.

On other words, the Stokes operator with Navier-type boundary conditions is the
linear mapping A : Dp(A) ⊂ Lpσ,τ (Ω) 7−→ Lpσ,τ (Ω), where

(3.2) Dp(A) =
{
u ∈W 1,p(Ω); ∆u ∈ Lp(Ω), divu = 0 in Ω,

u · n = 0, curlu× n = 0 on Γ
}

and Au = −P∆u, for all u ∈ Dp(A). We recall that P : Lp(Ω) 7−→ Lpσ,τ (Ω) is
the Helmholtz projection de�ned by, for all f ∈ Lp(Ω), Pf = f − gradπ, where
π is the unique solution of Problem (2.3).

Proposition 3.1. For all u ∈ Dp(A), Au = −∆u.

Proof. Let u ∈ Dp(A), it is clear that ∆u ∈ Hp(div,Ω). Moreover since
curlu × n = 0 on Γ then we can easily verify that curl curlu · n = 0 on
Γ. This means that ∆u · n = 0 on Γ. As a consequence, ∆u ∈ Lpσ,τ (Ω) and
Au = −P∆u = −∆u. Notice that here the pressure π is a solution of the
problem

∆π = 0 in Ω,
∂π

∂n
= ∆u · n = 0 on Γ.

Thus π = Constant and gradπ = 0 in Ω. �

The following two propositions give the density and a regularity property con-
cerning the domain of the Stokes operator.

Proposition 3.2. The space Dp(A) is dense in Lpσ,τ (Ω).

Proof. It is clear that Dσ(Ω) ⊂ Dp(A) ⊂ Lpσ,τ (Ω). Now, since Dσ(Ω) is
dense in Lpσ,τ (Ω), then Dp(A) is dense in Lpσ,τ (Ω). �
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Proposition 3.3. Suppose that Ω is of class C2,1, then

(3.3) Dp(A) =
{
u ∈W 2,p(Ω); divu = 0 in Ω, u ·n = 0, curlu×n = 0 on Γ

}
.

Proof. Let u ∈ Dp(A) and set z = curlu. Then z ∈ Lp(Ω), div z = 0 in Ω,

curl z = −∆u ∈ Lp(Ω) and z×n = 0 on Γ. Thus z ∈Xp
N (Ω) ↪→W 1,p(Ω). Finally

observe that u ∈ Lp(Ω), curlu ∈ W 1,p(Ω), divu = 0 in Ω and u · n = 0 on Γ.
Thanks to Lemma 2.2, we conclude that u ∈ W 2,p(Ω), which ends the proof. �

Remark 3.4. (i) Notice that, thanks to Lemmas 2.1 and 2.2, when Ω is of class
C2,1 we have

∀u ∈ Dp(A), ‖u‖W 2,p(Ω) ' ‖u‖Lp(Ω) + ‖∆u‖Lp(Ω).

(ii) We recall that, thanks to [5, Proposition 4.7], when Ω is of class C2,1, for all
u ∈ Dp(A) such that 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J we have

‖u‖W 2,p(Ω) ' ‖∆u‖Lp(Ω).

4. Analyticity results

In this section we will state our main result and its proof. We will prove that
the Stokes operator with Navier-type boundary conditions generates a bounded
analytic semi-group on Lpσ,τ (Ω) for all 1 < p < ∞. Since the Hilbertian case is
di�erent from the general Lp-theory we will treat each case separately.

4.1. The Hilbertian case. Before we state our theorem let us recall the
following lemma:

For all ε ∈ ]0, π[, let Σε be the sector

Σε =
{
λ ∈ C∗; | arg λ| ≤ π − ε

}
.

Lemma 4.1. Let ε ∈ ]0, π[ be �xed. There exists a constant Cε > 0 such that
for every positive real numbers a and b one has:

(4.1) ∀λ ∈ Σε, |λ a + b| ≥ Cε(|λ|a + b).

Now we want to study the resolvent of the Stokes operator. For that we consider
the problem

(4.2)

{
λu−∆u = f , divu = 0 in Ω,

u · n = 0, curlu× n = 0 on Γ,

where f ∈ L2
σ,τ (Ω) and λ ∈ Σε.

Remark 4.2. Observe that, Problem (4.2) is equivalent to the problem

(4.3)

{
λu−∆u = f , in Ω,
u · n = 0, curlu× n = 0 on Γ.

In fact, let u ∈H1(Ω) be the unique solution of Problem (4.3) and set divu = χ.
It is clear that λχ −∆χ = 0 in Ω. Moreover, since f · n = 0 and u · n = 0 on Γ
then ∆u · n = 0 on Γ. Notice also that the condition curlu× n = 0 on Γ implies
that curl curlu · n = 0 on Γ. Finally since ∆u = grad(divu) − curl curlu one

gets ∂χ
∂n = 0 on Γ. Thus χ = 0 in Ω and the result is proved.

The following theorem gives the solution of the resolvent of the operator A as
well as a resolvent estimate.
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Theorem 4.3. Let ε ∈ ]0, π[ be �xed, f ∈ L2
σ,τ (Ω) and λ ∈ Σε.

(i) The Problem (4.2) has a unique solution u ∈H1(Ω).
(ii) There exist a constant C ′ε > 0 independent of f and λ such that the solution
u satis�es the estimates

(4.4) ‖u‖L2(Ω) ≤
C ′ε
|λ|
‖f‖L2(Ω)

and

(4.5) ‖curlu‖L2(Ω) ≤
C ′ε√
|λ|
‖f‖L2(Ω).

(C ′ε = 1/Cε, where Cε is the constant in (4.1)).

(iii) If Ω is of class C2,1 then u ∈H2(Ω) and satis�es the estimate

(4.6) ‖u‖H2(Ω) ≤
C(Ω, λ, ε)

|λ|
‖f‖L2(Ω),

where C(Ω, λ, ε) = C(Ω)(C ′ε + 1)(|λ|+ 1).

Remark 4.4. We note that for λ > 0 the constant C ′ε is equal to 1 and we
recover the m-accretiveness property of the Stokes operator on L2

σ,τ (Ω).

Proof. (i) Existence and uniqueness: Consider the space V 2
τ (Ω) given by

(3.1) (for p = 2). It is clear that V 2
τ (Ω) is a closed subspace of X2

τ (Ω) and it is an
Hilbert space for the inner product of X2(Ω). We also recall that on V 2

τ (Ω) the
norm of X2

τ (Ω) is equivalent to the norm of H1(Ω).
Now, consider the variational problem: �nd u ∈ V 2

τ (Ω) such that for any
v ∈ V 2

τ (Ω)

(4.7) a(u,v) =

∫
Ω

f · v dx,

where

a(u,v) = λ

∫
Ω

u · v dx+

∫
Ω

curlu · curlv dx.

We can easily verify that a is a continuous sesqui-linear form on V 2
τ (Ω). For the

coercivity, observe that since λ ∈ Σε, thanks to Lemma 4.1 there exists a constant
Cε such that

| a(v,v)| =
∣∣λ ‖v‖2L2(Ω) + ‖curlv‖2L2(Ω)

∣∣
≥ Cε (|λ| ‖v‖2L2(Ω) + ‖curlv‖2L2(Ω))

≥ Cε min(|λ| , 1)‖v‖2X2
τ (Ω).

Then for all λ ∈ Σε a is a sesqui-linear continuous coercive form on V 2
τ (Ω). Due

to Lax-Milgram Lemma, Problem (4.7) has a unique solution u ∈ V 2
τ (Ω) since the

right-hand side belongs to the anti-dual (V 2
τ (Ω))′.

Now, using the same argument as in the proof of [5, Proposition 4.3] we prove
that the two problems (4.2) and (4.7) are equivalent. Thus we obtain the existence
and the uniqueness of solution to Problem (4.2).

(ii) Estimates: Multiplying the �rst equation of System (4.2) by u and inte-
grating both sides one gets

λ

∫
Ω

|u|2 dx +

∫
Ω

|curlu|2 dx =

∫
Ω

f · u dx.
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Now as described above, since λ ∈ Σε, there exists a constant C
′
ε = 1/Cε such that

|λ|‖u‖2L2(Ω) + ‖curlu‖2L2(Ω) ≤ C ′ε
∣∣λ‖u‖2L2(Ω) + ‖curlu‖2L2(Ω)

∣∣
= C ′ε

∣∣∣ ∫
Ω

f · u dx
∣∣∣

≤ C ′ε ‖f‖L2(Ω)‖u‖L2(Ω).

As a result

‖u‖L2(Ω) ≤
C ′ε
|λ|
‖f‖L2(Ω),

which is estimate (4.4). In addition, it is clear that

‖curlu‖2L2(Ω) ≤ C ′ε ‖f‖L2(Ω)‖u‖L2(Ω)

≤ C ′2ε
|λ|
‖f‖2L2(Ω),

which is estimate (4.5). We recall that Cε is the constant in (4.1).
(iii) Regularity: The regularity of the solution is a direct application of Propo-

sition 3.3. Let us prove estimate (4.6). Thanks to (4.4) it is clear that

(4.8) ‖∆u‖L2(Ω) ≤ ‖f − λu‖L2(Ω) ≤ (C ′ε + 1) ‖f‖L2(Ω).

Now, since ‖u‖H2(Ω) ' ‖u‖L2(Ω) + ‖∆u‖L2(Ω) one has estimate (4.6). �

Remark 4.5. Consider the sesqui-linear form (see [4]):

(4.9) ∀u, v ∈ V 2
τ (Ω), a(u,v) =

∫
Ω

curlu · curlv dx.

If Ω is simply connected, we know that for all v ∈ V 2
τ (Ω) one has

(4.10) ‖v‖X2(Ω) ≤ C ‖curlv‖L2(Ω).

As a result, the sesqui-linear form a is coercive and we can apply Lax-Milgram
Lemma to �nd solution to the problem: �nd u ∈ V 2

τ (Ω) such that for all v ∈ V 2
τ (Ω)

a(u,v) =

∫
Ω

f · v dx,

where f ∈ L2
σ,τ (Ω). This means that the operator A : D2(A) ⊂ L2

σ,τ (Ω) 7−→
L2
σ,τ (Ω) is bijective.
Now, if Ω is multiply-connected, the inequality (4.10) is false. Indeed we intro-

duce the Kernel K2
τ (Ω):

(4.11) K2
τ (Ω) =

{
v ∈X2

τ (Ω); div v = 0, curlv = 0 in Ω
}
.

Thanks to [4, Proposition 3.14] we know that this kernel is not trivial, it is of �nite

dimension and it is spanned by the functions g̃rad qτj , 1 ≤ j ≤ J , where qτj is the
unique solution up to an additive constant of the problem:

(4.12)


−∆qτj = 0 in Ω◦,
∂nq

τ
j = 0 on Γ,[

qτj
]
k

= constant, 1 ≤ k ≤ J,[
∂nq

τ
j

]
k

= 0; 1 ≤ k ≤ J,
〈∂nqτj , 1〉Σk = δjk, 1 ≤ k ≤ J.
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Moreover, thanks to [4, Corollary 3.16], for all v ∈ X2
τ (Ω) we have the following

Poincaré-type inequality:

(4.13) ‖v‖X2
τ (Ω) ≤ C2(Ω)(‖curlv‖L2(Ω) + ‖div v‖L2(Ω) +

J∑
j=1

|〈v · n , 1〉Σj |).

The following theorem gives us the analyticity of the semi-group generated by
the Stokes operator on L2

σ,τ (Ω).

Theorem 4.6. The operator −A generates a bounded analytic semi-group on
L2
σ,τ (Ω).

Proof. Thanks to Theorem 2.8 it su�ces to prove that −A is sectorial which is
a direct application of Theorem 4.3. We recall that, with the Navier-type boundary
conditions (1.3) the Stokes operator coincides with the −∆ operator. �

Remark 4.7. We recall that the restriction of an analytic semi-group to the
non negative real axis is C0 semi-group. Thanks to Remark 4.4 the restriction of
our analytic semi-group to the real axis gives a C0 semi-group of contraction.

4.2. Lp-theory. We have seen that the Hilbert case can be obtained easily
using Lax-Milgram Lemma. However the general case p 6= 2 is not as easy as the
particular case p = 2 and demand extra work. In this section we extend Theorem
4.3 to every 1 < p <∞. We start by the existence theorem:

Theorem 4.8. Let λ ∈ C ∈ Σε and let f ∈ Lpσ,τ (Ω). The Problem (4.2) has a

unique solution u ∈W 1,p(Ω). Moreover, if Ω is of class C2,1 then u ∈W 2,p(Ω).

Proof. As in [5, Proposition 4.3], we can easily verify that Problem (4.2) is

equivalent to the variational problem: Find u ∈ V p
τ (Ω) such that for all v ∈Xp′

τ (Ω)

λ

∫
Ω

u · v dx+

∫
Ω

curlu · curlv dx =

∫
Ω

f · v dx,

where V p
τ (Ω) is given by (3.1). The proof is done in three steps:

(i) Case 2 ≤ p ≤ 6. Let u ∈ H1(Ω) be the unique solution of Problem (4.2). We
write Problem (4.2) in the form:

(4.14)

{
−∆u = F , divu = 0 in Ω,
u · n = 0, curlu× n = 0 on Γ,

where F = f − λu. Thans to the embedding H1(Ω) ↪→ Lp(Ω) one has F ∈
Lpσ,τ (Ω).

It remains to verify (see [5, Proposition 4.3]) that F satis�es the compatibility
condition

(4.15) ∀v ∈Kp′

τ (Ω),

∫
Ω

F · v dx = 0,

where
Kp′

τ (Ω) =
{
v ∈Xp′

τ (Ω); div v = 0, curlv = 0 in Ω
}
.

To this end let v ∈Kp′

τ (Ω), thanks to Lemma 2.3 one has:∫
Ω

F · v dx = −
∫

Ω

∆u · v dx =

∫
Ω

curlu · curlv dx− 〈curlu× n , v〉Γ = 0.

Now applying [5, Proposition 4.3], our solution u belongs to W 1,p(Ω).
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(ii) Case p ≥ 6. Since f ∈ L6(Ω), Problem (4.2) has a unique solution u ∈
W 1,6(Ω) ↪→ L∞(Ω). Now proceeding in the same way as above one gets that
u ∈W 1,p(Ω).

(iii) Case p ≤ 2. As described above, for p ≥ 2 the operator λ I + A is an

isomorphism from V p
τ (Ω) to (V p′

τ (Ω))′. Then the adjoint operator which is equal

to λ I + A is an isomorphism from V p′

τ (Ω) to (V p
τ (Ω))′ for p′ ≤ 2. This means that,

the operator λ I + A is an isomorphism for p ≤ 2, which ends the proof. Notice

that the operator λ I + A ∈ L(V p
τ (Ω), (V p′

τ (Ω))′) is de�ned by: for all ϕ ∈ V p
τ (Ω),

for all ξ ∈ V p′

τ (Ω)

〈(λ I + A)ϕ , ξ〉
(V p

′
τ (Ω))′×V p

′
τ (Ω)

= λ

∫
Ω

ϕ · ξ dx +

∫
Ω

curlϕ · curl ξ dx.

�

Now, we want to prove a resolvent estimate similar to the estimate (4.4) for all
1 < p <∞. But this case is not as obvious as the case p = 2 and the proof will be
done in several steps.

Proposition 4.9. Let λ ∈ C∗ such that Reλ ≥ 0 and |λ| ≥ λ0, where λ0 =
λ0(Ω, p) is de�ned in (4.25). Moreover, let f ∈ Lpσ,τ (Ω), where 1 < p <∞ and let

u ∈W 1,p(Ω) be the unique solution of Problem (4.2). Then u satis�es the estimate

(4.16) ‖u‖Lp(Ω) ≤
κ1(Ω, p)

|λ|
‖f‖Lp(Ω),

where the constant κ1(Ω, p) is independent of λ and f . Moreover, for 4
3 ≤ p ≤ 4

the constant κ1 is independent of Ω and p.

Proof. Suppose that p ≥ 2, multiplying the �rst equation of Problem (4.2)
by |u|p−2 u and integrating both sides one gets thanks to Lemma 2.5

(4.17) λ

∫
Ω

|u|p dx +

∫
Ω

|u|p−2 |∇u|2 dx + 4
p− 2

p2

∫
Ω

|∇ |u|p/2|2 dx

+ (p− 2) i

3∑
k=1

∫
Ω

|u|p−4 Re
( ∂ u
∂xk
· u
)

Im
( ∂ u
∂xk
· u
)

dx

=

∫
Γ

|u|p−2
(∂ u
∂ n

)
τ
· u dσ +

∫
Ω

|u|p−2 f · ū dx.

Notice that the integral on Γ is well de�ned. In fact, thanks to Lemma 2.6 and to

the boundary conditions satis�ed by u we have
(
∂ u
∂ n

)
τ

= −
∑2
j=1

(
∂ n
∂ sj
· uτ

)
τ j .

Moreover, since Ω is of class C1,1 then n ∈ W 1,∞(Γ) and since uτ belongs to

W 1−1/p,p(Γ) ↪→ Lp(Γ). As a result
(
∂u
∂n

)
τ
belongs to Lp(Γ). In addition, it is clear

that |u|p−2u ∈ W 1,p′(Ω) and then its trace belongs to W 1−1/p′,p′(Γ) ↪→ Lp
′
(Γ).

Which justify the integral on Γ.
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Now observe that(∂ u
∂ n

)
τ
· uτ = −

2∑
j=1

(∂ n
∂sj
· uτ

)
τ j ·

2∑
k=1

uk τ k

= n ·
2∑

j,k=1

uj uk
∂ τ k
∂sj

.(4.18)

Next we put together the two formulas (4.17) and (4.18), we study separately the
real and the imaginary parts of formula (4.17) and using the fact that Ω is of class
C1,1 one gets

(4.19) Reλ ‖u‖pLp(Ω) +

∫
Ω

|u|p−2 |∇u|2 dx + 4
p− 2

p2

∫
Ω

|∇ |u|p/2|2 dx

≤ C1(Ω)

∫
Γ

|u|p dσ + ‖f‖Lp(Ω)‖u‖p−1
Lp(Ω)

and

(4.20) |Imλ| ‖u‖pLp(Ω) ≤
p− 2

2

∫
Ω

|u|p−2 |∇u|2 dx + C1(Ω)

∫
Γ

|u|p dσ+

+ ‖f‖Lp(Ω)‖u‖p−1
Lp(Ω),

for some constant C1(Ω) > 0. Now putting together (4.19) and (4.20) one has

(4.21) |λ| ‖u‖pLp(Ω) +

∫
Ω

|u|p−2 |∇u|2 dx + 4
p− 2

p2

∫
Ω

|∇ |u|p/2|2 dx

≤ p− 2

2

∫
Ω

|u|p−2 |∇u|2 dx + 2C1(Ω)

∫
Γ

|u|p dσ + 2 ‖f‖Lp(Ω)‖u‖p−1
Lp(Ω).

Moreover, thanks to [13, Chapter 1, Theorem 1.5.1.10, page 41] we know that:

(4.22)

∫
Γ

|w|2 dσ ≤ ε

∫
Ω

|∇w|2 dx + Cε

∫
Ω

|w|2 dx,

for all w ∈ H1(Ω) and for all ε ∈ ]0, 1[. Applying formula (4.22) to w = |u|p/2 and
substituting in (4.21) one gets

(4.23) |λ| ‖u‖pLp(Ω) +

∫
Ω

|u|p−2 |∇u|2 dx + 4
p− 2

p2

∫
Ω

|∇ |u|p/2|2 dx

≤ p− 2

2

∫
Ω

|u|p−2 |∇u|2 dx + 2C1(Ω)
[
ε

∫
Ω

|∇ |u|p/2|2 dx + Cε

∫
Ω

|u|p dx
]

+ 2 ‖f‖Lp(Ω)‖u‖p−1
Lp(Ω).

We chose ε > 0 such that εC1(Ω) = p−2
p2 . As a result the constant Cε in (4.23)

depends on p and Ω. Then by setting Cε = C2(Ω, p) one has

|λ|‖u‖pLp(Ω) +

∫
Ω

|u|p−2 |∇u|2 dx + 2
p− 2

p2

∫
Ω

|∇ |u|p/2|2 dx

≤ C3(Ω, p) ‖u‖pLp(Ω) +
p− 2

2

∫
Ω

|u|p−2|∇u|2 dx + 2 ‖f‖Lp(Ω)‖u‖p−1
Lp(Ω),

where

(4.24) C3(Ω, p) = 2C1(Ω)C2(Ω, p).
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We de�ne

(4.25) λ0 = 2C3(Ω, p).

Now, for |λ| ≥ λ0 one has

|λ|
2
‖u‖pLp(Ω) +

∫
Ω

|u|p−2 |∇u|2 dx + 2
p− 2

p2

∫
Ω

|∇ |u|p/2|2 dx

≤ p− 2

2

∫
Ω

|u|p−2|∇u|2 dx + 2 ‖f‖Lp(Ω)‖u‖p−1
Lp(Ω).

In fact we have two di�erent cases.

(i) Case 2 ≤ p ≤ 4. One has

|λ|
2
‖u‖pLp(Ω) +

4− p
2

∫
Ω

|u|p−2 |∇u|2 dx + 2
p− 2

p2

∫
Ω

|∇ |u|p/2|2 dx ≤

2 ‖f‖Lp(Ω)‖u‖p−1
Lp(Ω).

Thus

(4.26) ‖u‖Lp(Ω) ≤
4

|λ|
‖f‖Lp(Ω),

which is the required estimate.

(ii) Case p > 4. We write Problem (4.2) in the form (4.14). Thanks to [5, Propo-
sition 4.3] we have

∥∥u − J∑
j=1

〈u · n , 1〉Σj g̃rad qτj
∥∥
W 1,4(Ω)

≤ C4(Ω) ‖f − λu‖L4(Ω).

Thus

(4.27) ‖u‖W 1,4(Ω) ≤
∥∥ J∑
j=1

〈u · n , 1〉Σj g̃rad qτj
∥∥
W 1,4(Ω)

+ C4(Ω) ‖f‖L4(Ω) +

+ C4(Ω) |λ| ‖u‖L4(Ω).

On the other hand, thanks to [6, Lemma 3.2] and (4.26) we have

|〈u · n , 1〉Σj | ≤ C5(Ω) ‖u‖L4(Ω) ≤
C5(Ω)

|λ|
‖f‖L4(Ω) ≤

C5(Ω)

λ0
‖f‖L4(Ω).

As a result, using (4.26) with p = 4 and substituting in (4.27) one gets

‖u‖W 1,4(Ω) ≤ C7(Ω) ‖f‖L4(Ω),

where C7(Ω) = C6(Ω) C5(Ω)
λ0

+ 5C4(Ω) and ‖g̃rad qτj ‖W 1,4(Ω) ≤ C6(Ω).

Now since W 1,4(Ω) ↪→ L∞(Ω), then

‖u‖L∞(Ω) ≤ C8(Ω)‖u‖W 1,4(Ω) ≤ C8(Ω)C7(Ω)‖f‖L4(Ω)

≤ C8(Ω)C7(Ω)(mes Ω)(p−4)/4p‖f‖Lp(Ω).

Consequently

(4.28) ‖u‖Lp(Ω) ≤ C9(Ω) ‖f‖Lp(Ω),
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where

(4.29) C9(Ω) = C8(Ω)C7(Ω)(mes Ω)1/4.

Notice that

‖u‖pLp(Ω) = ‖u‖Lp(Ω)‖u‖p−1
Lp(Ω)

≤ C9(Ω)‖f‖Lp(Ω)‖u‖p−1
Lp(Ω).(4.30)

Thus proceeding exactly as above and putting together (4.19), (4.22) and (4.30)
one has

Reλ ‖u‖pLp(Ω) +

∫
Ω

|u|p−2 |∇u|2 dx + 2
p− 2

p2

∫
Ω

|∇ |u|p/2|2 dx

≤ (C3(Ω, p)C9(Ω) + 1) ‖f‖Lp(Ω)‖u‖p−1
Lp(Ω).

As a result one has

(4.31) Reλ‖u‖Lp(Ω) ≤ C10(Ω, p)‖f‖Lp(Ω),

(4.32)

∫
Ω

|u|p−2 |∇u|2 dx ≤ C10(Ω, p)‖f‖Lp(Ω)‖u‖p−1
Lp(Ω),

and

(4.33) 2
p− 2

p2

∫
Ω

|∇ |u|p/2|2 dx ≤ C10(Ω, p)‖f‖Lp(Ω)‖u‖p−1
Lp(Ω),

where

(4.34) C10(Ω, p) = 1 + C3(Ω, p)C9(Ω).

In addition, using (4.20), (4.32) and (4.33) one has

(4.35) |Imλ|‖u‖Lp(Ω) ≤ C11(Ω, p) ‖f‖Lp(Ω).

Thus putting together (4.31) and (4.35) one gets for p > 4

(4.36) ‖u‖Lp(Ω) ≤
C12(Ω, p)

|λ|
‖f‖Lp(Ω),

which ends the case p > 4.
Finally putting together (4.26) and (4.36) we conclude that for p ≥ 2 we have

(4.37) ‖u‖Lp(Ω) ≤
κ1(Ω, p)

|λ|
‖f‖Lp(Ω),

with

(4.38) κ1(Ω, p) = max(4, C12(Ω, p)).

By duality we obtain estimate (4.37) for all 1 < p <∞. �

Proposition 4.10. Let λ ∈ C∗ such that Reλ ≥ 0 and 0 < |λ| ≤ λ0, with λ0 as

in Proposition (4.9). Moreover, let 1 < p <∞, f ∈ Lpσ,τ (Ω) and let u ∈W 1,p(Ω)
be the unique solution of Problem 4.2. Then u satis�es the estimate

(4.39) ‖u‖Lp(Ω) ≤
κ2(Ω, p)

|λ|
‖f‖Lp(Ω).

For some constant κ2(Ω, p) independent of λ and f .
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Proof. Thanks to (4.4) with ε = π
2 we have

‖u‖L2(Ω) ≤
C13

|λ|
‖f‖L2(Ω)

and

‖curlu‖2L2(Ω) ≤
C2

13

|λ|
‖f‖2L2(Ω).

Moreover we know that

‖u‖2H1(Ω) ≤ C14(Ω)(‖u‖2L2(Ω) + ‖curlu‖2L2(Ω))

≤ C14(Ω)C2
13

1 + |λ|
|λ|2

‖f‖2L2(Ω).

Now because |λ| ≤ λ0 we deduce that

‖u‖H1(Ω) ≤
C15(Ω)

|λ|
‖f‖L2(Ω),

where

(4.40) C15(Ω) = C13

√
C14(Ω)(1 + λ0).

In fact we have two di�erent cases.

(i) Case 2 ≤ p ≤ 6. Because H1(Ω) ↪→ Lp(Ω) we have

‖u‖Lp(Ω) ≤ C16(Ω, p)‖u‖H1(Ω)

≤ C16(Ω, p)C15(Ω)

|λ|
‖f‖L2(Ω) ≤

C17(Ω, p)

|λ|
‖f‖Lp(Ω),(4.41)

where

(4.42) C17(Ω, p) = (mes Ω)(p−2)/2p C15(Ω, p)C16(Ω).

(ii) Case p ≥ 6. Proceeding in a similar way as in Proposition 4.9 (case p > 4), we
obtain

(4.43) ‖u‖Lp(Ω) ≤
C18(Ω, p)

|λ|
‖f‖Lp(Ω).

Finally putting together (4.41) and (4.43), we deduce the estimate (4.39) with

(4.44) κ2(Ω, p) = max(C17(Ω, p) , C18(Ω, p)).

�

As a conclusion of Propositions 4.9 and 4.10 we have the following theorem:

Theorem 4.11. Let λ ∈ C∗ such that Reλ ≥ 0, let 1 < p < ∞, f ∈ Lpσ,τ (Ω)

and let u ∈W 1,p(Ω) be the unique solution of Problem (4.2). Then u satis�es the
estimate

(4.45) ‖u‖Lp(Ω) ≤
κ3(Ω, p)

|λ|
‖f‖Lp(Ω),

where κ3(Ω, p) = max (κ1(Ω, p), κ2(Ω, p)).
In addition, if Ω is of class C2,1 we have the following estimate

(4.46) ‖curlu‖Lp(Ω) ≤
κ4(Ω, p)√
|λ|

‖f‖Lp(Ω)
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and

(4.47) ‖u‖W 2,p(Ω) ≤ κ5(Ω, p)
1 + |λ|
|λ|

‖f‖Lp(Ω).

Proof. The proof of estimate (4.45) is a conclusion of Propositions 4.9 and
4.10. Let us prove estimate (4.46). The proof is done in two steps.
(i) Case 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J . Thanks to [5, Proposition 4.7] we know that
‖u‖W 2,p(Ω) ' ‖∆u‖Lp(Ω). Now, using the Gagliardo-Nirenberg inequality (see [2,
Chapter IV, Theorem 4.14, Theorem 4.17] for instance) we have

‖curlu‖Lp(Ω) ≤ C(Ω, p) ‖∆u‖1/2Lp(Ω)‖u‖
1/2
Lp(Ω)

= C(Ω, p) ‖f − λu‖1/2Lp(Ω)‖u‖
1/2
Lp(Ω)

≤ C(Ω, p)√
|λ|
‖f‖Lp(Ω).

(ii) General case. Let u ∈ Dp(A) be the unique solution of Problem (4.2) and set

ũ = u−
J∑
j=1

〈u · n , 1〉Σj g̃rad qτj .

As a result, thanks to the previous case we have

‖curl ũ‖Lp(Ω) ≤ C(Ω, p) ‖∆ũ‖1/2Lp(Ω)‖ũ‖
1/2
Lp(Ω).

Thus

‖curlu‖Lp(Ω) = ‖curl ũ‖Lp(Ω) ≤ ‖∆ũ‖
1/2
Lp(Ω)‖ũ‖

1/2
Lp(Ω) = ‖∆u‖1/2Lp(Ω)‖ũ‖

1/2
Lp(Ω).

Moreover, thanks to [6, Lemma 3.2] we know that

‖ũ‖Lp(Ω) ≤ C(Ω, p) ‖u‖Lp(Ω).

As a consequence we deduce estimate (4.46).
Finally, when Ω is of class C2,1, on Dp(A) the norm ofW 2,p(Ω) is equivalent

to the graph norm of the Stokes operator with Navier-type boundary conditions
(1.3). As a result when has estimate (4.47). �

As in the Hilbertian case, Proposition 3.2 and Theorems 4.8 allow us to deduce
the analyticity of the semi-group generated by the Stokes operator with Navier-type
boundary conditions on Lpσ,τ (Ω).

Theorem 4.12. The operator −A generates a bounded analytic semigroup on
Lpσ,τ (Ω) for all 1 < p <∞.

Proof. The proof is a direct application of Proposition 2.9 with w = 0. In
fact, thanks to Proposition 3.2 and Theorems 4.8 and 4.11 the operator −A satis�es
the assumptions of Proposition 2.9. This justify the analyticity of the semi-group
generated by the operator −A on Lpσ,τ (Ω) for all 1 < p ≤ ∞. �

Remark 4.13. Notice that, unlike the Hilbertian case, we can not use the result
of [8, Chapter II, Theorem 4.6, page 101] to prove the analyticity of the semi-group
generated by the Stokes operator in the Lp-space where we have supposed that
Reλ ≥ 0.
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Remark 4.14. Consider the two problems:

(4.48)

{
λu−∆u = f , divu = 0 in Ω,
u× n = 0 on Γ

and

(4.49)

{
λu−∆u + ∇π = f , divu = 0 in Ω,

u · n = 0, [Du · n]τ = 0 on Γ,

where λ ∈ C∗ is such that Reλ ≥ 0 and f ∈ Lpσ(Ω) (respectively f ∈ Lpσ,τ (Ω) ).
In a forthcoming two papers we will study the two Problems (4.48) and (4.49).

In fact, proceeding in a similar way as in Theorem 4.8 and Propositions 4.9 and 4.10
we prove that these two Problems have a unique solution u ∈W 1,p(Ω) (respectively
(u, π) ∈W 1,p(Ω)×W 1,p(Ω)/R) that satisfy the estimate

‖u‖Lp(Ω) ≤
C(Ω, p)

|λ|
‖f‖Lp(Ω).

Moreover when Ω is of class C2,1, we have u ∈ W 2,p(Ω). This means that the
Laplacian operator with normal boundary conditions and the Stokes operator with
Navier boundary conditions generate a bounded analytic semi-group on Lpσ(Ω) and
Lpσ,τ (Ω) respectively .

This analyticity allows us to solve the evolutionary Stokes Problem with normal
boundary condition and pressure boundary condition:

(4.50)


∂u
∂t −∆u+∇π = f , divu = 0 in Ω× (0, T ),

u× n = 0, π = 0 on Γ× (0, T ),
u(0) = u0 in Ω,

as well as the evolutionary Stokes Problem (1.1) with Navier-boundary condition
(1.2) for a given f ∈ Lq(0, T ; Lp(Ω)) and u0 ∈ Lpσ(Ω) (respectively u0 ∈ Lpσ,τ (Ω)).

5. Stokes operator with �ux boundary conditions

In this section we will also consider the Stokes operator associated to Problem
(4.2) but with adding an extra boundary condition which is the �ux through the
cuts Σj , 1 ≤ j ≤ J . This last condition enables the Stokes operator to be invertible
with bounded and compact inverse.

Consider the space

(5.1) Xp =
{
f ∈ Lpσ,τ (Ω);

∫
Ω

f · v dx = 0, ∀ v ∈Kp′

τ (Ω)
}

(do not confuse between this space and the space Xp(Ω) de�ned in the subsection
2.1).
Next, we de�ne the operator A′ : Dp(A

′) ⊂Xp 7−→Xp by:

Dp(A
′) =

{
u ∈ Dp(A); 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J

}
and A′u = Au, for all u ∈ Dp(A

′). On other words, the operator A′ is the
restriction of the Stokes operator to the spaceXp. It is clear that when Ω is simply
connected the Stokes operator A coincides with the operator A′.

Remark 5.1. Let u ∈ Lpσ,τ (Ω), it is important to know that (see [6, Lemma

3.2, Corollary 3.4]) the condition
∫

Ω
u · v dx = 0 for all v ∈ Kp′

τ (Ω) is equivalent
to the condition 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J .
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Proposition 5.2. The operator A′ is a well de�ned operator of dense domain.

Proof. Thanks to Remark 5.1 it is clear that Dp(A
′) ⊂Xp. Moreover, using

Lemma 2.3 we can easily verify that for all v ∈ Kp′

τ (Ω),
∫

Ω
∆u · v dx = 0. As a

result A′u ∈Xp and A
′ is a well de�ned operator.

Now, for the density, let w ∈ Lpσ,τ (Ω) such that 〈w · n , 1〉Σj = 0 for all 1 6
j 6 J . We know that there exists a sequence (wk)k in Dσ(Ω) such that wk −→ w
in Lp(Ω). As a consequence for all 1 6 j 6 J , 〈wk · n , 1〉Σj −→ 〈w · n , 1〉Σj = 0,
as k → +∞.
Now for all k ∈ N, setting w̃k = wk −

∑J
j=1〈wk · n , 1〉Σj g̃rad qτj . We can easily

verify that (w̃k)k is in Dp(A
′) and converges to w in Lp(Ω). �

Now we will study the resolvent of the operator A′. For this reason we consider
the problem

(5.2)

 λu − ∆u = f , divu = 0 in Ω,
u · n = 0, curlu× n = 0 on Γ,

〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J,
where λ ∈ C∗ such that Reλ ≥ 0 and f ∈ Xp. We skip the proof of the following
theorem because it is similar to the proof of [5, Proposition 4.3], Theorem 4.8 and
4.11.

Theorem 5.3. Let λ ∈ C∗ such that Reλ ≥ 0 and f ∈Xp. The Problem (5.2)

has a unique solution u ∈ W 1,p(Ω) that satis�es the estimates (4.45)-(4.46). In

addition, when Ω is of class C2,1 the solution u belongs to W 2,p(Ω) and satis�es
the estimate

(5.3) ‖u‖W 2,p(Ω) ≤ C(Ω, p) ‖f‖Lp(Ω),

where C(Ω, p) is independent of λ and f .

As a result we have the following theorem

Theorem 5.4. The operator −A′ generates a bounded analytic semi-group on
Xp for all 1 < p <∞.

Remark 5.5. Let (S(t))t>0 be the semi-group generated by −A′ on Xp. We
notice that S(t) = T (t)|Xp

where (T (t))t≥0 is the analytic semi-group generated by
the operator −A on Lpσ,τ (Ω).
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