Formalizing quality rules on music notation. An ontology-based approach

Si-Said Cherfi, Samira 1 Fayçal Hamdi 1 Philippe Rigaux 2 Virginie Thion 3 Nicolas Travers 2
1 CEDRIC - ISID - CEDRIC. Ingénierie des Systèmes d'Information et de Décision
CEDRIC - Centre d'études et de recherche en informatique et communications
2 CEDRIC - VERTIGO - CEDRIC. Bases de données avancées
CEDRIC - Centre d'études et de recherche en informatique et communications
3 SHAMAN - Symbolic and Human-centric view of dAta MANagement
IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
Abstract : We address the issue of expressing and evaluating quality rules on music notation. Since music engraving is a highly flexible process that can hardly be constrained by universal principles and rules, score production still heavily relies on the user expertise in order to make context-dependent decisions. We therefore propose a quality management approach based on a formal modeling of this expertise. We show how to use such a model to express context-aware rules that can be evaluated either a priori to prevent the production of faulty notations, or a posteriori to assess quality indicators regarding a score or a corpus of scores. The paper proposes a simple ontology for musical notation, shows how quality rules can be formally stated and evaluated, and illustrates the approach with examples drawn from a large digital library of scores.
Document type :
Conference papers
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02475753
Contributor : Samira Si-Said Cherfi <>
Submitted on : Wednesday, February 12, 2020 - 11:41:08 AM
Last modification on : Friday, February 14, 2020 - 1:27:55 AM

Identifiers

  • HAL Id : hal-02475753, version 1

Citation

Si-Said Cherfi, Samira, Fayçal Hamdi, Philippe Rigaux, Virginie Thion, Nicolas Travers. Formalizing quality rules on music notation. An ontology-based approach. International Conference on Technologies for Music Notation and Representation - TENOR'17, May 2017, Coruna, Spain. ⟨hal-02475753⟩

Share

Metrics

Record views

17