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Harmonious sets

Yves Francgois Meyer
CMLA, ENS-Cachan, CNRS, Université Paris-Saclay, France

Abstract

We correct a flaw found in Algebraic numbers and harmonic analysis,
Elsevier (1972).

1 Erratum

Lemma 5 in Chapter 2 of Algebraic numbers and harmonic analysis [1] is non-
sense. The correct statement is the one given below (Lemma 1.1). Here are the
notations used in Lemma 1.1. T' is a locally compact abelian group. The Bohr
compactification of I' is denoted by I'. We have I' C I' and the topology on I'
which is induced by the topology of I' is denoted by 7. If E C I', F C T, then
E — F denotes the set of all x — y, v € F,y € F. Similarly for E + F.

A set E C T is relatively dense in I' if there exists a compact set K such
that K + E =T". A set A C R™ is harmonious if for any positive € the set

Ac = {x;|exp(2mix - y) — 1| <€, Vy € A} (1)

is relatively dense. Let H the additive subgroup of R™ generated by A. Then
A is harmonious if for any homomorphism x : H — T and any positive € there
exists a y € R™ such that

sup |x(z) — exp(2miz - y)| < €. (2)
zEA
Here T is the multiplicative group {z;|z| = 1}. If A is harmonious, then its

closure M in R™ equipped with the topology 7 is still harmonious. Moreover
M — M is harmonious. This provides an example where the hypotheses of
Lemma 1.1 are satisfied. The following lemma shall replace Lemma 5 in [1]
Chapter 2.

Lemma 1.1 Let M be a relatively dense subset of I' and let M, be the closure
of M — M in T for the topology T. Let Q C I’ be an open set for the topology
T. Let us assume 0 € Q. Then A = M1 N Q is relatively dense in T.

Corollary 1.1 Let us assume I' = R"™ and let A C T be a discrete set of points.
Let us assume that for any positive € there exists a finite subset F. of A such
that the set M, = {x;|exp(2miz - y) — 1| <€, Yy € A\ F.} is relatively dense.
Then A is harmonious.



We first prove the corollary. It suffices to show that for any positive € the
set A defined by

Ac = {x;|exp(2miz - y) — 1| <€, Vy € A} (3)
is relatively dense. We set
Qe = {z;|exp(2miz - y) — 1| <, Yy € F.}. (4)

Then €. is open for the topology 7. On one hand M., is closed the topology
T. On the other hand M./, — M, /5 C M. It suffices to conclude to observe that
M:N Qe C Ac and to apply Lemma 1.1 to M = M,/ and Q = 2.

The proof of Lemma 1.1 follows the argument given in [1] for proving Lemma
5. Everything takes place on f‘N. Let us repeat that I' C I. For any & C I' we
denote by E the closure of E in T'. Since I' is compact we have M — M = M —M.
For any subset £ C M we have

(E+Q)NMCE+Qn(M—M). (5)
Indeed if t+r =y withz € EC M, r €, and y € M it implies
r=y—-xe€M-M (6)
andy=x+r€ E+QnN (M — M). Since 2 is a neighborhood of 0 we have
M C M+ Q. (7)

Since M is compact and since 2 is open there exists a finite subset A of M such
that o
McA+Q. (8)

Therefore M = (A+ Q) N M and (5) yields
MCA+QN(M—M). (9)

Since M is relatively dense there exists a compact K C I" such that M+ K =T.
This together with (9) implies

F=K+A+Qn(M-M) (10)

and -
Fr=K+A+TnNnQnN (M- M). (11)

Therefore A = T'NQN (M — M) is relatively dense and the proof of Lemma 1.1
is completed.
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