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ON THE CUSA-HUYGENS INEQUALITY

YOGESH J. BAGUL, CHRISTOPHE CHESNEAU, AND MARKO KOSTIĆ

Abstract. Sharp bounds of various kinds for the famous unnormalized
sinc function sinx/x are useful in mathematics, physics and engineering.
In this paper, we reconsider the Cusa-Huygens inequality by solving the
following problem: given real numbers a, b, c ∈ R and T ∈ (0, π/2], we
find the necessary and sufficient conditions such that the inequalities

sinx

x
> a+ b cosc x, x ∈ (0, T )

and
sinx

x
< a+ b cosc x, x ∈ (0, T )

hold true. We use the elementary methods, only, improving several known
results in the existing literature.

1. Introduction

The following inequality is the main inspiration of this paper:

sinx

x
<

2 + cosx

3
, x ∈ (0, π/2). (1.1)

In the existing literature, it is known as the Cusa-Huygens inequality [13]; for
more details, we refer the reader to [6,8,9,11,13,14]. This inequality has been
extended and sharpened in many different ways [3,10,12,15–19]. For example,
in [9, 16], it is obtained that(

2 + cosx

3

)α
<

sinx

x
<

(
2 + cosx

3

)ζ
, x ∈ (0, π/2), (1.2)

where α = ln(π/2)/ ln(3/2) ≈ 1.11374 and ζ = 1 are the best possible con-
stants. A very simple proof of (1.2) is offered in [2]. In [6], it is proved that,
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for every x ∈ (0, π/2), we have

α− 1 + cosx

α
<

sinx

x
<
β − 1 + cosx

β
, (1.3)

2 + cosx

3α1 <
sinx

x
<

2 + cosx

3β1
, (1.4)

2α2 + cosx

3
<

sinx

x
<

2β2 + cosx

3
, (1.5)

with the best positive constants α ≈ 2.75194, β = 3; α1 ≈ 1.04198, β1 = 1
and α2 ≈ 0.93345, β2 = 1.

The main aim of this paper is to consider the following problem. Let
a, b, c ∈ R and T ∈ (0, π/2] be given real numbers; find the necessary and
sufficient conditions such that the inequalities

sinx

x
> a+ b cosc x, x ∈ (0, T ) (1.6)

and
sinx

x
< a+ b cosc x, x ∈ (0, T ) (1.7)

hold true. We completely solve this problem and thus provide generalizations
to numerous known special results in the existing literature. We also consider
the inequality

2 + cosa x

3
<

sinx

x
<

2 + cosb x

3
, x ∈ (0, T )

and propose several auxiliary results of independent interest. For the sake of
brevity and better exposition, we will not analyze the hyperbolic analogues of
obtained results here.

2. Preliminaries and lemmas

We need to remind ourselves of the statement which is known in the existing
literature as l’Hospital’s rule of monotonicity; see, e.g., [1]:

Lemma 1. Let f(x) and g(x) be two real valued functions which are con-
tinuous on [a, b] and differentiable on (a, b), where −∞ < a < b < ∞ and
g′(x) 6= 0, for all x ∈ (a, b). Let,

A(x) =
f(x)− f(a)

g(x)− g(a)
, x ∈ (a, b)

and

B(x) =
f(x)− f(b)

g(x)− g(b)
, x ∈ (a, b).

Then, we have:
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(i) A(·) and B(·) are increasing on (a, b) if f ′(·)/g′(·) is increasing on
(a, b).

(ii) A(·) and B(·) are decreasing on (a, b) if f ′(·)/g′(·) is decreasing on
(a, b).

The strictness of the monotonicity of A(·) and B(·) depends on the strictness
of monotonicity of f ′(·)/g′(·).

We proceed with some original lemmas and observations we will use later
on.

Lemma 2. ( [4]) The function

F (x) :=
sinx− x cosx

x2 sinx
, x ∈ (0, π/2)

is positive and strictly increasing on (0, π/2).

Remark 1. (i) The proof of [4, Lemma 2.2] contains a small mistake since
the function x 7→ −x tanx + 3, x ∈ (0, π/2) has a unique zero ζ ∈
(0, π/2) so that an application of l’Hospital’s rule of monotonicity
shows that the function F (·) is strictly increasing on (0, ζ), only. But,
the result is actually true because in the former step of proof we have
H ′1(x)/H ′2(x) = sinx/(2 sinx+ x cosx) = 1/(2 + x cotx), x ∈ (0, π/2),
which is strictly increasing on (0, π/2).

(ii) It is clear that, due to Lemma 2, we have that for each number σ ∈
(−∞, 2] the function

Fσ(x) =
sinx− x cosx

xσ sinx
, x ∈ (0, π/2)

is positive and strictly increasing on (0, π/2). Consider now the case
that σ > 2. Then, for each x ∈ (0, π/2), we have

F ′σ(x) =
(
xσ sinx

)−2
xσ−1

[
x2 − x sinx cosx− σ(sin2 x− x sinx cosx)

]
.

So, if

σ ≥ σ0 := sup
x∈(0,π/2)

x2 − x sinx cosx

sin2 x− x sinx cosx
:= sup

x∈(0,π/2)
Q(x) =

π2

4
,

then the function Fσ(·) is strictly decreasing on (0, π/2). In order to
prove that σ0 = π2/4, we can use the facts that limx→0Q(x) = 2, estab-
lished with the help of l’Hospital’s rule, and Q(·) is strictly increasing
on (0, π/2), which follows by applying l’Hospital’s rule of monotonicity
twice. Strictly speaking, by applying the usual l’Hospital’s rule twice,
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we get

lim
x→0

Q(x) = lim
x→0

2x− sinx cosx− x cos 2x

sinx cosx− x cos 2x
= lim

x→0

1− cos 2x+ x sin 2x

x sin 2x

= lim
x→0

[
1 +

1− cos 2x

x sin 2x

]
= lim

x→0

[
1 +

tanx

x

]
.

For the applications of l’Hospital’s rule of monotonicity, we only need
to observe yet that

sinx cosx− x cos 2x = cos 2x[(tan(2x)/2)− x]

= cos 2x
[
tanx(1− tan2 x)−1 − x

]
> cos 2x[tanx− x] > 0, x ∈ (0, π/2)

and the function tan(·)/· is strictly increasing on (0, π/2). Finally, the
above also implies that for each number σ ∈ (2, σ0) there exists a
unique number xσ ∈ (0, π/2) such that the function Fσ(·) is strictly
decreasing on (0, xσ) and Fσ(·) is strictly increasing on (xσ, π/2).

Lemma 3. For x ∈ (0, π/2), it is true that

2x2

π
<

x

sinx
− cosx <

2x2

3
,

which is equivalent to

3

2x2 + 3 cosx
<

sinx

x
<

π

2x2 + π cosx
.

Proof. Let us consider the function

f(x) =
x2 sinx

x− sinx cosx
, x ∈ (0, π/2).

We have

(x− sinx cosx)2f ′(x)

= (x− sinx cosx)(x2 cosx+ 2x sinx)− 2 sin2 x(x2 sinx)

= x3 cosx+ 2x2 sinx− x2 sinx cos2 x− 2x sin2 x cosx− 2x2 sin3 x

= x3 cosx+ x2 sinx cosx− 2x sin2 x cosx

= x∆(x) cosx,

where ∆(x) = x2 + x sinx cosx − 2 sin2 x (x ∈ (0, π/2)). Now, let us notice
that

∆′(x) = 2x+ x cos2 x− x sin2 x+ sinx cosx− 4 sinx cosx

= x+ 2x cos2 x− 3 sinx cosx, x ∈ (0, π/2)
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and

∆′′(x) = 1 + 2 cos2 x− 4x sinx cosx− 3 cos2 x+ 3 sin2 x

= 4 sin2 x− 4x sinx cosx = 4 sinx(sinx− x cosx), x ∈ (0, π/2).

Since sinx−x cosx > 0 for x ∈ (0, π/2), we get ∆′′(x) > 0, implying that ∆′(·)
is strictly increasing on (0, π/2) and, a fortiori, ∆(x) > ∆(0+) = 0, implying
that f ′(x) > 0. Hence, f(·) is strictly increasing on (0, π/2) and f(0+) <
f(x) < f(π/2), with f(0+) = 3/2 by l’Hospital’s rule and f(π/2) = π/2. This
ends the proof of Lemma 3. �

In the remainder of paper, it will be always assumed that T ∈ (0, π/2].
Observe also that the equation sinx/x = 2/3 has a unique zero ν belonging to
the interval (0, π/2); furthermore, we have ν ≈ 1.49578, as well as sinx/x >
2/3 and x ∈ (0, π/2) iff x ∈ (0, ν).

Lemma 4. For each number b ∈ (1/3, F (T )), there exists a unique number
σb,T ∈ (0, T ) such that

x cosx− sinx

x2 sinx
+ b = 0

holds with x = σb,T .

Proof. Follows immediately from Lemma 2 as well as the limit equalities

lim
x→0+

x cosx− sinx

x2 sinx
= −1

3
and lim

x→T−

x cosx− sinx

x2 sinx
= −F (T ),

which can be easily verified. �

The function

W (x) := cosx
x2 + x sinx cosx− 2 sin2 x

(sinx− x cosx)x sin2 x
, x ∈ (0, π/2)

has an important role in our study, as well. This function is positive (see the
proof of Lemma 3, showing that x2 + x sinx cosx− 2 sin2 x > 0, x ∈ (0, π/2)).
Moreover, we have limx→π/2−W (x) = 0 and limx→0+W (x) = 2/15 because

(sinx − x cosx)x sin2 x ∼ x6/3, x → 0+ and x2 + x sinx cosx − 2 sin2 x ∼
2x6/45, x→ 0+.

Lemma 5. The function W (·) is strictly decreasing on (0, π/2).

Proof. Set

W0(x) := cosx
x2 + x sinx cosx− 2 sin2 x

x3 sin3 x
, x ∈ (0, π/2).
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Then, we have W0(x) > 0 for all x ∈ (0, π/2). Therefore, due to Lemma 2 and
the decomposition

W (x) =
x2 sinx

sinx− x cosx
W0(x), x ∈ (0, π/2),

it suffices to show that the function W0(·) is strictly decreasing on (0, π/2).
Towards this end, we note that the calculus established with the use of sym-
bolab.com package shows that, for every x ∈ (0, π/2), we have:

W ′(x) = −2x2 + x sin 2x− 4 sin2 x

2x3 sin2 x

+
cotx×

[
−6x3 sin 2x− 4x2 sin2 x+ 4x2 sin2 cos 2x+ 24 sin4 x− 3x2 sin2 x

]
4x4 sin4 x

.

After multiplying the first addend with 2x sin2 x and grouping the terms, we
need to show that, for every x ∈ (0, π/2), we have

4x2 cosx sinx cos 2x+ 24 cosx sin3 x+ 8x sin4 x− 12x3 cos2 x

< 4x2 cosx sinx+ 12x2 cos3 x sinx+ 4x3 sin2 x+ 2x2 sin 2x sin2 x.

Since 1−cos 2x = 2 sin2 x and sin2 x+cos2 x = 1, after collecting similar terms
and dividing with 4, the above is equivalent with

2x3 cos2 x+ x3 + 3x2 sinx cosx > 6 cosx sin3 x+ 2x sin4 x, x ∈ (0, π/2).
(2.1)

Suppose first that x ∈ (0, ν). Then, (1.1) implies cosx > 3(sinx/x)− 2 > 0 so
that

2x3 cos2 x+ x3 + 3x2 sinx cosx

> 2x3
(

3
sinx

x
− 2
)2

+ x3 + 3x2 sinx
(

3
sinx

x
− 2
)

= 27x sin2 x+ 9x3 − 18x2 sinx.

Therefore, it suffices to show that

27x sin2 x+ 9x3 > 6 cosx sin3 x+ 2x sin4 x+ 18x2 sinx.

This follows from the inequalities 9x sin2 x+9x3 ≥ 2
√

92x4 sin2 x = 18x2 sinx,
18x sin2 x < 18x3 and 6 cosx sin3 x + 2x sin4 x < 6x3 + 2x5 < 8x3. If x ∈
[ν, π/2), then the proof is much simpler and follows from the fact that, for
such values of variable x, we have x3 > 2x ≥ 2x sin4 x and x2 > 2 ≥ 2 sin2 x,
implying that 3x2 sinx cosx > 6 cosx sin3 x (see (2.1)). �

Hence, inf{W (x) : x ∈ (0, π/2)} = 0 and min{W (x) : x ∈ (0, π/2)} does
not exist as well as sup{W (x) : x ∈ (0, π/2)} = 2/15 and max{W (x) : x ∈
(0, π/2)} does not exist.
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3. Main results

Now we are in a position to prove the main results of the paper. We start
by stating the following

Theorem 1. Let a, b ∈ R. Then, the inequality

sinx

x
> a+ b cosx, x ∈ (0, T ) (3.1)

holds iff

1. b ≤ 1/3 and a ≤ (sinT/T )− b cosT, or
2. b ≥ F (T ) and a ≤ 1− b, or
3. b ∈ (1/3, F (T )) and a ≤ min(1− b, (sinT/T )− b cosT ).

Proof. It is clear that (3.1) holds iff a < inf{(sinx/x) − b cosx : x ∈ (0, T )}
or a ≤ inf{(sinx/x) − b cosx : x ∈ (0, T )} if there is no x ∈ (0, T ) such that
(sinx/x)− b cosx = a. Consider the function

M(x) :=
sinx

x
− b cosx, x ∈ (0, T ).

Then, a simple computation shows that

M ′(x) = sinx
[x cosx− sinx

x2 sinx
+ b
]
, x ∈ (0, T ).

Note that {(x cosx− sinx)/(x2 sinx) : x ∈ (0, T )} = (−F (T ),−1/3) (see
Lemma 2 and Lemma 4) and F (0+) = 1−b. Hence, if b ≤ 1/3, then M ′(x) ≤ 0
for all x ∈ (0, T ) and the zeroes of function M ′(·) do not form an interval in
(0, T ) so that the function M(·) is strictly decreasing on (0, T ) and therefore
(3.1) holds iff a ≤ (sinT/T )− b cosT. Similarly, if b ≥ F (T ), then the function
M(·) is strictly increasing on (0, T ) and (3.1) holds iff a ≤ 1 − b. Finally, if
b ∈ (1/3, F (T )), then the function M(·) strictly increases on (0, σb,T ) and the
function M(·) strictly decreases on (σb,T , T ) (see Lemma 4) which implies that
inf{(sinx/x)− b cosx : x ∈ (0, T )} = min(1− b, (sinT/T )− b cosT ) and (3.1)
holds iff a ≤ min(1− b, (sinT/T )− b cosT ). �

Remark 2. Theorem 1 improves the well-known Baricz’s inequality

1 + cosx

2
≤ sinx

x
, x ∈ (0, π/2);

see [5, p. 111].

It is clear that Theorem 1 substantially improves the left hand sides of
equations (1.3)-(1.5) with T = π/2. Strictly speaking, Theorem 1 implies that
β = π/π− 2 is the smallest positive constant strictly greater than 1 such that
the left hand side of (1.3) holds, which can be simply inspected.
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We can similarly prove the following extension of the Cusa-Huygens inequal-
ity, which taken together with Theorem 1 provides a proper generalization
of [6, Theorem 1.6, Theorem 3.9]:

Theorem 2. Let a, b ∈ R. Then, the inequality

sinx

x
< a+ b cosx, x ∈ (0, T )

holds iff

1. b ≤ 1/3 and a ≥ 1− b, or
2. b ≥ F (T ) and a ≥ (sinT/T )− b cosT, or
3. b ∈ (1/3, F (T )) and a > (sinσb,T /σb,T )− b cosσb,T .

Remark 3. Taken together, Theorem 1 and Theorem 2 improve the well-known
results of J. Sándor and R. Oláh-Gal [18, Theorem 1, Theorem 2] and the well-
known Oppenheim’s double inequality

2 + (π − 2) cosx

π
<

sinx

x
<

2 + (4/π) cosx

π

(see, e.g., [7]).

Suppose now that a, b, c ∈ R and c > 1. Consider the function

M1(x) :=
sinx

x
− b cosc x, x ∈ (0, T ),

whose first derivative is given by

M ′1(x) = cosc−1 x sinx
[ x cosx− sinx

x2 sinx cosc−1 x
+ bc

]
, x ∈ (0, T ).

Using Lemma 2 and the assumption c > 1, it follows that the function
x 7→ (x cosx− sinx)/(x2 sinx cosc−1 x), x ∈ (0, T ) is strictly decreasing; more-
over, the range of this function is equal to (−∞,−1/3), if T = π/2, resp.
(−F (T ) cos1−c T,−1/3), if T < π/2. Therefore, arguing as above, we may
conclude that the following holds:

Theorem 3. Suppose that a, b, c ∈ R and c > 1. Then, we have the following:

(i) The inequality (1.6) holds iff:
1. bc ≤ 1/3 and a ≤ 2/π, or bc > 1/3 and a ≤ min(1 − b, 2/π),

provided that T = π/2.
2. bc ≤ 1/3 and a ≤ (sinT/T )− b cosc T, or bc ≥ F (T ) cos1−c T and
a ≤ 1 − b, or bc ∈ (1/3, F (T )) and a ≤ min(1 − b, (sinT/T ) −
b cosc T ), provided that T < π/2.

(ii) The inequality (1.7) holds iff:



ON THE CUSA-HUYGENS INEQUALITY 9

1. bc ≤ 1/3 and a ≥ 1 − b, or bc > 1/3 and a > (sinσb,c/σb,c) −
b cosc σb,c, where σb,c denotes the unique solution of equation

x cosx− sinx

x2 sinx cosc−1 x
+ bc = 0

on (0, π/2), provided that T = π/2.
2. bc ≤ 1/3 and a ≥ 1−b, or bc ≥ F (T ) cos1−c T and a ≥ (sinT/T )−
b cosc T, or bc ∈ (1/3, F (T )) and a > (sin ζb,c,T /ζb,c,T )−b cosc ζb,c,T ,
where ζb,c,T denotes the unique solution of equation

x cosx− sinx

x2 sinx cosc−1 x
+ bc = 0, x ∈ (0, T ),

provided that T < π/2.

Therefore, it remains to consider the case in which a, b, c ∈ R and c < 1.
In this case, we have(

x cosx− sinx

x2 sinx cosc−1 x

)′
= cos−c x

x cosx− sinx

x2

×

[
cosx

x5 sin2 x− x2(sinx− x cosx)(2x sinx+ x2 cosx)

(sinx− x cosx)x4 sin2 x
+ c− 1

]

= cos−c x
x cosx− sinx

x2

[
cosx

x2 + x sinx cosx− 2 sin2 x

(sinx− x cosx)x sin2 x
+ c− 1

]

= cos−c x
x cosx− sinx

x2

[
W (x) + c− 1

]
, x ∈ (0, T ).

Based on this computation, Lemma 5 and the analysis preceding it, we can
clarify the following extension of Lemma 2:

Proposition 1. Let d ∈ R. Then, the function

Qd(x) :=
x cosx− sinx

x2 sinx cosd−1 x
, x ∈ (0, T )

has the following properties:

(i) Qd(·) is strictly increasing on (0, T ) iff d ≥ 1−W (T ).
(ii) Qd(·) is strictly decreasing on (0, T ) iff d ≤ 13/15.
(iii) If d ∈ (13/15, 1 −W (T )), then there exists a unique number θd,T ∈

(0, T ) such that the function Qd(·) is strictly increasing on (0, θd,T )
and Qd(·) is strictly decreasing on (θd,T , T ).

We continue with the analysis of case a, b, c ∈ R and c < 1. In actual fact,
the following theorem holds true:

Theorem 4. (i) Let c ≤ 13/15. Then, (1.6), resp. (1.7), holds iff:
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1. bc ≥ 1/3 and a ≤ 1− b, resp. bc ≥ 1/3 and a ≥ 2/π if c > 0 and
T = π/2 [bc ≥ 1/3 and a ≥M1(T ) if T < π/2], or

2. bc ≤ F (T ) cos1−c T and a ≤ (sinT/T ) − b cosc T if T < π/2 or
T = π/2 and c ≥ 0, or a ∈ R, b < 0, c < 0, T = π/2 or bc ≤ 0,
a ≤ 2/π, b = 0, c < 0, T = π/2, resp. bc ≤ F (T ) cos1−c T and
a ≥ 1− b, or

3. bc ∈ (F (T ) cos1−c T, 1/3). Then, there exists a unique number
σb;c;T ∈ (0, T ) such that the equation

sinx− x cosx

x2 sinx
cos1−c x = bc

holds with x = σb;c;T ; in this case, (1.6), resp. (1.7), holds iff
a < (sinσb;c;T /σb;c;T )− b cosc σb;c;T , resp. c > 0 and a ≥ max(1−
b,M1(T−)).

(ii) Let c ≥ 1−W (T ) and T < π/2. Then, (1.6), resp. (1.7), holds iff:
1. bc ≤ F (T ) cos1−c T and a ≤ sinT/T , resp. a ≥ 1− b, or
2. bc ≥ 1/3 and a ≤ 1− b, resp. bc ≥ 1/3 and a ≥M1(T ), or
3. bc ∈ (F (T ) cos1−c T, 1/3) and a < M1(ηb;c;T ), where ηb;c;T denotes

the unique solution of equation Qc(x) + bc = 0 on (0, T ), resp.
bc ∈ (F (T ) cos1−c T, 1/3) and a ≥ max(1− b,M1(T )).

(iii) Let c ∈ (13/15, 1−W (T )). Then, (1.6), resp. (1.7), holds iff:
1. bc ≤ −Qc(θc,T ) and a ≤ M1(T−), resp. bc ≤ −Qc(θc,T ) and
a ≥ 1− b, or

2. bc ≥ −min(−1/3, Qc(T )) and a ≤ 1− b, resp.
bc ≥ −min(−1/3, Qc(T )) and a ≥M1(T−), or

3. −bc ∈ (min(−1/3, Qc(T )), Qc(θc,T )) and the equation Qc(x)+bc =
0 has exactly one zero ζb,c,T in (0, T ). Then, (1.6), resp. (1.7),
holds iff a < M1(ζb,c,T ), resp. a ≥ max(1− b,M1(T−)).

4. −bc ∈ (min(−1/3, Qc(T )), Qc(θc,T )) and the equation Qc(x)+bc =
0 has exactly two zeroes ζ1

b,c,T and ζ2
b,c,T in (0, T ) such that, say,

ζ1
b,c,T < ζ2

b,c,T . Then, (1.6), resp. (1.7), holds iff a ≤ M1(T−) <

M1(ζ1
b,c,T ) or a < M1(ζ1

b,c,T ) ≤ M1(T−), resp. a ≥ 1 − b >

M1(ζ2
b,c,T ) or a > M1(ζ2

b,c,T ) ≥ 1− b.

Proof. The proof of theorem is very similar to those of Theorem 1 and Theorem
2, and we will only outline the main details for the statement (iii). If c ∈
(13/15, 1 − W (t)) and bc ≤ −Qc(θc,T ), we have that the function M1(·) is
strictly decreasing on (0, T ) since its first derivative is non-negative, which
simply implies that the statement 1. holds true. Similarly, if we have bc ≥
−min(−1/3, Qc(T )), then the function M1(·) is strictly increasing on (0, T )
and the statement 2. follows as above. If −bc ∈ (min(−1/3, Qc(T )), Qc(θc,T )),
the equation can have exactly one or exactly two zeroes belonging to the
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interval (0, T ). In the first case, the function M1(·) is strictly decreasing on
(0, ζb,c,T ) and the functionM1(·) is strictly decreasing on (ζb,c,T , T ), while in the
second case, the function M1(·) is strictly decreasing on the intervals (0, ζ1

b,c,T )

and (ζ2
b,c,T , T ) and the functionM1(·) is strictly increasing on (ζ1

b,c,T , ζ
2
b,c,T ). �

Remark 4. Theorem 4 improves the well-known inequality

3
√

cosx <
sinx

x
, x ∈ (0, π/2)

due to by D. D. Adamović and D. S. Mitrinović (see, e.g., [13, p. 238]).

Theorem 4 is an abstract result and the direct use of l’Hospital’s rule of
monotonicity is sometimes a much better choice for examing the best possible
constants for which certain concrete inequalities hold true. The theorem below
presents the sharp bounds of the form (2 + cosu x)/3 for sinx/x. In order to
formulate this theorem, let us recall that ν ≈ 1.49578 denotes the unique
solution of equation sinx/x = 2/3 on (0, π/2).

Theorem 5. Let λ ∈ (0, α) with α ≈ 1.49578. Then, the best possible constants
a and b such that

2 + cosa x

3
<

sinx

x
<

2 + cosb x

3
, x ∈ (0, λ)

are log(3 sinλ/λ− 2)/ log(cosλ) and 1, respectively.

Proof. Let us consider the function

f(x) =
log(3 sinx/x− 2)

log(cosx)
=
f1(x)

f2(x)
, x ∈ (0, λ).

For such values of x, we have

f ′1(x)

f ′2(x)
=

3(sinx− x cosx)

x2 sinx

x cosx

3 sinx− 2x
= f3(x)f4(x),

where f3(x) = 3(sinx−x cosx)/(x2 sinx) and f4(x) = x cosx/(3 sinx−2x). It
follows by Lemma 2 that f3(·) is positive and strictly increasing. Now, remark
that

(3 sinx− 2x)2f ′4(x) = −3x+ 3 sinx cosx+ 2x2 sinx,

which is positive by Lemma 3. Hence, f4(·) is also positive and strictly
increasing. Therefore, f ′1(·)/f ′2(·) is strictly increasing and, by l’Hospital’s
rule of monotonicity (see Lemma 1), f(·) is strictly increasing on (0, λ) with
f(0+) < f(x) < f(λ). We end the proof of Theorem 5 by noticing that
f(0+) = 1 by l’Hospital’s rule and f(λ) = log(3 sinλ/λ− 2)/ log(cosλ). �
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Figure 1 displays the functions involved in the inequalities of Theorem 5.
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Figure 1. Illustration of the inequalities in Theorem 5.
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[11] C. Huygens. Oeuvres completes. Société Hollondaise des Sciences, in press:1888–1940,
1895.
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