
HAL Id: hal-02474456
https://hal.science/hal-02474456

Submitted on 11 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unbiased statistics of a Constraint Satisfaction Problem
- a controlled-bias generator

Denis Berthier

To cite this version:
Denis Berthier. Unbiased statistics of a Constraint Satisfaction Problem - a controlled-bias generator.
CISSE 09 : International Joint Conferences on Computer, Information, and Systems Sciences, and
Engineering, Dec 2009, Paris, France. pp.91-97, �10.1007/978-90-481-9112-3_16�. �hal-02474456�

https://hal.science/hal-02474456
https://hal.archives-ouvertes.fr

Unbiased Statistics of a Constraint Satisfaction
Problem – a Controlled-Bias Generator

Denis Berthier

Institut Telecom ; Telecom & Management SudParis
9 rue Charles Fourier, 91011 Evry Cedex, France

Abstract: We show that estimating the complexity (mean and
distribution) of the instances of a fixed size Constraint Satisfaction
Problem (CSP) can be very hard. We deal with the main two
aspects of the problem: defining a measure of complexity and
generating random unbiased instances. For the first problem, we
rely on a general framework and a measure of complexity we
presented at CISSE08. For the generation problem, we restrict our
analysis to the Sudoku example and we provide a solution that also
explains why it is so difficult.
Keywords: constraint satisfaction problem, modelling and simulation,
unbiased statistics, Sudoku puzzle generation, Sudoku rating.

I. INTRODUCTION

Constraint Satisfaction Problems (CSP) constitute a very
general class of problems. A finite CSP is defined by a finite
number of variables with values in fixed finite domains and a
finite set of constraints (i.e. of relations they must satisfy); it
consists of finding a value for each of these variables, such that
they globally satisfy all the constraints. General solving methods
are known [1, 2]. Most of these methods combine a blind search
algorithm (also called depth-first or breadth-first structured
search, Trial and Error with Guessing, …) with some form of
pattern-based pruning of the search graph.

In [3, 4, 5], we introduced a new general framework, based on
the idea of a constructive, fully pattern-based solution and on the
concepts of a candidate (a value not yet known to be impossible)
and a resolution rule (which allows to progressively eliminate
candidates). In [6], we introduced several additional notions,
also valid for any CSP, such as those of a chain and a whip, and
we showed how these patterns lead to general and powerful
kinds of resolution rules.

The present paper relies on these general concepts (that are
briefly recalled in order to make it as self-contained as possible)
to analyse another question: how can we define a measure of
complexity for the instances of a given “fixed size” CSP and
how can we estimate the statistical distribution of this
complexity measure? As yet, this question has received little
interest and it could hardly have, because any method allowing
blind search will rely on chance and hide the complexity of the
various instances. With our constructive resolution approach, we
can define a realistic mesure of complexity.

It should be clear that the above question is independent of
a widely investigated problem, the NP-completeness of some
types of CSPs. NP-completeness [7] supposes the CSP has a
parameter (such as the size of a Sudoku grid: 9x9, 16x16; or
the number of resources and tasks in a resource allocation
problem) and one concentrates on worst case analysis as a
function of this parameter. Here, on the contrary, we fix this
parameter (if any), we consider the various instances of this
fixed size CSP (e.g. all the 9x9 Sudoku puzzles) and we are
more interested in mean case than in worst case analysis.

II. MINIMAL INSTANCES

Instances of a fixed size CSP are defined by their givens (or
clues): a given is a value pre-assigned to a variable of the
CSP.

Instances of a CSP with several solutions cannot be solved
in a purely constructive way: at some point, some choice must
be made. Such under-constrained instances can be considered
as ill-posed problems. We therefore concentrate on instances
with a single solution.

It should also be obvious that, given an instance of a CSP,
the more givens are added to it, the easier the resulting
instances should become – the limit being when all the non
given variables have only one possible value. This leads to the
following definition: an instance of a CSP is called minimal if
it has one and only one solution and it would have several
solutions if any of its givens was deleted.

In statistical analyses, only samples of minimal instances
are meaningful because adding extra givens would multiply
the number of easy instances. We shall show that building
random unbiased samples of minimal instances may be very
hard.

III. ZT-WHIPS AND THE ASSOCIATED MEASURE OF COMPLEXITY

The following definitions were introduced in [3], in the
Sudoku context, and generalised to the general CSP in [6].

Definition: two different candidates of a CSP are linked by
a direct contradiction (or simply linked) if one of the
constraints of the CSP directly prevents them from being true
at the same time in any state in which they are present (the

fact that this notion does not depend on the state is fundamental).
If two candidates are not linked, they are said compatible.

For any CSP, two different candidates for the same variable
are always linked; but there may be additional direct
contradictions; as expliciting them is part of modelling the CSP,
we consider them as given with the CSP.

In Sudoku, two different candidates n1r1c1 and n2r2c2 are
linked if: (n1 ≠ n2 & r1c1 = r2c2) or (n1 = n2 & share-a-unit(r1c1,
r2c2)), where “share-a-unit” means “in the same row or in the
same column or in the same block”.

A. zt-whips in a general CSP
Definition: given a candidate Z (which will be called the

target), a zt-whip of length n built on Z is a sequence L1, R1, L2,
R2, … Ln, of 2n-1 (notice that there is no Rn) different candidates
(alternatively called left-linking and right-linking candidates) for
possibly different variables, such that, additionally:

– for any 1 ≤ k ≤ n, Lk is linked to Rk-1 (setting R0 = Z),
– for any 1 ≤ k < n, Lk and Rk are candidates for the same

variable (and they are therefore linked),
– Rk is the only candidate for this variable compatible with

Z and with the previous right-linking candidates (i.e. with all the
Rj, for j < k),

– for the same variable as Ln, there is no candidate
compatible with the target and the previous right-linking
candidates.

zt-whip theorem for a general CSP: in any knowledge state
of any CSP, if Z is a target of a zt- whip of any length, then it
can be eliminated (formally, this rule concludes ¬Z). The proof
was given in [6].

B. The ZT measure of complexity
For any CSP, we are now in a position to define an increasing

sequence of theories (i.e. sets of resolution rules) based on zt-
whips, an increasing sequence of sets of minimal puzzles solved
by these theories and a rating for these instances:

– L0 is the set of resolution rules expressing the
propagation of constraints (elimination of candidates due to the
presence of a value for a variable) and of resolution rules
asserting values for variables that have a unique candidate left;

– for any n>0, Ln is the union of L0 with set of resolution
rules for whips of length ≤ n.

– as there can be no confusion between sets of rules and
sets of instances, Ln is also used to name the set of minimal
instances of the CSP that can be solved with rules in Ln;

– given an instance of a CSP, its ZT rating is defined as
the smallest n such that this instance is in Ln.

In Sudoku, the zt-rating has a nice structural property: it is

invariant under the (n, r, c) natural super-symmetries of the
game, i.e two puzzles that are isomorphic under any of these
symmetries have the same zt-rating. For this reason, we
named zt-whips nrczt-whips [4, 5] and the zt-rating NRCZT.

There was an anterior measure of complexity, the SER,
based on a very different approach and compatible with the
players intuition of complexity, but not invariant under
symmetries. It appears that the correlation coefficient
(computed on several collections of a million puzzles each)
between the NRCZT and the SER is always high: 0.895.

Finally, there is also a very good correlation between the
NRCZT and the logarithm of the number of partial whips
used in the resolution process: 0.946. This number is an
intuitive measure of complexity, because it indicates among
how many useless whips the useful ones must be found.

These two properties show that the NRCZT rating is a good
(logarithmic) measure of complexity, from both theoretical
and pragmatic points of view. We can therefore conclude that
the first task we had set forth is accomplished.

C. First statistical results for the Sudoku nrczt-whips
In the Sudoku case, we have programmed all the rules for

nrczt-whips in our SudoRules solver, a knowledge based
system, running indifferently on the CLIPS [8] or the JESS
[9] inference engine.

The following statistics are relative to a sample of one
million puzzles obtained with the suexg [10] top-down
random generator. This was our first, naive approach to the
generation problem: using a generator of random minimal
puzzles widely available and used by the Sudoku community.

Row 2 of Table 1 below gives the number of puzzles with
NRCZT rating n. Row 3 gives the total number of puzzles
solved when whips of length ≤ n (corresponding to resolution
theory Ln) are allowed. This shows that more than 99% of the
puzzles can be solved with whips of length ≤ 5 and more than
99.9% with whips of length ≤ 7. But there remain a few
exceptional cases with much larger complexity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

417,624 120,618 138,371 168,562 122,946 24,187 5,511 1,514 473 130 38 15 9 2

417,624 538,242 676,613 845,175 968,121 992,308 997,819 999,333 999,806 999,936 999,974 999,989 999,998 1,000,000

Table 1: Number of puzzles in 1,000,000 with NRCZT rating n (row2) and solved with nrczt-whips of length ≤ n (row 3).

IV. STANDARD TOP-DOWN AND BOTTOM-UP GENERATORS

A little after the above results were obtained, additional
statistics led to suspect that the top-down suexg generator may
have some bias. There is a very simple procedure for generating
an unbiased Sudoku puzzle:
1) generate a random complete grid P;
2) for each cell in P, delete its value with
probability ½, thus obtaining a puzzle Q;
3)if Q is minimal, return it, otherwise goto 1.

Unfortunately, the probability of getting a valid puzzle this
way is infinitesimal and one has to rely on other generators.
Before going further, we introduce the two classical algorithms
for generating minimal puzzles: bottom-up and top-down.

A. The classical bottom-up and top-down generators [12]
A standard bottom-up generator works as follows to produce

one minimal puzzle (it has to be iterated n times to produce n
minimal puzzles):
1) start from an empty grid P
2a) in P, randomly choose an undecided cell and a
value for it, thus getting a puzzle Q;
2b) if Q is minimal, return it and exit;
2b) if Q has several solutions, set P = Q and GOTO 2a;
2c) if Q has no solutions, then goto 2a (i.e.
backtrack, forget Q and try another cell).

A standard top-down generator works as follows to produce
one minimal puzzle (it has to be iterated n times to produce n
minimal puzzles):
1) choose randomly a complete grid P;
2a) choose one clue randomly from P and delete it,
thus obtaining a puzzle P2;
2b) if P2 has several solutions, GOTO 2a (i.e.
reinsert the clue just deleted and try deleting
another);
2c) if P2 is minimal, printout P2 and exit the whole
procedure;
2d) otherwise (the puzzle has more than one solution),
set P=P2 and GOTO 2a.

Clause 2c in the bottom-up case and clause 2b in the top-down
case make any analysis very difficlut. Moroever, it seems that
they also cause the generator to look for puzzles with fewer
clues. It may thus be suspected of introducing a strong,
uncontrolled bias with respect to the number of clues.

C. Existence of a bias and a (weak) correlation
The existence of a (as yet non measurable) bias in the

number-of-clues distribution may in itself introduce a bias in the
distribution of complexities (measured by the NRCZT or SER
ratings). This bias may not be very large, as the correlation
coefficient between the number of clues and the NRCZT or the
SER was estimated (on our 1,000,000-puzzle sample) to be only
0.12. But it cannot be completely neglected either because it is
an indication that other kinds of bias, with a potentially larger
impact, may be present in these generators.

V. A CONTROLLED-BIAS GENERATOR

No generator of minimal puzzles is currently guaranteed to
have no bias and building such a generator with reasonable
computation times seems out of reach.

We therefore decided to proceed differently: taking the
generators (more or less) as they are and applying corrections
for the bias, if we can estimate it.

The method was inspired by what is done in cameras:
instead of complex optimisations of the lenses to reduce
typical anomalies (such as chromatic aberration, purple
fringing, barrel or pincushion distortion…) – optimisations
that lead to large and expensive lenses –, some camera makers
now accept a small amount of these in the lenses and they
correct the result in real time with dedicated software before
recording the photo.

The main question was then: can we determine the bias of
the classical top-down or bottom-up generators? Once again,
the answer was negative. But there appears to be a medium
way between “improving the lens” and “correcting its small
defects by software”: we devised a modification of the top-
down generators such that it allows a precise mathematical
computation of the bias.

A. Definition of the controlled-bias generator
Consider the following, modified top-down generator, the

controlled-bias generator; the procedure described below
produces one minimal puzzle (it has to be iterated n times to
produce n minimal puzzles):
1) choose randomly a complete grid P;
2a) choose one clue randomly from P and delete it,
set P2 = the resulting puzzle;
2b) if P2 has several solutions, GOTO 1 (i.e.
restart with another complete grid);
2c) if P2 is minimal, printout P2 and exit the whole
procedure;
2d) otherwise (the puzzle has more than one
solution), set P=P2 and GOTO 2a

The only difference with the top-down algorithm is in

clause 2b: if a multi-solution puzzle is encountered, instead of
backtracking to the previous state, the current complete grid is
merely discarded and the search for a minimal puzzle is
restarted with another complete grid.

Notice that, contrary to the standard bottom-up or top-down
generators, which produce one minimal puzzle per complete
grid, the controlled-bias generator will generally use several
complete grids before it outputs a minimal puzzle. The
efficiency question is: how many? Experimentations show
that many complete grids (approximately 250,000 in the
mean) are necessary before a minimal puzzle is reached. But

this question is about the efficiency of the generator, it is not a
conceptual problem.

The controlled-bias generator has the same output and will
therefore produce minimal puzzles according to the same
probability distribution as its following “virtual” counterpart:
Repeat until a minimal puzzle has been printed:
1) choose randomly a complete grid P;
2) repeat while P has at least one clue:

2a) choose one clue randomly from P and delete it,
thus obtaining a puzzle P2;
2b) if P2 is minimal, print P2 (but do not exit the
procedure);
2c) set P=P2.

The only difference with the controlled-bias generator is that,
once it has found a minimal or a multi-solution puzzle, instead
of exiting, this virtual generator continues along a useless path
until it reaches the empty grid.

But this virtual generator is interesting theoretically because it
works similarly to the random uniform search defined in the next
section and according to the same transition probabilities and it
outputs minimal puzzles according to the probability Pr on the
set B of minimal puzzles defined below.

B. Analysis of the controlled-bias generator
We now build our formal model of this generator.
Let us introduce the notion of a doubly indexed puzzle. We

consider only (single or multi solution) consistent puzzles P. The
double index of a doubly indexed puzzle P has a clear intuitive
meaning: the first index is one of its solution grids and the
second index is a sequence (notice: not a set, but a sequence, i.e.
an ordered set) of clue deletions leading from this solution to P.
In a sense, the double index keeps track of the full generation
process.

Given a doubly indexed puzzle Q, there is an underlying
singly-indexed puzzle: the ordinary puzzle obtained by
forgetting the second index of Q, i.e. by remembering the
solution grid from which it came and by forgetting the order of
the deletions leading from this solution to Q.

Given a doubly indexed puzzle Q, there is also a non indexed
puzzle, obtained by forgetting the two indices.

Notice that, for a single solution doubly indexed puzzle, the
first index is useless as it can be computed from the puzzle; in
this case singly indexed and non indexed are equivalent. In terms
of the generator, it could equivalently output minimal puzzles or
couples (minimal-puzzle, solution).

Consider now the following layered structure (a forest, in the
graph-theoretic sense, i.e. a set of disjoint trees, with branches
pointing downwards), the nodes being (single or multi solution)
doubly indexed puzzles:

- floor 81 : the N different complete solution grids (considered
as puzzles), each indexed by itself and by the empty sequence;
notice that all the puzzles at floor 81 have 81 clues;

- recursive step: given floor n+1 (each doubly indexed
puzzle of which has n+1 clues and is indexed by a complete
grid that solves it and by a sequence of length 81-(n+1)), build
floor n as follows:

each doubly indexed puzzle Q at floor n+1 sprouts n+1
branches; for each clue C in Q, there is a branch leading to a
doubly indexed puzzle R at floor n: R is obtained from Q by
removing clue C; its first index is identical to that of Q and its
second index is the (81-n)-element sequence obtained by
appending C to the end of the second index of Q; notice that
all the doubly indexed puzzles at floor n have n clues and the
length of their second index is equal to 1 + (81-(n+1)) = 81-n.

It is easy to see that, at floor n, each doubly indexed puzzle
has an underlying singly indexed puzzle identical to that of
(81 - n)! doubly indexed puzzles with the same first index at
the same floor (including itself).

This is equivalent to saying that, at any floor n < 81, any
singly indexed puzzle Q can be reached by exactly (81 - n)!
different paths from the top (all of which start necessarily
from the complete grid defined as the first index of Q). These
paths are the (81 - n)! different ways of deleting one by one
its missing 81-n clues from its solution grid.

Notice that this would not be true for non indexed puzzles
that have multiple solutions. This is where the first index is
useful.

Let N be the number of complete grids (N is known to be
close to 6.67x1021, but this is pointless here). At each floor n,
there are N . 81! / n! doubly indexed puzzles and N . 81! / (81-
n)! / n! singly indexed puzzles. For each n, there is therefore a
uniform probability P(n) = 1/N . 1/81! . (81-n)! . n! that a
singly indexed puzzle Q at floor n is reached by a random
(uniform) search starting from one of the complete grids.
What is important here is the ratio:

P(n+1) / P(n) = (n + 1) / (81 - n).
This formula is valid globally if we start from all the

complete grids, as above, but it is also valid for all the single
solution puzzles if we start from a single complete grid (just
forget N in the proof above). (Notice however that it is not
valid if we start from a subgrid instead of a complete grid.)

Now, call B the set of (non indexed) minimal puzzles. On

B, all the puzzles are minimal. Any puzzle strictly above B
has redundant clues and a single solution. Notice that, for all
the puzzles on B and above B, singly indexed and non
indexed puzzles are in one-to-one correspondence.

On the set B of minimal puzzles there is a probabily Pr
naturally induced by the different Pn's and it is the probability
that a minimal puzzle Q is output by our controlled-bias
generator. It depends only on the number of clues and it is
defined, up to a multiplicative constant k, by Pr(Q) = k P(n),

if Q has n clues. k must be chosen so that the probabilities of all
the minimal puzzles sum up to 1.

But we need not know k. What is important here is that, by
construction of Pr on B (a construction which models the
workings of the virtual controlled bias generator), the
fundamental relation Pr(n+1) / Pr(n) = (n + 1) / (81 - n) holds
for any two minimal puzzles, with respectively n+1 and n clues.

For n < 41, this relation means that a minimal puzzle with n
clues is more likely to be reached from the top than a minimal
puzzle with n+1 clues. More precisely, we have:

Pr(40) = Pr(41),
Pr(39) = 42/40 . Pr(40),
Pr(38) = 43/39 . Pr(39).
Repeated application of the formula gives Pr(24) =

61.11 Pr(30) : a puzzle with 24 clues has ~ 61 more chances of
being output than a puzzle with 30 clues. This is indeed a strong
bias.

A non-biased generator would give the same probability to all

the minimal puzzles. The above relation shows that the
controlled bias generator:

- is unbiased when restricted (by filtering its output) to n-
clue puzzles, for any fixed n,

- is biased towards puzzles with fewer clues,
- this bias is well known.
As we know precisely the bias with respect to uniformity, we

can correct it easily by applying correction factors cf(n) to the
probabilities on B. Only the relative values of the cf(n) is
important: they satisfy cf(n+1) / cf(n) = (81 - n) / (n + 1).
Mathematically, after normalisation, cf is just the relative
density of the uniform distribution on B with respect to the
probability distribution Pr.

 This analysis also shows that a classical top-down generator
is still more strongly biased towards puzzles with fewer clues
because, instead of discarding the current path when it meets a
multi-solution puzzle, it backtracks to the previous floor and
tries again to go deeper.

C. Computing unbiased means and standard deviations using a
controlled-bias generator

In practice, how can one compute unbiased statistics of
minimal puzzles based on a (large) sample produced by a
controlled-bias generator? Consider any random variable X
defined (at least) on minimal puzzles. Define: on(n) = the
number of n-clue puzzles in the sample, E(X, n) = the mean
value of X for n-clue puzzles in the sample and sd(X, n) = the
standard deviation of X for n-clue puzzles in the sample.

The (raw) mean of X is classically estimated as: sum[E(X, n) .
on(n)] / sum[on(n)].

The corrected, unbiased mean of X must be estimated as
(this is a mere weighted average):
unbiased-mean(X) =

sum[E(X, n).on(n).cf(n)] / sum[on(n).cf(n)].
Similarly, the raw standard deviation of X is classically

estimated as: sqrt{sum[sd(X, n)2 . on(n)] / sum[on(n)]}.
And the unbiased standard deviation of X must be

estimated as (this is merely the standard deviation for a
weighted average):
unbiased-sd(X) =

sqrt{sum[sd(X, n)2.on(n).cf(n)] / sum[on(n).cf(n)]}.
These formulæ show that the cf(n) sequence needs to be

defined only modulo a multiplicative factor.
It is convenient to choose cf(26) = 1. This gives the

following sequence of correction factors (in the range n = 19-
31, which includes all the puzzles of all the samples we have
obtained with all the random generators considered here):

[0.00134 0.00415 0.0120 0.0329 0.0843 0.204 0.464 1
2.037 3.929 7.180 12.445 20.474]
It may be shocking to consider that 30-clue puzzles in a

sample must be given a weight 61 times greater than a 24-clue
puzzle, but it is a fact. As a result of this strong bias of the
controlled-bias generator (strong but known and smaller than
the other generators), unbiased statistics for the mean number
of clues of minimal puzzles (and any variable correlated with
this number) must rely on extremely large samples with
sufficiently many 29-clue and 30-clue puzzles.

D. Implementation, experimentations and optimisations of the
controlled-bias generator

Once this algorithm was defined, it was easily implemented
by a simple modification of the top-down suexg – call it
suexg-cb. The modified generator, even after some
optimisations, is much slower than the original one, but the
purpose here is not speed, it is controlled bias.

V. COMPARISON OF RESULTS FOR DIFFERENT GENERATORS

All the results below rely on very large samples. Real
values are estimated according to the controlled-bias theory.

A. Complexity as a function of the generator

Generator
sample size

bottom-up
1,000,000

top-down
1,000,000

ctr-bias
5,926,343

real

SER mean
std dev

3.50
2.33

3.77
2.42

4.29
2.48

4.73
2.49

NRCZT mean
std dev

1.80
1.24

1.94
1.29

2.22
1.35

2.45
1.39

Table 2: SER and NRCZT means and standard deviations for bottom-up,

top-down, controlled-bias generators and real estimated values.

 0 1 2 3 4 5 6 7 8 9 10 11 12-16
bottom-up 46.27 13.32 12.36 15.17 10.18 1.98 0.49 0.19 0.020 0.010 0 * 0.01 * 0 *
top-down 41.76 12.06 13.84 16.86 12.29 2.42 0.55 0.15 0.047 0.013 3.8e-3 1.5e-3 1.1e-3
ctr-bias 35.08 9.82 13.05 20.03 17.37 3.56 0.79 0.21 0.055 0.015 4.4e-3 1.2e-3 4.3e-4

real 29.17 8.44 12.61 22.26 21.39 4.67 1.07 0.29 0.072 0.020 5.5e-3 1.5e-3 5.4e-4
Table 3: The NRCZT-rating distribution (in %) for different kinds of generators, compared to the real distribution.

Table 2 shows that the mean (NRCZT or SER) complexity of

minimal puzzles depends strongly on the type of generator used
to produce them and that all the generators give rise to mean
complexity below the real values.

Table 3 expresses the NRCZT complexity bias of the three
kinds of generators. All these distributions have the same two
modes, at levels 0 and 3, as the real distribution. But, when one
moves from bottom-up to top-down to controlled-bias to real,
the mass of the distribution moves progressively to the right.
This displacement towards higher complexity occurs mainly at
the first nrczt-levels, after which it is only very slight.

B. Number-of-clues distribution as a function of the generator
Table 4 partially explains Tables 2 and 3. More precisely, it

explains why there is a strong complexity bias in the samples
produced by the bottom-up and top-down generators, in spite of
the weak correlation coefficient between the number of clues
and the (SER or NRCZT) complexity of a puzzle: the bias with
respect to the number of clues is very strong in these generators;
controlled-bias, top-down and bottom-up are increasingly
biased towards easier puzzles with fewer clues.

#clues bottom-up % top-down % ctr-bias % real %

20 0.028 0.0044 0.0 0.0
21 0.856 0.24 0.0030 0.000034
22 8.24 3.45 0.11 0.0034
23 27.67 17.25 1.87 0.149
24 36.38 34.23 11.85 2.28
25 20.59 29.78 30.59 13.42
26 5.45 12.21 33.82 31.94
27 0.72 2.53 17.01 32.74
28 0.054 0.27 4.17 15.48
29 0.0024 0.017 0.52 3.56
30 0 0.001 0.035 0.41
31 0 0 0.0012 0.022

mean 23.87 24.38 25.667 26.577
std-dev 1.08 1.12 1.116 1.116

Table 4: Number-of-clues distribution (%) for the bottom-up, top-down and

controlled-bias generators and real estimated values.

VI. STABILITY OF THE CLASSIFICATION RESULTS

A. Insensivity of the controlled-bias generator to the source of
complete grids

There remains a final question: do the above results depend
on the source of complete grids. Until now, we have done as if
this was not a problem. But producing unbiased collections of
complete grids, necessary in the first step of all the puzzle
generators, is all but obvious. It is known that there are 6.67 x
1021 complete grids; it is therefore impossible to have a
generator scan them all. Up to isomorphisms, there are “only”
5.47 x 109 complete grids, but this remains a very large
number and storing them would require about 500 Gigabytes.

Very recently, a collection of all the (equivalence classes
of) complete grids became available in a compressed format
(6 Gb); at the same time, a real time decompressor became
available. Both were provided by Glenn Fowler. All the
results reported above for the controlled bias generator were
obtained with this a priori unbiased source of complete grids.

Before this, all the generators we tried had a first phase
consisting of creating a complete grid and this is where some
type of bias could slip in. Nevertheless, several sources of
complete grids based on very different generation principles
were tested and the classification results remained very stable.

The insensitivity of the controlled-bias generator to the
source of complete grids can be understood intuitively: it
deletes in the mean two thirds of the initial grid data and any
structure that might be present in the complete grids and cause
a bias is washed away by the deletion phase.

B. Insensivity of the classification results to the choice of
whips or braids

In [6], in addition to the notion of a zt-whip, we introduced
the apparently much more general notion of a zt-braid, to
which a B-NRCZT rating can be associated in the same way
as the NRCZT rating was associated to zt-whips. The above
statistical results are unchanged when NRCZT is replaced by
B-NRCZT. Indeed, in 10,000 puzzles tested, only 20 have
different NRCZT and B-NRCZT ratings. The NRCZT rating
is thus a good approximation of the (harder to compute) B-
NRCZT rating.

VII. COLLATERAL RESULTS

The number of minimal Sudoku puzzles has been a
longstanding open question. We can now provide precise
estimates for the mean number of n-clue minimal puzzles per
complete grid and for the total number (Table 5).

number of clues number of n-clue

minimal puzzles
per complete grid:
mean

number of n-clue
minimal puzzles
per complete grid:
relative error
(= 1 std dev)

20 6.152e+6 70.7%
21 1.4654e+9 7.81%
22 1.6208e+12 1.23%
23 6.8827e+12 0.30%
24 1.0637e+14 0.12%
24 6.2495e+14 0.074%
26 1.4855e+15 0.071%
27 1.5228e+15 0.10%
28 7.2063e+14 0.20%
29 1.6751e+14 0.56%
30 1.9277e+13 2.2%
31 1.1240e+12 11.6%
32 4.7465e+10 70.7%
Total 4.6655e+15 0.065%

Table 5: Mean number of n-clue minimal puzzles per complete grid

Another number of interest is the mean proportion of n-clue
minimal puzzles among the n-clue subgrids of a complete
grids. Its inverse is the mean number of tries one should do to
find an n-clue minimal by randomly deleting 81-n clues from a
complete grid. It is given by Table 6.

number of clues mean number of tries
20 7.6306e+11
21 9.3056e+9
22 2.2946e+8
23 1.3861e+7
24 2.1675e+6
24 8.4111e+5
26 7.6216e+5
27 1.5145e+6
28 6.1721e+6
29 4.8527e+7
30 7.3090e+8
31 2.0623e+10
32 7.6306e+11
Table 6: Inverse of the proportion of n-clue minimals among n-clue subgrids

One can also get, still with 0.065% relative error: after
multiplying by the number of complete grids (known to be
6,670,903,752,021,072,936,960 [13]), the total number of
minimal Sudoku puzzles: 3.1055e+37; after multiplying by
the number of non isomorphic complete grids (known to be
5,472,730,538 [14]), the total number of non isomorphic
minimal Sudoku puzzles: 2.5477e+25.

VIII. CONCLUSION

The results reported in this paper rely on several months of
(3 GHz) CPU time. They show that building unbiased samples
of a CSP and obtaining unbiased statistics can be very hard.

Although we presented them, for definiteness, in the
specific context of the Sudoku CSP, the sample generation
methods described here (bottom-up, top-down and controlled-
bias) could be extended to many CSPs. The specific
P(n+1)/P(n) formula proven for the controlled-bias generator
will not hold in general, but the general approach can in many
cases help understand the existence of a very strong bias in the
samples. Even in the very structured and apparently simple
Sudoku domain, none of this was clear before the present
analysis.

REFERENCES

[1] E.P.K. Tsang, Foundations of Constraint Satisfaction, Academic Press,
1993.

[2] H.W. Guesgen & J. Herztberg, A Perspective of Constraint-Based
Reasoning, Lecture Notes in Artificial Intelligence, Springer, 1992.

[3] D. Berthier: The Hidden Logic of Sudoku, Lulu.com, May 2007.
[4] D. Berthier: The Hidden Logic of Sudoku (Second Edition), Lulu.com

Publishers, December 2007.
[5] D. Berthier: From Constraints to Resolution Rules; Part I: conceptual

framework, CISSE08/SCSS, International Joint Conferences on
Computer, Information, and System Sciences, and Engineering,
December 4-12, 2009.

[6] D. Berthier: From Constraints to Resolution Rules; Part II: chains, braids,
confluence and T&E, CISSE08/SCSS, International Joint Conferences on
Computer, Information, and System Sciences, and Engineering,
December 4-12, 2009.

[7] M. Gary & D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, 1979.

[10] G. Riley, CLIPS online documentation, http://clipsrules.sourceforge.net/
OnlineDocs.html, 2008.

[11] E.J. Friedmann-Hill, JESS Manual, http://www.jessrules.com/jess/docs/
71, 2008.

[12]G. Stertenbrink, suexg, http://www.setbb.com/phpb/viewtopic.php?t=206
&mforum=sudoku, 2005.

[13] B. Felgenhauer & F. Jarvis, Sudoku enumeration problems,
http://www.afjarvis.staff.shef.ac.uk/sudoku/, 2006.

[14] E. Russell & F. Jarvis, There are 5472730538 essentially different
Sudoku grids, http://www.afjarvis.staff.shef.ac.uk/sudoku/sudgroup.html,
2006.

