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Abstract: We show that estimating the complexity (mean and 
distribution) of the instances of a fixed size Constraint Satisfaction 
Problem (CSP) can be very hard. We deal with the main two 
aspects of the problem: defining a measure of complexity and 
generating random unbiased instances. For the first problem, we 
rely on a general framework and a measure of complexity we 
presented at CISSE08. For the generation problem, we restrict our 
analysis to the Sudoku example and we provide a solution that also 
explains why it is so difficult. 
Keywords: constraint satisfaction problem, modelling and simulation, 
unbiased statistics, Sudoku puzzle generation, Sudoku rating. 

I.  INTRODUCTION 

Constraint Satisfaction Problems (CSP) constitute a very 
general class of problems. A finite CSP is defined by a finite 
number of variables with values in fixed finite domains and a 
finite set of constraints (i.e. of relations they must satisfy); it 
consists of finding a value for each of these variables, such that 
they globally satisfy all the constraints. General solving methods 
are known [1, 2]. Most of these methods combine a blind search 
algorithm (also called depth-first or breadth-first structured 
search, Trial and Error with Guessing, …) with some form of 
pattern-based pruning of the search graph.  

In [3, 4, 5], we introduced a new general framework, based on 
the idea of a constructive, fully pattern-based solution and on the 
concepts of a candidate (a value not yet known to be impossible) 
and a resolution rule (which allows to progressively eliminate 
candidates). In [6], we introduced several additional notions, 
also valid for any CSP, such as those of a chain and a whip, and 
we showed how these patterns lead to general and powerful 
kinds of resolution rules.  

The present paper relies on these general concepts (that are 
briefly recalled in order to make it as self-contained as possible) 
to analyse another question: how can we define a measure of 
complexity for the instances of a given “fixed size” CSP and 
how can we estimate the statistical distribution of this 
complexity measure? As yet, this question has received little 
interest and it could hardly have, because any method allowing 
blind search will rely on chance and hide the complexity of the 
various instances. With our constructive resolution approach, we 
can define a realistic mesure of complexity. 

It should be clear that the above question is independent of 
a widely investigated problem, the NP-completeness of some 
types of CSPs. NP-completeness [7] supposes the CSP has a 
parameter (such as the size of a Sudoku grid: 9x9, 16x16; or 
the number of resources and tasks in a resource allocation 
problem) and one concentrates on worst case analysis as a 
function of this parameter. Here, on the contrary, we fix this 
parameter (if any), we consider the various instances of this 
fixed size CSP (e.g. all the 9x9 Sudoku puzzles) and we are 
more interested in mean case than in worst case analysis. 

II. MINIMAL INSTANCES 

Instances of a fixed size CSP are defined by their givens (or 
clues): a given is a value pre-assigned to a variable of the 
CSP. 

Instances of a CSP with several solutions cannot be solved 
in a purely constructive way: at some point, some choice must 
be made. Such under-constrained instances can be considered 
as ill-posed problems. We therefore concentrate on instances 
with a single solution. 

It should also be obvious that, given an instance of a CSP, 
the more givens are added to it, the easier the resulting 
instances should become – the limit being when all the non 
given variables have only one possible value. This leads to the 
following definition: an instance of a CSP is called minimal if 
it has one and only one solution and it would have several 
solutions if any of its givens was deleted.  

In statistical analyses, only samples of minimal instances 
are meaningful because adding extra givens would multiply 
the number of easy instances. We shall show that building 
random unbiased samples of minimal instances may be very 
hard. 

III.  ZT-WHIPS AND THE ASSOCIATED MEASURE OF COMPLEXITY 

The following definitions were introduced in [3], in the 
Sudoku context, and generalised to the general CSP in [6]. 

Definition: two different candidates of a CSP are linked by 
a direct contradiction (or simply linked) if one of the 
constraints of the CSP directly prevents them from being true 
at the same time in any state in which they are present (the 



 
 

fact that this notion does not depend on the state is fundamental). 
If two candidates are not linked, they are said compatible. 

For any CSP, two different candidates for the same variable 
are always linked; but there may be additional direct 
contradictions; as expliciting them is part of modelling the CSP, 
we consider them as given with the CSP.  

In Sudoku, two different candidates n1r1c1 and n2r2c2 are 
linked if: (n1 ≠ n2 & r1c1 = r2c2) or (n1 = n2 & share-a-unit(r1c1, 
r2c2)), where “share-a-unit” means “in the same row or in the 
same column or in the same block”. 

A. zt-whips in a general CSP 
Definition: given a candidate Z (which will be called the 

target), a zt-whip of length n built on Z is a sequence L1, R1, L2, 
R2, … Ln, of 2n-1 (notice that there is no Rn) different candidates 
(alternatively called left-linking and right-linking candidates) for 
possibly different variables, such that, additionally: 

– for any 1 ≤ k ≤ n, Lk is linked to Rk-1 (setting R0 = Z), 
– for any 1 ≤ k < n, Lk and Rk are candidates for the same 

variable (and they are therefore linked), 
– Rk is the only candidate for this variable compatible with 

Z and with the previous right-linking candidates (i.e. with all the 
Rj, for j < k), 

– for the same variable as Ln, there is no candidate 
compatible with the target and the previous right-linking 
candidates. 

zt-whip theorem for a general CSP: in any knowledge state 
of any CSP, if Z is a target of a zt- whip of any length, then it 
can be eliminated (formally, this rule concludes ¬Z). The proof 
was given in [6]. 

B. The ZT measure of complexity 
For any CSP, we are now in a position to define an increasing 

sequence of theories (i.e. sets of resolution rules) based on zt-
whips, an increasing sequence of sets of minimal puzzles solved 
by these theories and a rating for these instances:  

– L0 is the set of resolution rules expressing the 
propagation of constraints (elimination of candidates due to the 
presence of a value for a variable) and of resolution rules 
asserting values for variables that have a unique candidate left; 

– for any n>0, Ln is the union of L0 with set of resolution 
rules for whips of length ≤ n.  

– as there can be no confusion between sets of rules and 
sets of instances, Ln is also used to name the set of minimal 
instances of the CSP that can be solved with rules in Ln; 

– given an instance of a CSP, its ZT rating is defined as 
the smallest n such that this instance is in Ln. 

 
In Sudoku, the zt-rating has a nice structural property: it is 

invariant under the (n, r, c) natural super-symmetries of the 
game, i.e two puzzles that are isomorphic under any of these 
symmetries have the same zt-rating. For this reason, we 
named zt-whips nrczt-whips [4, 5] and the zt-rating NRCZT. 

There was an anterior measure of complexity, the SER, 
based on a very different approach and compatible with the 
players intuition of complexity, but not invariant under 
symmetries. It appears that the correlation coefficient 
(computed on several collections of a million puzzles each) 
between the NRCZT and the SER is always high: 0.895. 

Finally, there is also a very good correlation between the 
NRCZT and the logarithm of the number of partial whips 
used in the resolution process: 0.946. This number is an 
intuitive measure of complexity, because it indicates among 
how many useless whips the useful ones must be found. 

These two properties show that the NRCZT rating is a good 
(logarithmic) measure of complexity, from both theoretical 
and pragmatic points of view. We can therefore conclude that 
the first task we had set forth is accomplished.  

C. First statistical results for the Sudoku nrczt-whips 
In the Sudoku case, we have programmed all the rules for 

nrczt-whips in our SudoRules solver, a knowledge based 
system, running indifferently on the CLIPS [8] or the JESS 
[9] inference engine.  

The following statistics are relative to a sample of one 
million puzzles obtained with the suexg [10] top-down 
random generator. This was our first, naive approach to the 
generation problem: using a generator of random minimal 
puzzles widely available and used by the Sudoku community. 

Row 2 of Table 1 below gives the number of puzzles with 
NRCZT rating n. Row 3 gives the total number of puzzles 
solved when whips of length ≤ n (corresponding to resolution 
theory Ln) are allowed. This shows that more than 99% of the 
puzzles can be solved with whips of length ≤ 5 and more than 
99.9% with whips of length ≤ 7. But there remain a few 
exceptional cases with much larger complexity. 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

417,624 120,618 138,371 168,562 122,946 24,187 5,511 1,514 473 130 38 15 9 2 

417,624 538,242 676,613 845,175 968,121 992,308 997,819 999,333 999,806 999,936 999,974 999,989 999,998 1,000,000 

 
Table 1: Number of puzzles in 1,000,000 with NRCZT rating n (row2) and solved with nrczt-whips of length ≤ n (row 3). 



 
 
 

IV. STANDARD TOP-DOWN AND BOTTOM-UP GENERATORS 

A little after the above results were obtained, additional 
statistics led to suspect that the top-down suexg generator may 
have some bias. There is a very simple procedure for generating 
an unbiased Sudoku puzzle: 
1) generate a random complete grid P; 
2) for each cell in P, delete its value with 
probability ½, thus obtaining a puzzle Q; 
3)if Q is minimal, return it, otherwise goto 1. 

Unfortunately, the probability of getting a valid puzzle this 
way is infinitesimal and one has to rely on other generators. 
Before going further, we introduce the two classical algorithms 
for generating minimal puzzles: bottom-up and top-down. 

A. The classical bottom-up and top-down generators [12] 
A standard bottom-up generator works as follows to produce 

one minimal puzzle (it has to be iterated n times to produce n 
minimal puzzles): 
1) start from an empty grid P 
2a) in P, randomly choose an undecided cell and a 
value for it, thus getting a puzzle Q; 
2b) if Q is minimal, return it and exit; 
2b) if Q has several solutions, set P = Q and GOTO 2a; 
2c) if Q has no solutions, then goto 2a (i.e. 
backtrack, forget Q and try another cell).  

A standard top-down generator works as follows to produce 
one minimal puzzle (it has to be iterated n times to produce n 
minimal puzzles): 
1) choose randomly a complete grid P; 
2a) choose one clue randomly from P and delete it, 
thus obtaining a puzzle P2; 
2b) if P2 has several solutions, GOTO 2a (i.e. 
reinsert the clue just deleted and try deleting 
another); 
2c) if P2 is minimal, printout P2 and exit the whole 
procedure; 
2d) otherwise (the puzzle has more than one solution), 
set P=P2 and GOTO 2a. 

Clause 2c in the bottom-up case and clause 2b in the top-down 
case make any analysis very difficlut. Moroever, it seems that 
they also cause the generator to look for puzzles with fewer 
clues. It may thus be suspected of introducing a strong, 
uncontrolled bias with respect to the number of clues. 

C. Existence of a bias and a (weak) correlation 
The existence of a (as yet non measurable)  bias in the 

number-of-clues distribution may in itself introduce a bias in the 
distribution of complexities (measured by the NRCZT or SER 
ratings). This bias may not be very large, as the correlation 
coefficient between the number of clues and the NRCZT or the 
SER was estimated (on our 1,000,000-puzzle sample) to be only 
0.12. But it cannot be completely neglected either because it is 
an indication that other kinds of bias, with a potentially larger 
impact, may be present in these generators. 

V. A CONTROLLED-BIAS GENERATOR 

No generator of minimal puzzles is currently guaranteed to 
have no bias and building such a generator with reasonable 
computation times seems out of reach. 

We therefore decided to proceed differently: taking the 
generators (more or less) as they are and applying corrections 
for the bias, if we can estimate it. 

The method was inspired by what is done in cameras: 
instead of  complex optimisations of the lenses to reduce 
typical anomalies (such as chromatic aberration, purple 
fringing, barrel or pincushion distortion…) – optimisations 
that lead to large and expensive lenses –, some camera makers 
now accept a small amount of these in the lenses and they 
correct the result in real time with dedicated software before 
recording the photo. 

The main question was then: can we determine the bias of 
the classical top-down or bottom-up generators? Once again, 
the answer was negative. But there appears to be a medium 
way between “improving the lens” and “correcting its small 
defects by software”: we devised a modification of the top-
down generators such that it allows a precise mathematical 
computation of the bias. 

A. Definition of the controlled-bias generator 
Consider the following, modified top-down generator, the 

controlled-bias generator; the procedure described below 
produces one minimal puzzle (it has to be iterated n times to 
produce n minimal puzzles): 
1) choose randomly a complete grid P; 
2a) choose one clue randomly from P and delete it, 
set P2 = the resulting puzzle; 
2b) if P2 has several solutions, GOTO 1 (i.e. 
restart with another complete grid); 
2c) if P2 is minimal, printout P2 and exit the whole 
procedure; 
2d) otherwise (the puzzle has more than one 
solution), set P=P2 and GOTO 2a 

 
The only difference with the top-down algorithm is in 

clause 2b: if a multi-solution puzzle is encountered, instead of 
backtracking to the previous state, the current complete grid is 
merely discarded and the search for a minimal puzzle is 
restarted with another complete grid.  

Notice that, contrary to the standard bottom-up or top-down 
generators, which produce one minimal puzzle per complete 
grid, the controlled-bias generator will generally use several 
complete grids before it outputs a minimal puzzle. The 
efficiency question is: how many? Experimentations show 
that many complete grids (approximately 250,000 in the 
mean) are necessary before a minimal puzzle is reached. But 



 
 

this question is about the efficiency of the generator, it is not a 
conceptual problem. 

The controlled-bias generator has the same output and will 
therefore produce minimal puzzles according to the same 
probability distribution as its following “virtual” counterpart: 
Repeat until a minimal puzzle has been printed: 
1) choose randomly a complete grid P; 
2) repeat while P has at least one clue: 

2a) choose one clue randomly from P and delete it, 
thus obtaining a puzzle P2; 
2b) if P2 is minimal, print P2 (but do not exit the 
procedure); 
2c) set P=P2. 

The only difference with the controlled-bias generator is that, 
once it has found a minimal or a multi-solution puzzle, instead 
of exiting, this virtual generator continues along a useless path 
until it reaches the empty grid. 

But this virtual generator is interesting theoretically because it 
works similarly to the random uniform search defined in the next 
section and according to the same transition probabilities and it 
outputs minimal puzzles according to the probability Pr on the 
set B of minimal puzzles defined below. 

B. Analysis of the controlled-bias generator 
We now build our formal model of this generator. 
Let us introduce the notion of a doubly indexed puzzle. We 

consider only (single or multi solution) consistent puzzles P. The 
double index of a doubly indexed puzzle P has a clear intuitive 
meaning: the first index is one of its solution grids and the 
second index is a sequence (notice: not a set, but a sequence, i.e. 
an ordered set) of clue deletions leading from this solution to P. 
In a sense, the double index keeps track of the full generation 
process. 

Given a doubly indexed puzzle Q, there is an underlying 
singly-indexed puzzle: the ordinary puzzle obtained by 
forgetting the second index of Q, i.e. by remembering the 
solution grid from which it came and by forgetting the order of 
the deletions leading from this solution to Q.  

Given a doubly indexed puzzle Q, there is also a non indexed 
puzzle, obtained by forgetting the two indices. 

Notice that, for a single solution doubly indexed puzzle, the 
first index is useless as it can be computed from the puzzle; in 
this case singly indexed and non indexed are equivalent. In terms 
of the generator, it could equivalently output minimal puzzles or 
couples (minimal-puzzle, solution). 

Consider now the following layered structure (a forest, in the 
graph-theoretic sense, i.e. a set of disjoint trees, with branches 
pointing downwards), the nodes being (single or multi solution) 
doubly indexed puzzles: 

- floor 81 : the N different complete solution grids (considered 
as puzzles), each indexed by itself and by the empty sequence; 
notice that all the puzzles at floor 81 have 81 clues; 

- recursive step: given floor n+1 (each doubly indexed 
puzzle of which has n+1 clues and is indexed by a complete 
grid that solves it and by a sequence of length 81-(n+1)), build 
floor n as follows: 

each doubly indexed puzzle Q at floor n+1 sprouts n+1 
branches; for each clue C in Q, there is a branch leading to a 
doubly indexed puzzle R at floor n: R is obtained from Q by 
removing clue C; its first index is identical to that of Q and its 
second index is the (81-n)-element sequence obtained by 
appending C to the end of the second index of Q; notice that 
all the doubly indexed puzzles at floor n have n clues and the 
length of their second index is equal to 1 + (81-(n+1)) = 81-n. 

It is easy to see that, at floor n, each doubly indexed puzzle 
has an underlying singly indexed puzzle identical to that of 
(81 - n)! doubly indexed puzzles with the same first index at 
the same floor (including itself). 

This is equivalent to saying that, at any floor n < 81, any 
singly indexed puzzle Q can be reached by exactly (81 - n)! 
different paths from the top (all of which start necessarily 
from the complete grid defined as the first index of Q). These 
paths are the (81 - n)! different ways of deleting one by one 
its missing 81-n clues from its solution grid. 

Notice that this would not be true for non indexed puzzles 
that have multiple solutions. This is where the first index is 
useful. 

Let N be the number of complete grids (N is known to be 
close to 6.67x1021, but this is pointless here). At each floor n, 
there are N . 81! / n! doubly indexed puzzles and N . 81! / (81-
n)! / n! singly indexed puzzles. For each n, there is therefore a 
uniform probability P(n) = 1/N . 1/81! . (81-n)! . n! that a 
singly indexed puzzle Q at floor n is reached by a random 
(uniform) search starting from one of the complete grids. 
What is important here is the ratio:  

P(n+1) / P(n) = (n + 1) / (81 - n).  
This formula is valid globally if we start from all the 

complete grids, as above, but it is also valid for all the single 
solution puzzles if we start from a single complete grid (just 
forget N in the proof above). (Notice however that it is not 
valid if we start from a subgrid instead of a complete grid.) 

 
Now, call B the set of (non indexed) minimal puzzles. On 

B, all the puzzles are minimal. Any puzzle strictly above B 
has redundant clues and a single solution. Notice that, for all 
the puzzles on B and above B, singly indexed and non 
indexed puzzles are in one-to-one correspondence. 

On the set B of minimal puzzles there is a probabily Pr 
naturally induced by the different Pn's and it is the probability 
that a minimal puzzle Q is output by our controlled-bias 
generator. It depends only on the number of clues and it is 
defined, up to a multiplicative constant k, by Pr(Q) = k P(n), 



 
 

if Q has n clues. k must be chosen so that the probabilities of all 
the minimal puzzles sum up to 1. 

But we need not know k. What is important here is that, by 
construction of Pr on B (a construction which models the 
workings of the virtual controlled bias generator), the 
fundamental relation Pr(n+1) / Pr(n) = (n + 1) / (81 - n) holds 
for any two minimal puzzles, with respectively n+1 and n clues. 

For n < 41, this relation means that a minimal puzzle with n 
clues is more likely to be reached from the top than a minimal 
puzzle with n+1 clues. More precisely, we have: 

Pr(40) = Pr(41), 
Pr(39) =  42/40 . Pr(40), 
Pr(38) = 43/39 . Pr(39). 
Repeated application of the formula gives Pr(24) = 

61.11 Pr(30) : a puzzle with 24 clues has ~ 61 more chances of 
being output than a puzzle with 30 clues. This is indeed a strong 
bias. 

 
A non-biased generator would give the same probability to all 

the minimal puzzles. The above relation shows that the 
controlled bias generator: 

- is unbiased when restricted (by filtering its output) to n-
clue puzzles, for any fixed n, 

- is biased towards puzzles with fewer clues, 
- this bias is well known. 
As we know precisely the bias with respect to uniformity, we 

can correct it easily by applying correction factors cf(n) to the 
probabilities on B. Only the relative values of the cf(n) is 
important: they satisfy cf(n+1) / cf(n) = (81 - n) / (n + 1). 
Mathematically, after normalisation, cf is just the relative 
density of the uniform distribution on B with respect to the 
probability distribution Pr. 

 This analysis also shows that a classical top-down generator 
is still more strongly biased towards puzzles with fewer clues 
because, instead of discarding the current path when it meets a 
multi-solution puzzle, it backtracks to the previous floor and 
tries again to go deeper. 

C. Computing unbiased means and standard deviations using a 
controlled-bias generator 

In practice, how can one compute unbiased statistics of 
minimal puzzles based on a (large) sample produced by a 
controlled-bias generator? Consider any random variable X 
defined (at least) on minimal puzzles. Define: on(n) = the 
number of n-clue puzzles in the sample, E(X, n) = the mean 
value of X for n-clue puzzles in the sample and sd(X, n) = the 
standard deviation of X for n-clue puzzles in the sample.  

The (raw) mean of X is classically estimated as: sum[E(X, n) . 
on(n)] / sum[on(n)].  

The corrected, unbiased mean of X must be estimated as 
(this is a mere weighted average):  
unbiased-mean(X) = 

sum[E(X, n).on(n).cf(n)] / sum[on(n).cf(n)]. 
Similarly, the raw standard deviation of X is classically 

estimated as: sqrt{sum[sd(X, n)2 . on(n)] / sum[on(n)]}. 
And the unbiased standard deviation of X must be 

estimated as (this is merely the standard deviation for a 
weighted average): 
unbiased-sd(X) = 

sqrt{sum[sd(X, n)2.on(n).cf(n)] / sum[on(n).cf(n)]}. 
These formulæ show that the cf(n) sequence needs to be 

defined only modulo a multiplicative factor.  
It is convenient to choose cf(26) = 1. This gives the 

following sequence of correction factors (in the range n = 19-
31, which includes all the puzzles of all the samples we have 
obtained with all the random generators considered here): 

[0.00134 0.00415 0.0120 0.0329  0.0843 0.204 0.464 1 
2.037 3.929 7.180 12.445 20.474] 
It may be shocking to consider that 30-clue puzzles in a 

sample must be given a weight 61 times greater than a 24-clue 
puzzle, but it is a fact. As a result of this strong bias of the 
controlled-bias generator (strong but known and smaller than 
the other generators), unbiased statistics for the mean number 
of clues of minimal puzzles (and any variable correlated with 
this number) must rely on extremely large samples with 
sufficiently many 29-clue and 30-clue puzzles. 

D. Implementation, experimentations and optimisations of the 
controlled-bias generator 

Once this algorithm was defined, it was easily implemented 
by a simple modification of the top-down suexg – call it 
suexg-cb. The modified generator, even after some 
optimisations, is much slower than the original one, but the 
purpose here is not speed, it is controlled bias. 

V. COMPARISON OF RESULTS FOR DIFFERENT GENERATORS 

All the results below rely on very large samples. Real 
values are estimated according to the controlled-bias theory. 

A. Complexity as a function of the generator  
 

Generator 
sample size 

bottom-up 
1,000,000 

top-down 
1,000,000 

ctr-bias 
5,926,343 

real 

SER mean 
std dev 

3.50 
2.33 

3.77 
2.42 

4.29 
2.48 

4.73 
2.49 

NRCZT mean 
std dev 

1.80 
1.24 

1.94 
1.29 

2.22 
1.35 

2.45 
1.39 

Table 2: SER and NRCZT means and standard deviations for bottom-up, 

top-down, controlled-bias generators and real estimated values. 



 
 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12-16 
bottom-up 46.27 13.32 12.36 15.17 10.18 1.98 0.49 0.19 0.020 0.010 0 * 0.01 * 0 * 
top-down 41.76 12.06 13.84 16.86 12.29 2.42 0.55 0.15 0.047 0.013 3.8e-3 1.5e-3 1.1e-3 
ctr-bias 35.08 9.82 13.05 20.03 17.37 3.56 0.79 0.21 0.055 0.015 4.4e-3 1.2e-3 4.3e-4  

real 29.17 8.44 12.61 22.26 21.39 4.67 1.07 0.29 0.072 0.020 5.5e-3 1.5e-3 5.4e-4 
Table 3: The NRCZT-rating distribution (in %) for different kinds of generators, compared to the real distribution. 

 
Table 2 shows that the mean (NRCZT or SER) complexity of 

minimal puzzles depends strongly on the type of generator used 
to produce them and that all the generators give rise to mean 
complexity below the real values. 

Table 3 expresses the NRCZT complexity bias of the three 
kinds of generators. All these distributions have the same two 
modes, at levels 0 and 3, as the real distribution. But, when one 
moves from bottom-up to top-down to controlled-bias to real, 
the mass of the distribution moves progressively to the right. 
This displacement towards higher complexity occurs mainly at 
the first nrczt-levels, after which it is only very slight.  

B. Number-of-clues distribution as a function of the generator 
Table 4 partially explains Tables 2 and 3. More precisely, it 

explains why there is a strong complexity bias in the samples 
produced by the bottom-up and top-down generators, in spite of 
the weak correlation coefficient between the number of clues 
and the (SER or NRCZT) complexity of a puzzle: the bias with 
respect to the number of clues is very strong in these generators; 
controlled-bias, top-down and bottom-up are increasingly 
biased towards easier puzzles with fewer clues. 

 
#clues bottom-up % top-down % ctr-bias % real % 

20 0.028 0.0044 0.0 0.0 
21 0.856 0.24 0.0030 0.000034 
22 8.24 3.45 0.11 0.0034 
23 27.67 17.25 1.87 0.149 
24 36.38 34.23 11.85 2.28 
25 20.59 29.78 30.59 13.42 
26 5.45 12.21 33.82 31.94 
27 0.72 2.53 17.01 32.74 
28 0.054 0.27 4.17 15.48 
29 0.0024 0.017 0.52 3.56 
30 0 0.001 0.035 0.41 
31 0 0 0.0012 0.022 

mean 23.87 24.38 25.667 26.577 
std-dev 1.08 1.12 1.116 1.116 

 
Table 4: Number-of-clues distribution (%) for the bottom-up, top-down and 

controlled-bias generators and real estimated values. 

VI. STABILITY OF THE CLASSIFICATION RESULTS 

A. Insensivity of the controlled-bias generator to the source of 
complete grids  

There remains a final question: do the above results depend 
on the source of complete grids. Until now, we have done as if 
this was not a problem. But producing unbiased collections of 
complete grids, necessary in the first step of all the puzzle 
generators, is all but obvious. It is known that there are 6.67 x 
1021 complete grids; it is therefore impossible to have a 
generator scan them all. Up to isomorphisms, there are “only” 
5.47 x 109 complete grids, but this remains a very large 
number and storing them would require about 500 Gigabytes. 

Very recently, a collection of all the (equivalence classes 
of) complete grids became available in a compressed format 
(6 Gb); at the same time, a real time decompressor became 
available. Both were provided by Glenn Fowler. All the 
results reported above for the controlled bias generator were 
obtained with this a priori unbiased source of complete grids. 

Before this, all the generators we tried had a first phase 
consisting of creating a complete grid and this is where some 
type of bias could slip in. Nevertheless, several sources of 
complete grids based on very different generation principles 
were tested and the classification results remained very stable.  

The insensitivity of the controlled-bias generator to the 
source of complete grids can be understood intuitively: it 
deletes in the mean two thirds of the initial grid data and any 
structure that might be present in the complete grids and cause 
a bias is washed away by the deletion phase. 

B. Insensivity of the classification results to the choice of 
whips or braids  

In [6], in addition to the notion of a zt-whip, we introduced 
the apparently much more general notion of a zt-braid, to 
which a B-NRCZT rating can be associated in the same way 
as the NRCZT rating was associated to zt-whips. The above 
statistical results are unchanged when NRCZT is replaced by 
B-NRCZT. Indeed, in 10,000 puzzles tested, only 20 have 
different NRCZT and B-NRCZT ratings. The NRCZT rating 
is thus a good approximation of the (harder to compute) B-
NRCZT rating. 



 
 

VII. COLLATERAL RESULTS 

The number of minimal Sudoku puzzles has been a 
longstanding open question. We can now provide precise 
estimates for the mean number of n-clue minimal puzzles per 
complete grid and for the total number (Table 5). 

 
number of clues number of n-clue 

minimal puzzles 
per complete grid: 
mean 

number of n-clue 
minimal puzzles 
per complete grid: 
relative error  
(= 1 std dev) 

20 6.152e+6 70.7% 
21 1.4654e+9 7.81% 
22 1.6208e+12 1.23% 
23 6.8827e+12 0.30% 
24 1.0637e+14 0.12% 
24 6.2495e+14 0.074% 
26 1.4855e+15 0.071% 
27 1.5228e+15 0.10% 
28 7.2063e+14 0.20% 
29 1.6751e+14 0.56% 
30 1.9277e+13 2.2% 
31 1.1240e+12 11.6% 
32 4.7465e+10 70.7% 
Total 4.6655e+15 0.065% 

Table 5: Mean number of n-clue minimal puzzles per complete grid 
 

Another number of interest is the mean proportion of n-clue 
minimal puzzles among the n-clue subgrids of a complete 
grids. Its inverse is the mean number of tries one should do to 
find an n-clue minimal by randomly deleting 81-n clues from a 
complete grid. It is given by Table 6. 

 
number of clues mean number of tries 
20 7.6306e+11 
21 9.3056e+9 
22 2.2946e+8 
23 1.3861e+7 
24 2.1675e+6 
24 8.4111e+5 
26 7.6216e+5 
27 1.5145e+6 
28 6.1721e+6 
29 4.8527e+7 
30 7.3090e+8 
31 2.0623e+10 
32 7.6306e+11 
Table 6: Inverse of the proportion of n-clue minimals among n-clue subgrids 

 

One can also get, still with 0.065% relative error: after 
multiplying by the number of complete grids (known to be 
6,670,903,752,021,072,936,960 [13]), the total number of 
minimal Sudoku puzzles: 3.1055e+37; after multiplying by 
the number of non isomorphic complete grids (known to be 
5,472,730,538 [14]), the total number of non isomorphic 
minimal Sudoku puzzles: 2.5477e+25. 

VIII.  CONCLUSION 

The results reported in this paper rely on several months of 
(3 GHz) CPU time. They show that building unbiased samples 
of a CSP and obtaining unbiased statistics can be very hard. 

Although we presented them, for definiteness, in the 
specific context of the Sudoku CSP, the sample generation 
methods described here (bottom-up, top-down and controlled-
bias) could be extended to many CSPs. The specific 
P(n+1)/P(n) formula proven for the controlled-bias generator 
will not hold in general, but the general approach can in many 
cases help understand the existence of a very strong bias in the 
samples. Even in the very structured and apparently simple 
Sudoku domain, none of this was clear before the present 
analysis. 
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