Quantum (Non-commutative) Toric Geometry: Foundations

Abstract : In this paper, we will introduce Quantum Toric Varieties which are (non-commutative) generalizations of ordinary toric varieties where all the tori of the classical theory are replaced by quantum tori. Quantum toric geometry is the non-commutative version of the classical theory; it generalizes non-trivially most of the theorems and properties of toric geometry. By considering quantum toric varieties as (non-algebraic) stacks, we define their category and show that it is equivalent to a category of quantum fans. We develop a Quantum Geometric Invariant Theory (QGIT) type construction of Quantum Toric Varieties. Unlike classical toric varieties, quantum toric varieties admit moduli and we define their moduli spaces, prove that these spaces are orbifolds and, in favorable cases, up to homotopy, they admit a complex structure.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02474449
Contributor : Laurent Meersseman <>
Submitted on : Tuesday, February 11, 2020 - 1:40:31 PM
Last modification on : Wednesday, February 12, 2020 - 3:18:03 PM

Links full text

Identifiers

  • HAL Id : hal-02474449, version 1
  • ARXIV : 2002.03876

Collections

Citation

Ludmil Katzarkov, Ernesto Lupercio, Laurent Meersseman, Alberto Verjovsky. Quantum (Non-commutative) Toric Geometry: Foundations. 2020. ⟨hal-02474449⟩

Share

Metrics

Record views

10