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Abstract

The stress-gradient theory has a third order tensor as kinematic degree of freedom, which

is work-conjugate to the stress gradient. This tensor was called micro-displacements just

for dimensional reasons. Consequently, this theory requires a constitutive relation between

stress gradient and micro-displacements, in addition to the conventional stress-strain rela-

tion. The formulation of such a constitutive relation and identification of the parameters

therein is difficult without an interpretation of the micro-displacement tensor.

The present contribution presents an homogenization concept from a Cauchy continuum

at the micro-scale towards a stress-gradient continuum at the macro-scale. Conventional

static boundary conditions at the volume element are interpreted as a Taylor series whose

next term involves the stress gradient. A generalized Hill-Mandel lemma shows that the

micro-displacements can be identified with the deviatoric part of the first moment of the mi-

croscopic strain field. Kinematic and periodic boundary conditions are provided as alterna-

tive to the static ones. The homogenization approach is used to compute the stress-gradient

properties of an elastic porous material. The predicted negative size effect under uni-axial

loading is compared with respective experimental results for foams and direct numerical

simulations from literature.

Keywords: stress-gradient theory; generalized continua; homogenization; negative size

effect
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1. Introduction

The classical Cauchy theory of continuum mechanics requires a constitutive relation be-

tween stress and strain. The constitutive parameters appearing therein can, for dimensional

reasons, consequently always be grouped into those with dimension of a stress and dimen-

sionless ones. Lacking an intrinsic length scale, this theory predicts a power-law scaling

behavior when considering self-similar specimens of different size, the integer scaling ex-

ponent just depending on whether stress, strains, forces or displacements are considered.

Deviations from this scaling behavior are termed size effects and have been observed for nu-

merous physical phenomena, cf. [1]. That is why certain generalized theories of continuum

mechanics have been proposed in the literature. A classification of the generalizations was

given by Maugin [14]. Most of the generalized theories fall into the class of micro-morphic

continua, which were established by Mindlin [15] and Eringen [3]. Therein, the (dimension-

less) micro-deformation is introduced as additional kinematic degree of freedom. Certain

sub-classes of theories, like the micro-polar theory (Cosserat theory) or the strain-gradient

theory can be obtained by imposing kinematic constraints to the micro-deformation. As

alternative approach, Forest and Sab [5] imposed a kinetic constraint to obtain a stress-

gradient theory. Therein, a kinematic degree of freedom Φijk appears as work-conjugate

quantity to the gradient

Rijk :=
∂Σij

∂Xk

. (1)

of the stress tensor Σij. Though, the stress gradient cannot take arbitrary values but it

is restricted by the equilibrium conditions as will be detailed below. Due the presence of

Rijk in the respective potentials, Neumann boundary conditions do not involve only the

tractions as normal component of Σij, but all components of Σij need to be prescribed

at a surface. Alternative Dirichlet boundary conditions involve additional terms as well,

cf. [18]. The third-rank tensor Φijk has the dimension of length, which is why it was termed

∗Corresponding author
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Figure 1: Homogenization procedure: (a) volume element, (b) heterogeneous microstructure [8, 9]

“micro-displacements”. Like all generalized theories of continuum mechanics, the stress-

gradient requires additional constitutive relations. Their formulation and the interpretation

of the boundary conditions is difficult without an interpretation of the tensor of micro-

displacements Φijk.

The scope of the present contribution is to provide a homogenization methodology from

a classical, but heterogeneous, continuum at the micro-scale towards a homogeneous stress-

gradient theory at the macro-scale.

The present contribution is structured as follows: Section 2 presents the homogenization

theory, before this theory is employed in Section 3 to compute the macroscopic non-classical

constitutive parameters of a plane elastic micro-structure with pores. These constitutive

parameters are used in Section 4 to predict the size effect under uni-axial tension. Finally,

Section 5 closes with a summary and conclusions.

2. Homogenization theory

In a homogenization procedure, a material with heterogeneous micro-structure is replaced

by an homogeneous continuum with (more or less) equivalent macroscopic properties. For

this purpose, a volume element ∆V is considered, which contains the relevant heterogeneities

of the micro-structure as sketched in Figure 1. In the following, capital symbols refer to

macroscopic quantities, and lower-case symbols to microscopic ones. For instance, σij and
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εij are the microscopic stress and strain, respectively, whereas Σij and Eij refer to their

macroscopic counterparts.

In the classical theory of homogenization by Hill [7], either kinematic boundary conditions

ui = Eijyj can be prescribed for the displacements on ∂∆V (X), or static ones niσij = niΣij

for the tractions. Therein, yj = xj−Xj refers to the position vector of a point xj relative to

the center Xj = 〈xj〉 of the volume element, cmp. Figure 1. The operator 〈(◦)〉 computes

the volume average over the volume element ∆V .

Gologanu, Kouznetsova et al. [6, 11] interpreted the kinematic boundary conditions as

a Taylor series. In this sense, they incorporated an additional term to Hill’s expression to

obtain a homogenization scheme for the strain-gradient theory. Mühlich et al. [16] argued

that an analogous expansion of Hill’s static boundary condition would yield the homoge-

nization for a stress-gradient theory. This proposal shall be exploited here in detail. Using

the notation of the stress-gradient theory, an expanded static boundary condition thus reads

σijni = ni [Σij +Rijkyk] ∀yk ∈ ∂∆V (X) . (2)

Purely static boundary conditions are prone to the condition that, in absence of volume

forces σij,i = 0, prescribed tractions need to be self-equilibrating (statically admissible):
∮

∂∆V

σijni dS = 0,

∮

∂∆V

σijniykεjkl dS = 0 . (3)

For the particular tractions (2) these conditions require

Riji = Σij,i = 0, Σij = Σji , (4)

corresponding to the macroscopic equilibrium conditions.1 Consequently, the stress gradient

is symmetric Rijk = Rjik and deviatoric in the sense Rijj = Rjij = 0. The loading to a

volume element by stress gradients according to Eq. (2) is shown schematically in Figure 2.

1This approach is used in many textbooks and lectures to derive the equilibrium conditions (4) for the

Cauchy theory.
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Figure 2: Loading to the volume element by macroscopic stress gradients: (a) R111 = −R122 = −R212, (b)

R221

Furthermore, a homogenization theory requires a condition of macro-homogeneity (Hill-

Mandel condition), which defines the macroscopic mechanical power P int as average over its

microscopic pendant:

〈σij ε̇ij〉 = P int(Xk) . (5)

By partial integration, the left-hand side of Eq. (5) can be transformed to a surface integral

over the boundary ∂∆V (X) of the volume element ∆V into which boundary condition (2)

can be inserted. After rearrangement and application of the divergence theorem, the left-

hand side of Eq. (5) becomes

〈σij ε̇ij〉 =
1

∆V

∮

∂∆V

σijniu̇j dS = Σij 〈ε̇ij〉+Rijk

[
〈ε̇ijyk〉 −

1

n+ 1

(
〈ε̇imym〉 δjk + 〈ε̇jmym〉 δik

)]

(6)

Therein, n = δkk refers to the dimension of space (n = 2 or n = 3). From Eq. (6), a

strain tensor Eij and a third-order tensor Φijk, called tensor of micro-displacements [5],

can be introduced as work-conjugate macroscopic deformation measures to Σij and Rijk,
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respectively, as

Eij = 〈εij〉 =
1

2∆V

∮

∂∆V

uinj + ujni dS (7)

Φijk = 〈εijyk〉 −
1

n+ 1

(
〈εimym〉 δjk + 〈εjmym〉 δik

)
(8)

=
1

2∆V

∮

∂∆V

(uinj + ujni) yk −
1

n+ 1
(uinm + umni) ymδjk −

1

n+ 1
(ujnm + umnj) ymδik dS .

Thereby, it was taken into account that the stress and stress gradient exhibit symmetries, and

so do their work-conjugate quantities (Eij = Eji, Φijk = Φjik and Φijj = 0). Equation (8)

indicates that the micro-displacement tensor Φijk corresponds to the deviatoric part of the

first moment of the local strain field. Furthermore, it shall be mentioned that micro-macro

relations (7) and (8) are objective, i. e., that they are invariant to superimposed rigid-body

motions.

For a hyperelastic material σij ε̇ij = Ẇ, Eq. (6) can be integrated in time to a macroscopic

strain energy potential

W(Eij,Φijk) = 〈W(εij)〉 (9)

with

Σij =
∂W
∂Eij

, Rijk =
∂W
∂Φijk

. (10)

Furthermore, it is required that the energy at the macroscopic scale is conserved. This

means, that it must be possible to convert the internal power P int = ΣijĖij + RijkΦ̇ijk to

the divergence of a flux Qmech
i of mechanical power:

P int = Qmech
i,i . (11)

By partial integration of P int using the equilibrium conditions (4) and the definition (1) of

the stress gradient, it turns out that the flux of mechanical work has to be identified as

Qmech
i = ΣijU̇j + ΣjkΦ̇jki . (12)

Therein, Uj(Xk) is the macroscopic displacement field. Furthermore, the kinematic relation

for the strain becomes

Eij = U(i,j) + Φijk,k . (13)
6

                  



The round brackets (ij) are used here and in the following to indicate the symmetric part of

a tensor with respect to indices i and j. The kinematic relation (13) involves the divergence

of the micro-displacements at the right-hand side, in addition to the symmetric part of the

displacement gradient.

In this context, it may be recalled, that it is an (implicit) ad-hoc postulate of the classical

homogenization theory of Hill [7], that the strain field Eij is macroscopically compatible,

i. e., that it it is related to a macroscopic displacement field via a kinematic relation, and that

the field of macroscopic stresses satisfies equilibrium conditions. In the present approach,

both, the macroscopic equilibrium conditions (4) as well as the kinematic relation (13) are

an outcome of the homogenization procedure.

Alternatively, relations (12) and (13) can be written in terms of a “generalized displace-

ment tensor” [18]

Ψijk :=
1

2
(Uiδjk + Ujδik) + Φijk (14)

in short as Eij = Ψijk,k and Qmech
i = ΣjkΨ̇jki, respectively. The trace Ψijj = (n + 1)Ui/2 is

directly related to the macroscopic displacement vector, whereas the deviatoric part of Ψijk

corresponds to the micro-displacement tensor Φijk. In view of Eq. (8)2, the micro-macro

relation for the generalized displacement tensor is formulated as

Ψijk =
1

2∆V

∮

∂∆V

(uinj + ujni) yk dS = 〈εijyk〉 +
1

2

(
〈ui〉 δjk + 〈uj〉 δik

)
. (15)

The deviatoric part of Eq. (15) is identical to Eq. (8) for the micro-displacement. Further-

more, for a superimposed rigid translation the right-hand side of (15) transforms according

to Eq. (14).

In classical homogenization, kinematic or periodic boundary are usually favored over

static ones for several reasons. In order to construct kinematic boundary conditions for the

present stress-gradient homogenization, it has firstly be noted that the kinematic micro-

macro relations (7) and (8) can be transformed to pure surface integrals. Thus, it is possible

at all to prescribe Eij and Φijk exclusively by suitable boundary conditions (in contrast to

micromorphic theory, cf. e. g. [4, 8, 10]). In particular, an additional quadratic term is added
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to conventional kinematic boundary conditions

ui = Ui + Eijyj + Cijkyjyk (16)

as proposed in [6, 11]. It can be verified easily that ansatz (16) satisfies the classical micro-

macro relation (7) ad hoc. Furthermore, Eq. (15) yields a set of 18 equations for the micro-

displacements Ψijk in terms of the 18 independent componentes of Cijk. These equations

involve the second geometric moment Gij = 〈yiyj〉. For simply shaped volume elements,

the second geometric moment is a spherical tensor Gij = Gδij. In this case, the system of

equations for Cijk can be solved, cf. [8]. After reinserting Eq. (15), the kinematic boundary

condition for the stress-gradient theory reads

ui = Ui + Eijyj +
1

2G

(
Φijk + Φikj − Φkji +

1

n+ 2
Φmmiδjk

)
yjyk . (17)

This boundary condition can be inserted to the left-hand side of the generalized Hill-Mandel

condition (5). A comparison with the right-hand side of Eq. (5) shows that the kinetic

micro-macro relations read

Σij =
1

∆V

∮

∂∆V

nkσk(iyj) dS = 〈σij〉 (18)

Rijk =
1

2∆V G

∮

∂∆V

2npσp(iyj)yk − npσpkyiyj +
1

n+ 2
np

[
σpkδij − 2

n+ 3

n+ 1
σp(iδj)k

]
ymym dS

=
1

G

〈
σijyk +

1

n+ 2

(
δijσkm − 2

n+ 3

n+ 1
σ(imδj)k

)
ym

〉
. (19)

It can be verified, that the extended static boundary condition (2) satisfies these kinetic

micro-macro relations. The quadratic deformation modes are illustrated in Figure 3 for

certain components of the micro-displacement tensor Φijk. It seems to be plausible, that the

loading and deformation modes in figures 2 and 3, respectively, belong to each other.

Periodic boundary conditions can be constructed by amending a fluctuation ∆ui(yk) to

the kinematic boundary condition (17)

ui = Ui + Eijyj +
1

2G

(
Φijk + Φikj − Φkji +

1

n+ 2
Φmmiδjk

)
yjyk + ∆ui(yk) . (20)
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Figure 3: Non-classical kinematic boundary conditions: (a) Φ111 = −Φ122 = −Φ212, (b) Φ221

This fluctuation field is assumed to be periodic

∆ui(y
+
k ) = ∆ui(y

−
k ) . (21)

Therein, y+
k and y−k refer to homologeous points of the boundary ∂∆V (X), i. e., to points

with opposing normal ni(y
−
k ) = −ni(y

+
k ) as sketched in Figure 1b. In order to formulate a

boundary-value problem for the microscopic displacement field ui(yk), the fluctuations are

eliminated in Eq. (21) by Eq. (20), yielding

ui(y
+
k )−ui(y−k ) = Eij

(
y+
j − y−j

)
+

1

2G

(
Φijk + Φikj − Φkji +

1

n+ 2
Φmmiδjk

)(
y+
j y

+
k − y−j y−k

)

(22)

The periodicity of the fluctuation field, Eq. (21) or (22), satisfies ad hoc the kinematic micro-

macro relation (7) for the strain, but not Eq. (8) for the micro-displacements. Thus, Eqs. (8)

and (22) have to be imposed as global constraints at the micro-scale [9]. For a hyper-elastic

material with strain-energy density W(εij), the corresponding Lagrangian thus reads

L = 〈W〉− 1

∆V

∫

∂∆V +

λi(y
+
p )
[
ui(y

+
k )−ui(y−k )−Eij

(
y+
j−y−j

)

− 1

2G

(
2Φi(jk)− Φkji+

1

n+2
Φmmiδjk

)(
y+
j y

+
k− y−j y−k

) ]
dS

+ λijk


Φijk −

1

∆V

∮

∂∆V

u(inj)yk −
1

n+1
u(inm)ymδjk −

1

n+1
u(jnm)ymδik dS


 .

9

                  



Therein, the first surface integral is taken over one half of the boundary y+
k ∈ ∂∆V + and

the respective homologous points y−k have to be given as a function in terms of y+
k ∈ ∂∆V +.

Correspondingly, the field of scalar Lagrange multipliers λi is defined in terms of y+
p . The

functional L is to be optimized with respect to the microscopic displacement field ui(yk) and

to the Lagrange multipliers λi(y+
p ) and λijk. The corresponding stationarity conditions are

the local equilibrium conditions σij,i = 0 and σij = σji, as well as the enforced relations (8)

and (22) and the boundary conditions

niσij = ±λj(yk) + niλijkyk . (23)

The plus sign +λj(yk) in the first term applies to points yk ∈ ∂∆V +, whereas the minus

sign applies to respective homologeous points y−k . Thus, the tractions at the boundary,

Eq. (23), involve the anti-periodic part λj(yk) with an superimposed linear term with λijk.

Correspondingly, the classic case is recovered in absence of stress-gradients. For irreversible

material behavior, the stationarity conditions are generalized to hold without existence of a

Lagrangian function L (principle of virtual power).

Insering Eq. (23) to the kinetic micro-macro relations (18) and (19) yields

Σij =
1

∆V

∫

∂∆V +

(
y+

(i − y−(i
)
λj)(y

+
k ) dS (24)

Rijk =λijk+
1

2∆V G

∫

∂∆V +

2λ(i

(
y+
j)y

+
k− y−j)y−k

)
−λk

(
y+
i y

+
j− y−i y−j

)

+
1

n+2

(
λkδij−2

n+3

n+1
λ(iδj)k

)(
y+
my

+
m− y−my−m

)
dS (25)

These terms coincide with the coefficients of Ėij and Φ̇ijk when evaluating the left-hand side

of the generalized Hill-Mandel condition (5), so that the latter is satisfied.

3. Homogenization of an elastic porous medium

A circular (or spherical) volume element as shown in Figure 4 can be used as approxi-

mation to a material with a regular hexagonal arrangement of pores. The circular volume

element has firstly the advantage, that this geometry does not posses preferred directions.
10
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or kinematic “kinBC”) of boundary conditions

(ν = 0.3)

Consequently, isotropic behavior of the microscopic constituents will result in an isotropic

homogenized behavior. Secondly, certain analytical solutions can be found for this simple ge-

ometry. That is why, this geometry has been used within numerous studies on fundamental

aspects of homogenization, e. g. [6, 9, 16].

In the present study, the effective properties of the stress-gradient continuum shall be

computed for linear elastic behavior σij = λδijεkk+2µεij of the matrix material ri ≤ |yi| ≤ ra

using periodic boundary conditions. For the circular volume element, the homologeous points

are located opposite to each other y−i = −y+
i with respect to the center of the volume element.

Thus, Eq. (25) reduces to Rijk = λijk. Effectively, this means that the problem (23) can

be interpreted as superposition of static boundary conditions for the stress-gradient terms

with the conventional periodic conditions for classical behavior, i. e., for the effective Lamé’s

constants λ(eff) and µ(eff) in a relation

Σij = λ(eff)δijEkk + 2µ(eff)Eij . (26)

The solution for λ(eff) and µ(eff) is well-known. It remains to address the non-classical terms.

In the plane case, the stress gradient tensor has four independent components R111 =

−R122 = −R212, R221, R222 = −R211 = −R121, R112, and so does have the tensor of micro-

displacements Φijk [5].
11

                  



Favorably, the circular volume element is treated in polar coordinates r, ϕ. In particular,

the part of the boundary condition (23), which is related to the stress gradient, reads

σrr(ra) =
ra

4
[−(R221−3R111) cos(3ϕ)+(R111+R221) cos(ϕ)+(R112+R222) sin(ϕ)+(R112−3R222) sin(3ϕ)]

(27)

σrϕ(ra) =
ra

4
[(R221−3R111) sin(3ϕ)+(R111+R221) sin(ϕ)−(R112+R222) cos(ϕ)+(R112−3R222) cos(3ϕ)]

(28)

The problem can be solved with an ansatz for the Airy stress function F (r, ϕ), which involves

respective terms of the Mitchell series:

F = [(R111 +R221) cos(ϕ) + (R112 +R222) sin(ϕ)]

(
A1r

3 +
A2

r

)

+ [(R221 − 3R111) cos(3ϕ)− sin(3ϕ)(R112 − 3R222)]

(
A3r

5 +
A4

r
+ A5r

3 +
A6

r3

)
.

(29)

The coefficients A1 to A6 can be determined from boundary conditions (27) and (28), and the

trivial natural boundary condition σrr(ri) = σrϕ(ri) = 0 at the surface of the pore. Instead of

evaluating the kinematic micro-macro relation (8), the corresponding micro-displacements

can be computed equivalently by Castigliano’s method. For this purpose, the complementary

strain energy is computed as

W∗
=

〈
1

4µ

(
σijσij−νσ2

kk

)〉
=
b̃1

2

[
(R111+R221)2+(R112+R222)2

]
+
b̃2

2

[
(R221−3R111)2+(R112−3R222)2

]

(30)

with

b̃1 =
r2

a

32µ

3− 4ν + c2

1− c2
, b̃2 =

r2
a

32µ

1 + c+ 9c3 − 7c2 + (3− 4ν)(1 + c)(1 + c2)c2

(1 + 4c+ c2)(1− c)3
(31)

for the plane strain case. Therein, c = r2
i /r

2
a refers to the porosity of the material. The

procedure can be performed analogously for kinematic boundary conditions as described in

the appendix. The resulting compliance moduli are plotted in Figure 5. Plausibly, their

value tends to infinity as c tends to 1. The same b̃1 is obtained for both types of boundary

conditions. The values of b̃2 coincide for homogeneous material c = 0, but for porous material

c > 0 periodic boundary conditions yield more compliant behavior than kinematic boundary
12
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Figure 6: Tensile test with stress-gradient material

conditions. This behavior is known from classical homogenization. For the plane stress case,

ν in Eq. 31 has to be replaced by ν/(1 + ν).

Forest and Sab [5] wrote the non-classical linear-elastic constitutive relation of an isotropic

and centro-symmetric material in compliance form in a Voigt-type notation as

3Φ111

Φ221


 = ˆ[B] ·


R111

R221


 ,


3Φ222

Φ112


 = ˆ[B] ·


R222

R112


 (32)

The factor 3 in front of Φ111 and Φ222 was introduced such that the Voigt-type column vectors

are work-conjugate to each other. Correspondingly, ˆ[B] is a symmetric and positive definite

compliance matrix. A comparison of Eq. 31 with Eq. (32) shows, that the compliance matrix

for the stress gradients has to be identified as

ˆ[B] =


b̃1 + 9b̃2 b̃1 − 3b̃2

b̃1 − 3b̃2 b̃1 + b̃2


 . (33)

4. Uni-axial tension

4.1. Stress gradient theory

As an example, the predictions of the stress-gradient theory for uni-axial tension shall be

investigated as sketched in Figure 6. The stress-gradient theory requires extended boundary

conditions in form of a second order tensor, cf. [5]. Here, the trivial natural boundary

condition

Σij(X2 = ±H/2) = 0 (34)
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is prescribed at the lateral free surfaces. Consequently, a state of constant stress Σ11 =

const. is not a solution to the uni-axial tension problem since it would violate the boundary

condition (34), in contrast to classical Cauchy continuum theory or even (first order) micro-

morphic or strain-gradient theories.

For a sufficiently long specimen, the stress state depends only on X2 and the only non-

vanishing components of stress and its gradient are Σ11(X2) and R112(X2), respectively.

Inserting the latter to the constitutive relation (32) yields Φ222 = 1/3B̂12R112 and Φ112 =

B̂22R112. Correspondingly, the components of the strain tensor, Eq. (13), are

E11 =U1,1 + Φ112,2 , E22 =U2,2 + Φ222,2 . (35)

Therein , U1,1 equals the applied strain ε̄. Furthermore, the constitutive relation (26) be-

tween Σ11 and strains E11 and E22 is required. Favorably, it is used in compliance form

E11 = Σ11/Y
(eff), wherein Y (eff) refers to (macroscopic) Young’s modulus. Together with

the constitutive law for Φ112, Eq. (35)1 yields the ODE

Σ11 − Y (eff)B̂22Σ11,22 = Y (eff)ε̄ , (36)

whose coefficient introduces the intrinsic length ` =
√
Y (eff)B̂22. Under boundary condi-

tions (34), the solution is

Σ11 = Y (eff)ε̄

[
1− cosh

(
X2

`

)

cosh
(
H
2`

)
]

(37)

as plotted in Figure 7a for some parameter sets. Subsequently, Eq. (35)2 could be solved

for the lateral displacements U2(X2). Finally, the strain energy within a single cross section

X1 = const is computed as

1

2

H/2∫

−H/2

Σ11E11 +R112Φ112dX2 =
1

2
ε̄2H Y (eff)

[
1− 2`

H
tanh

(
H

2`

)]

︸ ︷︷ ︸
=:Yapp

, (38)

from which the apparent Young’s modulus Yapp of the specimen can be extracted. The

square bracket in Eq. (38) reflects the size effect. Figure 7b shows that the apparent Young’s

modulus of smaller samples is smaller than that of sufficiently large samples. Such negative
14
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Figure 7: Stress-gradient medium under uni-axial tension: (a) stresses over cross section, (b) size effect in

apparent Young’s modulus

size effects have already been observed for the stress-gradient continuum under different

loading conditions [20].

The size effect depends on the single intrinsic length ` only. The predicted values of this

intrinsic length from the homogenization in Section 3 are depicted in Figure 8. Thereby, the

required effective value of Young’s modulus Y (eff) from [9] has been used to compute `. The

figure shows firstly that Poisson’s ratio ν of the matrix material has a very weak influence

on `. Secondly, the intrinsic length has an approximately constant and small value ` ≈ 0.5ra

for small porosities c . 0.6. For larger values of c, the value of ` increases strongly and even

tends to infinity as c goes to one. This behavior is attributed to the fact that the classical

properties like Y (eff) tend to zero as 1− c, whereas the stress gradient compliance, Eq. (31),

has a (1 − c)3 singularity. Furthermore, Figure 8 shows that the predicted size effect does

not vanish completely for homogeneous material c = 0. Though, this was neither the case

for the strain-gradient theory [6, 12, 16].

4.2. Comparison with experiments and direct numerical simulations

It is known that foam materials exhibit size effects when the specimen size becomes

comparable to the cell size of the foam. In particular, negative size effects under uni-axial

loading have been observed in experiments with foams [2] and direct numerical simulations
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Figure 9: Predictions of stress-gradient theory

in comparison with experimental results [2] and

beam models [19] of foams (ν = 0)

with discretely resolved strut structure [13, 19]. The observed negative size effect was at-

tributed to a surface layer of incomplete cells which do not carry any load [2, 17, 21]. This

surface layer can be seen as physical explanation of the boundary condition (34) for the

stress-gradient theory in the previous section. It was shown that the stress-gradient theory

can describe the negative size effect qualitatively. The subsequent question is whether the

present homogenization approach allows quantitative predictions of this size effect. Figure 9

compares the experimental results of Andrews et al. [2] and the direct numerical simulations

(DNS) of Tekoğlu et al. [19] and Liebenstein et al. [13] with the predictions of the present

homogenization theory. Andrews et al. [2] investigated two materials (“Alporas”, “Duocell”).

Tekoğlu et al. [19] modeled these foams by plane, Voronoi-tesselated beam networks. They

specified a “cell size d”, which is taken here as d ≈ 2ra. Liebenstein et al. [13] investigated

honeycomb structures for which ra is identified with the radius of a circle of equal area.

The relative density of the foams was specified to be 7–10%, corresponding to a porosity of

c = 0.90 . . . 0.93. Figure 9 shows that the trend of the experimental data and direct numer-

ical simulations is captured quite well by the present homogenized stress-gradient theory

(“SG”).

However, the absolute size effect is slightly overestimated by the homogenized theory if

the actual porosity is used. Rather, the average of experimental results and direct numerical
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simulations comply best with the predictions of the present stress-gradient approach for

c ≈ 0.80. This deviations might be attributed to the simple representation of the pores by

circles. Further studies are required on the effect of the topology of foam micro-structures

on size effects during elastic and inelastic deformations.

5. Summary and conclusions

The stress-gradient theory requires a constitutive relation between the tensor of micro-

displacements Φijk and the stress gradient Rijk. In the present contribution, a homogeniza-

tion framework was developed to identify this constitutive relation from the microstructure

of a material. For this purpose, the static boundary conditions of classical homogeniza-

tion have been interpreted as a Taylor series, whose subsequent term involves the stress

gradient. A condition of macro-homogeneity (generalized Hill-Mandel condition) yields a

kinematic micro-macro relation for Φijk. It turned out that Φijk can be identified with the

deviatoric part of the first moment of the microscopic strain field. Based on the kinematic

micro-macro relations, kinematic boundary conditions for the micro-scale have been identi-

fied, where the micro-displacements Φijk appear as coefficients of the non-classical quadratic

term. Furthermore, generalized periodic boundary conditions have been formulated. The

proposed homogenization framework with generalized boundary conditions at the micro-

scale and micro-macro relations for all involved kinematic and kinematic quantities allows

to use linear or nonlinear constitutive relations at the micro-scale. It is thus well-suited for

numerical implementations like FE2.

The homogenization procedure was employed to compute the stress-gradient parameters

of an elastic material with pores. These parameters were used to predict the negative size

effect of foam materials under uni-axial loading. A comparison with respective experiments

and direct numerical simulations from literature exhibited a reasonable agreement.

It shall be mentioned that similar non-classical terms in static or kinematic boundary

conditions appear in homogenization approaches towards strain-gradient or (first order)

micromorphic theories [6, 8]. The latter theories predict positive size effects, in contrast to
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the stress-gradient theory. This means that the choice of the generalized continuum theory

to be used at the macro-scale, is an important constitutive assumption itself.
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Appendix A. Solution for kinematic higher-order boundary conditions

For the circular volume element, kinematic BCs (17) read

ur(ra) =
1

2
(3Φ111−Φ221) cos(3ϕ)+(Φ111+Φ221) cos(ϕ)+(Φ112+Φ222) sin(ϕ)+

1

2
(Φ112−3Φ222) sin(3ϕ)

(A.1)

uϕ(ra) =− 1

2
(3Φ111−Φ221) sin(3ϕ)+2(Φ111+Φ221) sin(ϕ)−2(Φ112+Φ222) cos(ϕ)+

1

2
(Φ112−3Φ222) cos(3ϕ)

(A.2)
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The problem can be solved with an Airy ansatz analogous to Eq. (29)

F =2µ [(Φ111 + Φ221) cos(ϕ) + (Φ112 + Φ222) sin(ϕ)]

(
A1r

3 +
A2

r

)

+ 2µ [(Φ221 − 3Φ111) cos(3ϕ)− sin(3ϕ)(Φ112 − 3Φ222)]

(
A3r

5 +
A4

r
+ A5r

3 +
A6

r3

)
.

(A.3)

Finally, a macroscopic strain-energy density of

W∗
=
ã1kBC

2

[
(Φ111+Φ221)2+(Φ112+Φ222)2

]
+
ã2kBC

2

[
(Φ221−3Φ111)2+(Φ112−3Φ222)2

]
(A.4)

is obtained for the plane strain case with

ã1kBC =
18µ

r2
a

1− c2

3− 4ν + c2
, ã2kBC =

2µ

r2
a

(1− c) [(3− 4ν)(1 + c) + 8c2 − 8c3 + c4 + c5]

(1 + c6)(3− 4ν) + 16c2ν2 − 24c2ν + 17c2 − 16c3 + 9c4
.

(A.5)

The respective independent components R111, R221, R222, R112 of the stress gradient are

derived by differentiation by respective work conjugate quantities 3Φ111, Φ221, 3Φ222, Φ112,

finally yielding a stiffness matrix

ˆ[A] =




ã1kBC

9
+ ã2kBC

ã1kBC

3
− ã2kBC

ã1kBC

3
− ã2kBC ã1kBC + ã2kBC


 . (A.6)

as inverse ˆ[A] = ˆ[B]
−1

to the compliance matrix in Eq. (32). A comparison with Eq. (33)

shows that stiffness and compliance coefficients are related by

b̃1 =
9

16ã1

, b̃2 =
1

16ã2

. (A.7)
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