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On the effect of symmetry requirement for rendezvous on
the complete graph∗

Marthe Bonamy† Michał Pilipczuk‡ Jean-Sébastien Sereni§ Richard Weber¶

Abstract

We consider a classic rendezvous game where two players try to meet each other on a set of n
locations. In each round, every player visits one of the locations and the game finishes when the players
meet at the same location. The goal is to devise strategies for both players that minimize the expected
waiting time till the rendezvous.

In the asymmetric case, when the strategies of the players may differ, it is known that the optimum
expected waiting time of n+1

2 is achieved by the wait-for-mommy pair of strategies, where one of the
players stays at one location for n rounds, while the other player searches through all the n locations in
a random order. However, if we insist that the players are symmetric — they are expected to follow
the same strategy — then the best known strategy, proposed by Anderson and Weber [77], achieves an
asymptotic expected waiting time of 0.829n.

We show that the symmetry requirement indeed implies that the expected waiting time needs to
be asymptotically larger than in the asymmetric case. Precisely, we prove that for every n > 2, if the
players need to employ the same strategy, then the expected waiting time is at least n+1

2 + εn, where
ε = 2−36.

We propose in addition a different proof for one our key lemmas, which relies on a result by Ahlswede
and Katona: the argument is slightly shorter and provides a constant larger than 2−36, namely 1

3600 .
However, it requires that n be at least 16. Both approaches seem conceptually interesting to us.
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1 Introduction

Rendezvous search questions fall within the long-established field of search games: instead of having a
player searching for an otherwise indifferent treasure, there are now two players that want to meet as
quickly as possible. This very natural problem lends itself to a number of very different, more or less
formalised settings. It was first specified as an optimisation problem in 1976 by Alpern at the end of a talk
(see [33]), in two different settings: the astronaut problem and the seemingly simpler telephone problem. In
the former problem, two players are on a sphere, each with a given unit walking speed and no common
orientation in space, and they want to minimise their expected meeting time. The telephone problem has
since been rephrased as a rendezvous game on discrete locations, as follows. Two players wish to meet
on a set of n locations and they proceed in rounds. In each round, every player visits a location of her
choice. The game finishes when both players meet at the same location. The goal of the players is to
minimize the expected waiting time till a meet-up, also called a rendezvous. This formulation permits to
easily impose extra constraints on how the players can move from one location to another by using different
underlying space topologies. Here, we model such topologies as graphs: in the original telephone problem,
the underlying graph is the complete graph on n vertices, which means that in every round, each player
can move from her current location to any other location. The most studied variants are when the graph
representing the topology is either complete or a path.

Let us point out that, originally, no difference between the two players is assumed here, so that they
must use the same strategy: this is called the symmetric case. It implies a level of randomness, as otherwise
the players may well never meet. The case where the players are allowed to use different strategies, called
asymmetric, was introduced in full generality in 1995 [22].

As pointed out for instance by Alpern [33], natural questions related to rendezvous games can be raised
in a number of different contexts, such as that of migrating animals. There is a rich research literature on
rendezvous games and its many variants, e.g. with more players [66], different rules of the game (for instance
seeking to minimise the second meeting time [1212]) or other topologies of the search space (including when
the players know where they start from, that is, when they have a common labelling of the graph [44]). We
invite an interested reader to the survey of Alpern [33] for a broader and formal introduction.

Coming back to the rendezvous game on the complete graph, the asymmetric case was solved by
Anderson and Weber [77], using what is coined the wait-for-mommy strategy: one of the players stays for n
rounds in one location, while the other player searches through all the n locations in a random order. Then
the expected waiting time is equal to n+1

2 , and it is known that this value is optimum [77]: every pair of
strategies for the players yields expected waiting time not lower than n+1

2 .
Apart from proving the aforementioned lower bound of n+1

2 in the asymmetric case, Anderson and
Weber [77] also studied the symmetric variant of the problem, where the two players are required to use the
same strategy. While always visiting a random location gives an expected waiting time of n, Anderson
and Weber proposed a more clever symmetric strategy that achieves an asymptotic expected waiting time
slightly smaller than 0.829n, which we explain next.

The Anderson-Weber strategy works as follows. Let θ ∈ [0, 1] be a parameter, to be fixed later. On
the first step, both players choose a location at random. If they do not meet, then the players divide the
rest of the game into groups of n − 1 consecutive rounds. At the beginning of each group of rounds, each
player randomly decides her behavior during these rounds: with probability θ she will stay at her current
location for all n − 1 rounds, and with probability 1 − θ she will visit the n − 1 locations different from her
current one in a random order. Thus, intuitively, the Anderson-Weber strategy tries to break the symmetry
by randomly assigning to each player either the role of the baby (who is passive), or the role of the mommy
(who is active). However, there is a significant probability that both players get the same role, which
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results in an expected waiting time significantly higher than n+1
2 . Indeed, while for different n, different

values of θ optimize the expected waiting time, with n tending to infinity one should pick θ tending to
roughly 0.24749, which results in an asymptotic expected waiting time slightly smaller than 0.829n.

The Anderson-Weber strategy has been analyzed for small values of n. It is known that picking the
right θ yields an optimum strategy for n = 2 [77] and for n = 3 [1111], this latter result being much more
difficult to prove. For n = 4, as proved by Weber [1010], there is a slightly better strategy outside of the
framework of Anderson and Weber. However, in general it is conjectured that the Anderson-Weber strategy
is asymptotically optimum: there is no strategy for arbitrary n that would yield an asymptotic expected
waiting time smaller than (roughly) 0.829n. However, to the best of our knowledge, no asymptotic lower
bound higher than n+1

2 , which holds even for the asymmetric variant, was known prior to this work.

Our contribution. We prove that for every n > 2, in the symmetric rendezvous game on n locations
the expected waiting time needs to be significantly larger than n+1

2 . Precisely, if the players are requested
to follow the same strategy, then whatever strategy they choose, the expected waiting time will be at
least n+1

2 + εn for ε = 1
3600 . See Theorem 1Theorem 1 in Section 2Section 2 for a formal statement. While this still leaves a

large gap to the best known upper bound of 0.829n, due to Anderson and Weber [77], this seems to be the
first lower bound for arbitrary n that significantly distinguishes the symmetric case from the asymmetric
case, where n+1

2 is the optimum.
The idea behind our proof can be explained as follows. As in other works, e.g. [1111], we restrict the game

to the first n rounds and prove a lower bound already for this simpler game. We classify deterministic
strategies of the players (which we call tactics) into those that rather stay at few locations and those that seek
through many locations. Formally, tactics of the first kind — the passive tactics — visit at most n/2 different
locations, while tactics of the second kind — the active tactics — visit more than n/2 different locations.

The intuition drawn from the asymmetric case is that the expected waiting time is minimized when one
player plays a passive tactic, while the other plays an active tactic. As now the players need to follow the
same strategy (understood as a probability distribution over tactics), with probability at least 1

2 they choose
to use tactics of the same kind (activity level). Then it suffices to prove that when two tactics of the same
kind are played against each other, the expected waiting time is significantly larger than n+1

2 .
To this end, we show that if same-kind tactics are employed, the probability that no rendezvous happens

at all is bounded from below by a positive constant. This easily implies a larger-than-n+1
2 lower bound on

the expected waiting time. To analyze the probability of no rendezvous, we investigate a random variable X
that indicates the total number of rendezvous if the game is not stopped when the players meet for the first
time. Then X has mean (roughly) equal to 1, so to prove that X = 0 with significant probability, we show
that X is not well concentrated around its mean. This involves establishing a lower bound on the variance
of X , which in turn follows from the assumption that the employed tactics are of the same kind.

2 The model and the problem

In this section we formalize the considered rendezvous search game and state the main result in precise
terms. As in previous works, e.g. [1111], we make the game finite by stopping it after n rounds. Precisely, if
the players did not meet after n rounds, we stop the game and set n + 1 as the obtained time till rendezvous.
Note that this may only decrease the expected waiting time as compared to allowing the players to play
indefinitely.

We are given a set of n locations and two players, A and B. Each player has her own, private numbering
of locations using numbers from [n] := {1, . . . , n}. A tactic for a player is a function τ : [n] → [n],
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where τ(i) is interpreted as the index of the location that the player intends to visit at round i, in her own
numbering. A strategy for a player is a probability distribution σ over the tactics of this player. Note that
the set of possible tactics is finite, hence we may use the discrete σ-field where every subset of tactics
is measurable. The sets of tactics and strategies for the game on n locations are denoted by Θn and Σn,
respectively.

For two given strategies σA and σB , the game is played as follows:

• Players A and B respectively draw their tactics τA and τB from the strategies σA and σB at random.

• A permutation π : [n] → [n] that matches the numberings of locations of A and B is drawn uniformly
at random. This permutation π will be called the binding.

• The waiting time till rendezvous is indicated by the random variable

T 〈σA, σB〉 := min ({ i : π(τA(i)) = τB(i) } ∪ {n + 1}) .

Then the question of minimizing the waiting time till rendezvous for symmetric players corresponds to the
problem of minimizing the expected value of T 〈σA, σB〉 over the strategies σA and σB , subject to σA = σB .

Note that in this model, we assume that every player fixes her tactic at the beginning of the game and
then follows this tactic. Observe that this does not restrict the players in any way, as throughout the play
they receive no information that could influence the choice of the next moves. Indeed, when entering a
location, the player only receives the information that the other player is not there, or otherwise the game
immediately finishes. Hence, there is no point in considering adaptivity in strategies.

The main result of this work can be now phrased as follows.

Theorem 1. There exists ε > 0 such that for every n > 2 and every strategy σ ∈ Σn, we have

ET 〈σ, σ〉 > n + 1
2 + εn.

A key step in the proof of Theorem 1Theorem 1 is Lemma 4Lemma 4, and two different arguments are provided for a
central part of its proof: an elementary one using the Paley-Zygmund inequality [99], allowing to establish
Theorem 1Theorem 1 with ε = 2−36 (Sections 3.53.5 to 3.83.8), and a somewhat lighter argument relying on an extremal
result of Ahlswede and Katona [11], allowing ε to be as large as 1

3600 at the expense of requiring that n be at
least 16 (Sections 3.33.3 and 3.43.4). Both arguments share a common ground (notably Section 3.2Section 3.2), but provide
different perspective to the problem, making each of them interesting in its own right.

In the proof of Theorem 1Theorem 1 we will use the lower bound for the waiting time for asymmetric strategies of
Anderson and Weber [77]. Note that the proof of this result also holds for the game stopped after round n.

Theorem 2 (Anderson and Weber [77]). For every n ∈ N and pair of strategies σA, σB ∈ Σn, we have

ET 〈σA, σB〉 > n + 1
2 .

As mentioned in Section 1Section 1, the lower bound provided by Theorem 2Theorem 2 is tight, as witnessed by the wait-
for-mommy pair of strategies: σA is the baby strategy that deterministically picks a tactic that maps all
integers i ∈ [n] to 1, while σB is the mommy strategy that deterministically picks the identity function as
the tactic.
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3 Proof of Theorem 1Theorem 1

For the rest of the proof we fix the number of locations n to be at least 2. For brevity we write Θ := Θn

and Σ := Σn.

3.1 Passive and active tactics

Let us start by taking a closer look at the mapping σA, σB 7→ ET 〈σA, σB〉, where σA, σB ∈ Σ. We shall
try to understand this mapping from the point of view of linear algebra.

For tactics τA, τB ∈ Θ, let

W (τA, τB) := E [min ({ i : π(τA(i)) = τB(i) } ∪ {n + 1})] .

Note that here, the tactics τA, τB are fixed and the expectation is taken only over the choice of the binding π.
Let us define a bilinear operator

Φ: RΘ × RΘ → R as Φ〈x, y〉 :=
∑

τA,τB∈Θ
W (τA, τB) · xτAyτB ,

where x, y ∈ RΘ are vectors indexed by the elements of Θ. Then

ET 〈σA, σB〉 = Φ〈a, b〉,

where a, b ∈ RΘ are such that aτ is the probability of drawing τ in the distribution σA, and similarly for bτ .
The main idea is as follows. As witnessed by the tightness example for Theorem 2Theorem 2, the operator Φ〈·, ·〉

achieves its minimum possible value when the strategies σA and σB are sort of “orthogonal”. Namely, one
strategy should focus on baby-like tactics — being in a few locations and waiting for the other player —
while the other strategy should focus on mommy-like tactics — seeking through a large number of location
in search of the other player. Playing a baby-like tactic against a mommy-like tactic yields low waiting
time, while the intuition is that playing two baby-like tactics against each other, or two mommy-like tactics
against each other, should result in waiting time significantly larger than n+1

2 . When the two players are
forced to use the same strategy, there is a significant probability — at least 1

2 — that they end up playing
tactics of the same kind. This increases the expected waiting time significantly above n+1

2 .
We now formalize this intuition, calling baby-like tactics passive and mommy-like tactics active.

Definition 3. A tactic τ ∈ Θ is called passive if |τ([n])| 6 n/2 and active otherwise. The sets of passive
and active tactics are denoted by ΘP and ΘA, respectively.

In the next sections we will focus on the following lemma.

Lemma 4. There exists δ > 0 such that for all τA, τB ∈ Θ satisfying either τA, τB ∈ ΘA or τA, τB ∈ ΘP,
we have

W (τA, τB) > n + 1
2 + δn.

Before we proceed to prove Lemma 4Lemma 4, let us see how Theorem 1Theorem 1 follows from it.

Proof (of Theorem 1Theorem 1 assuming Lemma 4Lemma 4). We first note that fromTheorem 2Theorem 2 applied to two deterministic
strategies we may infer that

W (τA, τB) > n + 1
2 for all τA, τB ∈ Θ. (1)
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Let a ∈ RΘ be such that aτ is the probability that tactic τ is drawn by the strategy σ. Write

a = aP + aA,

where the supports of aP and aA are passive and active tactics, respectively. As W (·, ·) is a symmetric
function, we have

ET 〈σ, σ〉 = Φ〈a, a〉 = Φ〈aP, aP〉 + Φ〈aA, aA〉 + 2 · Φ〈aP, aA〉. (2)

Let p :=
∑

τ∈ΘP aτ be the probability that σ yields a passive tactic. Then, by Lemma 4Lemma 4, we have

Φ〈aP, aP〉 =
∑

τA,τB∈ΘP

W (τA, τB) · aτAaτB

>
(

n + 1
2 + δn

)
·

∑
τA,τB∈ΘP

aτAaτB = p2 ·
(

n + 1
2 + δn

)
. (3)

Using Lemma 4Lemma 4 again, we analogously infer that

Φ〈aA, aA〉 > (1 − p)2 ·
(

n + 1
2 + δn

)
. (4)

A similar computation using (11) yields that

Φ〈aP, aA〉 > p(1 − p) · n + 1
2 . (5)

Finally, letting ε := δ/2 we can combine (22), (33), (44), and (55) to conclude that

ET 〈σ, σ〉 > (p2 + (1 − p)2 + 2p(1 − p)) · n + 1
2 + p2 · δ · n + (1 − p)2 · δ · n

= n + 1
2 + 2ε · (p2 + (1 − p)2) · n >

n + 1
2 + εn,

where the last inequality follows from the convexity of the function x 7→ x2. �

It thus remains to prove Lemma 4Lemma 4.

3.2 High probability of no rendezvous gives high expected waiting time

We now start analyzing the game when played between a fixed pair of tactics, with the goal of establishing
lower bounds for the expected waiting time till a rendezvous. The intuition is that this waiting time is
significantly higher than n+1

2 under the following condition: the probability that during the n rounds of
the game there is no rendezvous at all is bounded from below by some positive constant. This is made
formal in the following lemma.

Lemma 5. Suppose τA, τB ∈ Θ are such that

P (π(τA(i)) 6= τB(i) for all i ∈ [n]) > β

for some constant β > 0. Then

W (τA, τB) > n + 1
2 + β2

2 · n.
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Proof. Let Z be the random variable defined as the waiting time till the first rendezvous, that is,

Z := min ({ i : π(τA(i)) = τB(i) } ∪ {n + 1}) .

Note that here τA and τB are fixed, so Z depends only on the random choice of the binding π; formally, Z
is π-measurable. Then

W (τA, τB) = EZ.

Observe that Z is a random variable with values in {1, 2, . . . , n + 1}, hence we have

EZ =
n∑

k=0
P(Z > k).

Note that we have Z > k if and only if during the first k rounds the players did not meet. Clearly, during
every fixed round, the players meet with probability 1

n . Hence, by the union bound, the probability that
they do not meet during the first k rounds is at least 1 − k

n . On the other hand, by the assumption of the
lemma, this probability is also at least β. We conclude that

P(Z > k) > max
(

1 − k

n
, β

)
for all k ∈ [n].

By combining the above observations it follows that

W (τA, τB) =
n∑

k=0
P(Z > k) >

n∑
k=0

max
(

1 − k

n
, β

)

=
n∑

k=0

(
1 − k

n

)
+

n∑
k=0

max
(

0, β −
(

1 − k

n

))

= n + 1
2 +

n∑
k=d(1−β)ne

(
β −

(
1 − k

n

))

= n + 1
2 + (β − 1) · (n − d(1 − β)ne + 1) + 1

n
· n + d(1 − β)ne

2 · (n − d(1 − β)ne + 1)

= n + 1
2 + (n − d(1 − β)ne + 1) ·

(
β + d(1 − β)ne − n

2n

)
>

n + 1
2 + βn · β

2 = n + 1
2 + β2

2 · n.

This concludes the proof. �

Thus, by Lemma 5Lemma 5, for the proof of Lemma 4Lemma 4 it suffices to show that the probability that no rendezvous
occurs throughout the n rounds of the game is bounded away from zero. We do so in two different ways:
we start in Section 3.3Section 3.3 with an argument relying on a result by Ahlswede and Katona [11]. It allows δ to be
as large as 1

1800 , however it is valid only when n is at least 16. So it leaves some cases open, but due to
its conceptual appeal it seems relevant for us to include here. After this, we provide a more elementary
analysis starting in Section 3.5Section 3.5: it is slightly heavier and δ is reduced to 2−35, but it works for any value
of n larger than 1.
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3.3 Same-kind tactics give non-trivial probability of no rendezvous

Our goal is to prove the following statement.

Lemma 6. Assume that n > 16 and let τA and τB be tactics such that τA, τB ∈ ΘA or τA, τB ∈ ΘP. Then

P (π(τA(i)) 6= τB(i) for all i ∈ [n]) > 1
30 .

We will need the following extremal result about the number of edges in bipartite graphs, established
in 1978 by Ahlswede and Katona [11, Theorem 1]. Here a simple graph is a graph with no loops or multiple
edges with same endpoints.

Theorem 7 (Ahlswede and Katona [11]). Let n and k be positive integers, and write n = q ·k+r where r ∈
{0, . . . , k−1}. IfG is a bipartite simple graph with n edges and at most k vertices in each part of the bipartition,
then the sum of the squares of degrees of the vertices of G is at most q(n + r + k2) + r(r + 1).

The original statement actually deals with bipartite simple graphs with not only a fixed number of edges
but also a fixed number of vertices in each part, for which it provides a construction that maximises the
sum of square of degrees of the vertices over all such graphs. The fact that we can write “at most” for the
number of vertices in each part follows from adding degree-0 vertices to this optimal construction. Note
also that the statement of Theorem 77 becomes false for multi-graphs.

Proof (of Lemma 6Lemma 6). Fix a pair of tactics τA, τB ∈ Θ, both of the same kind. To be able to use Theorem 7Theorem 7,
we rephrase our goal in graph-theoretic terms. We define a bipartite graph G with bipartition (L, R) where
each part contains n vertices numbered from 1 to n: we call them the left vertices and the right vertices,
respectively. For each i ∈ [n], an edge is added between the left vertex τA(i) and the right vertex τB(i).
Note that if there are multiple indices i giving rise to the same edge (i.e. for which the pair (τA(i), τB(i)))
is the same), then the edge is added to G only once; thus, G has at most n edges. Further, consider sampling
a random injective colouring by colours from 1 to n for each of the parts L and R, independently. In
other words, for each part we choose randomly and independently a permutation of [n]. An edge of G is
monochromatic if its left vertex and its right vertex have the same colour, and it readily follows from the
construction that

P (π(τA(i)) 6= τB(i) for all i ∈ [n]) = P (G has no monochromatic edge) . (6)

We want to show that we can restrict to simple bipartite graphs with bipartition (L, R) and exactly n
edges. First, recalling that G has at most n edges, if Ĝ is any supergraph of G with exactly n edges that is
still bipartite with bipartition (L, R), then

P (G has no monochromatic edge) 6 P
(
Ĝ has no monochromatic edge

)
. (7)

However, in our context there is an additional constraint on Ĝ, namely that the properties of G following
from the assumption that τA and τB are of the same kind should be also satisfied in Ĝ. Precisely, we mean
the following assertions:

• If τA and τB are active, then each of L and R contains more than n/2 vertices with positive degrees.

• If τA and τB are passive, then each of L and R contains at most n/2 vertices with positive degrees.
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These assertions hold in G and we would like to construct a supergraph Ĝ of G with exactly n edges so that
they are also satisfied in Ĝ. This is obvious in the case when τA and τB are active, because adding edges can
only increase the number of vertices with positive degrees in L and R. The case when τA and τB are passive
is more problematic, as we need to make sure that the edges added in Ĝ do not create too many vertices
with positive degrees in L or in R. For this, pick any L′ ⊆ L and R′ ⊆ R such that |L′| = |R′| = bn/2c
and L′ ∪ R′ contains all vertices that have positive degrees in G. Then construct Ĝ by adding any edges
with one endpoint in L′ and the other in R′ so that Ĝ remains simple and has exactly n edges. This is
always possible, because bn/2c2 > n for all n > 6, and we assume that n > 16.

We now focus on giving an upper bound on the probability that no edge of Ĝ is monochromatic. Let us
arbitrarily enumerate the edges of Ĝ as e1, . . . , en. For each i ∈ [n], let Ai be the event that the edge ei is
monochromatic. In particular, P(Ai) = 1

n for each i ∈ [n]. By definition,

P
(
Ĝ has no monochromatic edge

)
= 1 − P

(
n⋃

i=1
Ai

)
. (8)

By one of Bonferroni’s inequalities (see, e.g., the book by Comtet [88, p. 193–194]),

P
(

n⋃
i=1

Ai

)
6

n∑
i=1

P(Ai) −
∑

16i<j6n

P(Ai ∩ Aj) +
∑

16i<j<k6n

P(Ai ∩ Aj ∩ Ak). (9)

Clearly, we have
∑n

i=1 P(Ai) = 1. Further, for all 1 6 i < j < k 6 n we have

P(Ai ∩ Aj ∩ Ak) =


1

n(n−1)(n−2) if ei, ej , ek are pairwise disjoint;
0 otherwise.

(10)

Here, edges are disjoint if they do not share any endpoint. Therefore,

∑
16i<j<k6n

P(Ai ∩ Aj ∩ Ak) 6
(

n

3

)
· 1

n(n − 1)(n − 2) = 1
6 . (11)

As a result, it suffices to show that if τA, τB ∈ ΘA or τA, τB ∈ ΘP, then

∑
16i<j6n

P(Ai ∩ Aj) > 1
5 .

This would indeed yield by (99) and (1111) that

P
(

n⋃
i=1

Ai

)
6 1 − 1

5 + 1
6 = 29

30 ,

which by (66), (77), and (88) would finish the proof.
Similarly as in (1010), for all 1 6 i < j 6 n we have

P(Ai ∩ Aj) =


1

n(n−1) if ei, ej are disjoint;
0 otherwise.
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Therefore, letting ci,j be 1 if ei and ej are disjoint and 0 otherwise,

∑
16i<j6n

P(Ai ∩ Aj) = 1
n(n − 1) ·

∑
16i<j6n

ci,j . (12)

To evaluate the sum on the right side of (1212), fix i ∈ [n] and let ai and āi be the degrees of the left and
right vertices of the edge ei, respectively. The number ni of edges disjoint from ei is then

ni = (n − 1) − (ai − 1) − (āi − 1) = n + 1 − ai − āi. (13)

For each t ∈ [n], let dt be the degree of the left vertex t and d̄t be the degree of the right vertex t. Observe
that

∑n
i=1 ai =

∑n
i=1 d2

i and
∑n

i=1 āi =
∑n

i=1 d̄2
i . Summing (1313) over all values i ∈ [n] thus yields that

2
∑

16i<j6n

ci,j = n(n + 1) −
n∑

i=1
d2

i −
n∑

i=1
d̄2

i . (14)

We now consider two cases depending on the common kind of τA and τB . Suppose first that both τA

and τB are passive tactics. In this case, at most bn/2c vertices in each part of Ĝ have positive degree, and
consequently we infer from Theorem 7Theorem 7 applied with k = bn/2c that

∑n
i=1(d2

i + d̄2
i ) is at most n2/2 + 2n

when n is even and at most n2/2 + n + 9
2 when n is odd. Since n > 5, we deduce that n2/2 + 2n is always

an upper bound on the sum of the squares of degrees of the vertices in Ĝ. As a result, we deduce from (1212)
and (1414) that

∑
16i<j6n

P(Ai ∩ Aj) > 1
2n(n − 1) ·

(
n(n + 1) − n2

2 − 2n

)

= n − 2
4(n − 1) >

1
5 as n > 6.

This concludes the proof in this case.
Assume now that both τA and τB are active tactics. In this case, at least dn/2e vertices in each part

of Ĝ have a positive degree. Consequently, the sum of the squares of the degrees of the vertices in each of
the parts cannot exceed

(dn/2e − 1) · 12 + 1 · (bn/2c + 1)2,

which corresponds to the case where one vertex has degree bn/2c + 1 and exactly dn/2e − 1 vertices have
degree 1. Considering the cases when n is even and odd, we conclude that this sum is upper bounded
by n2/4 + max(3n/2, n − 1/4) = n2/4 + 3n/2. Therefore, we deduce from (1212) and (1414) that

∑
16i<j6n

P(Ai ∩ Aj) > 1
2n(n − 1) ·

(
n(n + 1) − n2

2 − 3n

)

= n − 4
4(n − 1) >

1
5 as n > 16.

This concludes the proof. �
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3.4 Wrapping up the proof, I

With all the tools prepared, we are now in a position to prove Lemma 4Lemma 4.

Proof (of Lemma 4Lemma 4 when n > 16). By Lemma 6Lemma 6,

P (π(τA(i)) 6= τB(i) for all i ∈ [n]) > 1
30 .

Consequently, Lemma 5Lemma 5 ensures that

W (τA, τB) > n + 1
2 + 1

1800 · n.

Hence, Lemma 4Lemma 4 holds for δ = 1
1800 . �

Recalling that the proof of Theorem 1Theorem 1 sets ε to be δ/2, we conclude that Theorem 1Theorem 1 holds for ε = 1
3600

if n > 16.
We now proceed with the more elementary proof of Lemma 4Lemma 4, which covers all values of n and

yields ε = 2−36 in Theorem 1Theorem 1. Recall that, after Lemma 5Lemma 5, our goal is to show that the probability that no
rendezvous occurs throughout the n rounds of the game is bounded away from zero.

3.5 High variance gives high probability of no rendezvous

Fix a pair of tactics τA, τB ∈ Θ. Let

F := {(τA(i), τB(i)) : i ∈ [n]} ⊆ [n] × [n].

Set m := |F | and note that m 6 n. Similarly, for the random binding π, let

E(π) := {(i, π(i)) : i ∈ [n]} ⊆ [n] × [n].

For f ∈ F , let Xf be the indicator random variable taking value 1 if f ∈ E(π) and 0 otherwise. Further, let

X := |F ∩ E(π)| =
∑
f∈F

Xf .

Note that here τA, τB are considered fixed and π is drawn at random, hence (Xf )f∈F and therefore X
depend only on the choice of the random binding π; formally, these variables are π-measurable. Observe
that the probability that no rendezvous occurs can be understood in terms of the random variable X as
follows:

P (π(τA(i)) 6= τB(i) for all i ∈ [n]) = P(X = 0). (15)

From now on, we adopt the above notation whenever the pair of tactics τA, τB is clear from the context.
The next lemma is the key conceptual step in the proof. We show that in order to give a lower bound

on the probability that no rendezvous occurs, it suffices to give a lower bound on the variance of X .

Lemma 8. Suppose τA, τB ∈ Θ are such that

m >
(

1 −
√

α/2
)

· n and VarX > α,

for some constant α > 0. Then

P(X = 0) > α2

128 .
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The proof of Lemma 8Lemma 8 spans the rest of this section. The intuition is that high variance of X means
that X is not well concentrated around its mean, which in turns implies that the probability of it being
below the mean — equivalently equal to 0 — is high. Hence, we need to understand the mean of X as well
as estimate its higher moments.

Observe that if f = (i, j) ∈ F , then the probability that π(i) = j is equal to 1
n . Hence, Xf takes value 1

with probability 1
n and 0 with probability 1 − 1

n . Consequently, we have

EXf = 1
n

for each f ∈ F.

By linearity of expectation,
EX = m

n
6 1.

In the sequel we will also need an upper bound on the fourth central moment of X , that is, on E|X −EX|4.
To this end, we first establish, in the next two assertions, an upper bound on the fourth moment of X , that
is, on EX4.

Assertion 1. For pairwise different pairs e, f, g, h ∈ F , we have

EXeXf 6
1

n(n − 1)

EXeXf Xg 6
1

n(n − 1)(n − 2)

EXeXf XgXh 6
1

n(n − 1)(n − 2)(n − 3) .

Proof. Let us focus on the first inequality. Write e = (i, j) and f = (i′, j′). Observe that if i = i′

or j = j′, then Xe and Xf cannot simultaneously be equal to 1 since e 6= f , and hence XeXf = 0 surely.
Otherwise, the probability that for π chosen uniformly at randomwe have π(i) = j and π(i′) = j′ is 1

n(n−1) .
Consequently P(XeXf = 1) = 1

n(n−1) . This implies the first inequality. The proofs of the remaining two
inequalities are analogous. �

Assertion 2. It holds that
EX4 6 15.

Proof. For each e ∈ F , since Xe ∈ {0, 1} we have Xe = X2
e = X3

e = X4
e . By Assertion 1Assertion 1 and the fact

11



that m 6 n, we have

EX4 = E
(∑

e∈F

Xe

)4

=
∑
e∈F

EX4
e +

∑
{e,f}⊆F

E(4X3
e Xf + 6X2

e X2
f + 4XeX3

f )

+
∑

{e,f,g}⊆F

E(12X2
e Xf Xg + 12XeX2

f Xg + 12XeXf X2
g )

+
∑

{e,f,g,h}⊆F

E(24XeXf XgXh)

=
∑
e∈F

EXe + 14
∑

{e,f}⊆F

EXeXf

+ 36
∑

{e,f,g}⊆F

EXeXf Xg + 24
∑

{e,f,g,h}⊆F

EXeXf XgXh

6
m

n
+ 14 ·

(m
2
)

n(n − 1) + 36 ·
(m

3
)

n(n − 1)(n − 2) + 24 ·
(m

4
)

n(n − 1)(n − 2)(n − 3)
6 1 + 7 + 6 + 1 = 15.

This concludes the proof. �

We will also use the following well-known anti-concentration inequality.

Theorem 9 (Paley-Zygmund inequality, [99]). Let Z be a non-negative random variable with finite vari-
ance and let λ ∈ [0, 1]. Then

P(Z > λEZ) > (1 − λ)2 · (EZ)2

EZ2 .

With all the tools prepared, we proceed with the proof of Lemma 8Lemma 8. We use Theorem 9Theorem 9 with λ = 1
2 for

the random variable
Z := |X − EX|2.

By Assertion 2Assertion 2 and the fact that EX 6 1, we have

EZ2 = E|X − EX|4 6 1 + EX4 6 16.

As EZ = VarX > α, from Theorem 9Theorem 9 we infer that

P (Z > α/2) > P (Z > EZ/2) > 1
4 · (EZ)2

16 >
1
4 · α2

16 = α2

64 . (16)

Observe now that the assumption that m >
(
1 −

√
α/2

)
· n implies that

1 − EX = 1 − m

n
<
√

α/2.

This, in turns, implies that the event {
|X − EX|2 > α/2

}
12



is disjoint with the event {X = 1}. By combining this with (1616), we conclude that

P(X 6= 1) > P
(
|X − EX|2 > α/2

)
= P (Z > α/2) > α2

64 .

Since X is a non-negative integer-valued random variable with mean not larger than 1, we have

P(X 6= 1) = P(X = 0) + P(X > 2) and P(X = 0) > P(X > 2).

By combining the two inequalities above we conclude that

P(X = 0) > 1
2 · P(X 6= 1) > α2

128 .

This concludes the proof of Lemma 8Lemma 8.

3.6 Many disjoint pairs give high variance

Two pairs (i, j) and (i′, j′), each in [n] × [n], are disjoint if i 6= i′ and j 6= j′. We now prove that to ensure
that for a pair of tactics τA, τB , the variance of X is high, it suffices to show that among pairs in F , there is
a quadratic number of pairs of pairs that are disjoint.

Lemma 10. Suppose τA, τB ∈ Θ are such that there are at least α
(n

2
)
disjoint pairs in F , for some positive

constant α. Then VarX > α.

Proof. As in the proof of Assertion 1Assertion 1, we observe that for every pair of different elements e, f ∈ F , we
have

EXeXf =


1

n(n−1) if e and f are disjoint;
0 otherwise.

Therefore, for all different e, f ∈ F we have

VarXe = EX2
e − (EXe)2 = n − 1

n2 , and

Cov(Xe, Xf ) = EXeXf − EXeEXf = [e ∩ f = ∅] · 1
n(n − 1) − 1

n2 ,

where the expression [e ∩ f = ∅] takes value 1 if e and f are disjoint, and 0 otherwise. Consequently,

VarX =
∑
e∈F

VarXe + 2 ·
∑

{e,f}⊆F

Cov(Xe, Xf )

> m · n − 1
n2 − 2 ·

(
m

2

)
· 1

n2 + 2 · α

(
n

2

)
· 1

n(n − 1)

= m(n − 1) − m(m − 1)
n2 + α,

which is at least α because m 6 n. This concludes the proof. �
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3.7 Finding many disjoint pairs

Finally, we prove that if τA and τB are two tactics of the same kind, then the set of pairs F defined for τA

and τB contains many pairs of disjoint pairs. For this, it will be convenient to interpret F as the edge set of
a bipartite graph, with each side of the bipartition consisting of a copy of the set [n]. In this view, a pair
of disjoint pairs corresponds to a pair of disjoint edges: two edges in a graph being disjoint if all the four
endpoints of these edges are pairwise different.

We first prove the following graph-theoretic lemma. The degree deg(u) of a vertex u in a graph G is
the number of edges of G incident to u.

Lemma 11. Let G = (A, B, E) be a bipartite graph such that A and B — the sides of the bipartition — have
size n each, 11

12n 6 |E| 6 n, and the degree of each vertex in G is at most 2
3n. Then there are two disjoint

subsets of edges E1, E2 ⊆ E, each of size at least n/8, such that every edge from E1 is disjoint with every
edge in E2.

Proof. For X ⊆ A ∪ B, we let deg(X) :=
∑

u∈X deg(u).
Let a1, . . . , an be the vertices of A in non-increasing order with respect to their degrees. Let t ∈

{0, 1, . . . , n} be the largest index such that A1 := {a1, . . . , at} satisfies deg(A1) 6 2
3n. Since the degree

of every vertex is at most 2
3n and |E| > 2

3n, we know that neither A1 nor A2 := A \ A1 is empty. In other
words, t ∈ {1, . . . , n−1}. Further, since deg(A1) 6 2

3n, deg(A1 ∪{at+1}) > 2
3n, and deg(at+1) 6 deg(v)

for every v ∈ A1, it follows that deg(A1) > n/3. Since deg(A1) 6 2
3n, and deg(A) = |E| > 11

12n, we also
have deg(A2) > n/4. We conclude that we have found a partition A1 ] A2 of A such that

deg(A1) > n/4 and deg(A2) > n/4.

Symmetrically, we can find a partition B1 ] B2 of B such that

deg(B1) > n/4 and deg(B2) > n/4.

For all s, t ∈ {1, 2}, let Fst be the set of all edges from E with one endpoint in As and the other in Bt,
and set mst := |Fst|. The above lower bounds on the degrees of A1, A2, B1, B2 imply that

m11 + m12 > n/4, m21 + m22 > n/4, m11 + m21 > n/4, m12 + m22 > n/4. (17)

Observe that if m11 > n/8 and m22 > n/8, then E1 = F11 and E2 = F22 satisfy the condition from
the lemma statement. Similarly, if m12 > n/8 and m21 > n/8, then taking E1 = F12 and E2 = F21
concludes the proof. We are thus left with the case when there is st ∈ {11, 22} such that mst < n/8 and
there is s′t′ ∈ {12, 21} such that ms′t′ < n/8. But then mst + ms′t′ < n/4, which contradicts one of the
inequalities (1717). �

From Lemma 11Lemma 11 we immediately infer the following result.

Lemma 12. Suppose that τA, τB ∈ Θ is a pair of tactics such that τA, τB ∈ ΘA or τA, τB ∈ ΘP, and that
|F | > 11

12n. Then VarX > 1
32 .

Proof. Let G = (A, B, F ) be the bipartite graph constructed by taking A and B to be two disjoint copies
of the set [n], and interpreting each pair (i, j) ∈ F as an edge that connects the copy of i in A with the
copy of j in B. Our next goal is to show that there exist two disjoint subsets of pairs F1, F2 ⊆ F , each
of size at least n/8, such that every pair from F1 is disjoint from every pair of F2. This is the conclusion
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of Lemma 11Lemma 11, so it is enough to show that G satisfies the prerequisites of this lemma, which we will do
if n > 3. If n = 2, note that the sought conclusion amounts to finding two disjoint edges, since n/8 < 2. It
then suffices to notice that G has at least 2 edges, since 11

12n > 1, and consequently the two tactics cannot
both be passive. It follows that both are active and hence G indeed contains two disjoint edges. We now
suppose that n > 3 and verify that G satisfies the prerequisites of Lemma 11Lemma 11. We have |F | > 11

12n by
assumption, so we are left with checking the requirements on degrees.

Suppose first that τA, τB ∈ ΘP. Then |τA([n])| 6 n/2, so there are only at most n/2 indices i ∈ [n]
that may be the first coordinates of pairs from F . Hence in G, the degree of every vertex in B is at most n/2.
A symmetric reasoning shows that the degree of every vertex in A is at most n/2.

Suppose now that τA, τB ∈ ΘA. Then |τA([n])| > n/2, hence there are at least n+1
2 indices i ∈ [n] that

are the first coordinates of pairs from F . Every i ∈ [n] is the first coordinate of at most n+1
2 pairs from F .

Indeed, otherwise it would not be possible that each of the at least n−1
2 indices i′ ∈ τA([n]) \ {i} would be

the first coordinate of one of the remaining less than n−1
2 pairs from F . This means that in G, the degree of

each vertex from A is at most n+1
2 6 2

3n since n > 3. A symmetric reasoning shows that the degree of
each vertex from B is at most 2

3n.
Having verified the prerequisites of Lemma 11Lemma 11, we can conclude that there exist disjoint subsets of

pairs F1, F2 ⊆ F , each of size at least n/8, such that every pair from F1 is disjoint with every pair from F2.
This implies that in F there are at least n2

64 > 1
32 ·

(n
2
)
pairs of pairs that are disjoint. By Lemma 10Lemma 10, this

implies that VarX > 1
32 . �

3.8 Wrapping up the proof, II

With all the tools prepared, we are now in a position to prove Lemma 4Lemma 4 for all values of n > 2.

Proof (of Lemma 4Lemma 4). Let F , m, and X be defined for τA, τB as in Section 3.5Section 3.5.
We first consider the corner case when m 6 11

12n. Then

EX = m

n
6

11
12 .

Therefore, by Markov’s inequality we infer that

P(X = 0) = 1 − P(X > 1) > 1 − 11
12 = 1

12 .

Now consider the case when m > 11
12n. By Lemma 12Lemma 12 we infer that VarX > 1

32 . Applying Lemma 8Lemma 8
for α = 1

32 , we conclude that in this case

P(X = 0) > 1
128 · 322 = 2−17.

Note here that the assumption m >
(
1 −

√
α/2

)
· n is satisfied, because 1 −

√
α/2 = 7

8 < 11
12 .

Hence, we have P(X = 0) > 2−17 in both cases. By Lemma 5Lemma 5 we now conclude that

W (τA, τB) > n + 1
2 + 2−35 · n.

Hence, Lemma 4Lemma 4 holds for δ = 2−35. �
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Recalling that the proof of Theorem 1Theorem 1 sets ε to be δ/2, we conclude that Theorem 1Theorem 1 holds for ε = 2−36.
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