V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, Curriculum learning, Proceedings of the 26th Annual International Conference on Machine Learning, p.9, 2009.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE Trans. Pattern Anal. Mach. Intell, vol.40, issue.4, pp.834-848, 2018.

T. G. Dietterich, R. H. Lathrop, and T. Lozano-pérez, Solving the multiple instance problem with axis-parallel rectangles, Artif. Intell, vol.89, issue.1-2, pp.31-71, 1997.

X. Han, Automatic liver lesion segmentation using A deep convolutional neural network method, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778, 2016.

S. Hwang and H. Kim, Self-transfer learning for weakly supervised lesion localization, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2016 -19th International Conference, pp.239-246, 2016.

O. Z. Kraus, L. J. Ba, and B. J. Frey, Classifying and segmenting microscopy images with deep multiple instance learning, Bioinformatics, vol.32, issue.12, pp.52-59, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

X. Li, H. Chen, X. Qi, Q. Dou, C. Fu et al., H-denseunet: Hybrid densely connected unet for liver and liver tumor segmentation from CT volumes, 2017.

H. Liu, J. Feng, Z. Feng, J. Lu, and J. Zhou, Left atrium segmentation in ct volumes withfully convolutional networks, Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp.39-46, 2017.

Z. Lu, Z. Fu, T. Xiang, P. Han, L. Wang et al., Learning from weak and noisy labels for semantic segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.3, pp.486-500, 2017.

T. Mordan, T. Durand, N. Thome, and M. Cord, WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Localization and Segmentation, Computer Vision and Pattern Recognition (CVPR, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01515640

M. Oquab, L. Bottou, I. Laptev, and J. Sivic, Is object localization for free? Weaklysupervised learning with convolutional neural networks, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01015140

O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI (3), vol.9351, pp.234-241, 2015.

R. Trullo, C. Petitjean, S. Ruan, B. Dubray, D. Nie et al., Joint segmentation of multiple thoracic organs in CT images with two collaborative deep architectures, MICCAI'17 workshop Deep Learning in Medical Image Analysis, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02113933