E. Zio, Prognostics and Health Management of Industrial Equipment, Diagnostics and Prognostics of Engineering Systems: Methods and Techniques, pp.333-356, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778377

R. Gouriveau and N. Zerhouni, Connexionist-systems-based long term prediction approaches for prognostics, IEEE Trans. Reliab, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00767669

A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse, Methodology for long-term prediction of time series, Neurocomputing, vol.70, pp.2861-2869, 2007.

A. S. Weigend, Time Series Prediction: Forecasting The Future And Understanding The Past, 1994.

J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao et al., Prognostics and health management design for rotary machinery systems -Reviews, methodology and applications, Mech. Syst. Signal Process, 2014.

H. P. Nguyen, J. Liu, and E. Zio, Ensemble of Models for Fatigue Crack Growth Prognostics, IEEE Access, vol.7, pp.49527-49537, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02384619

H. P. Nguyen, J. Liu, and E. Zio, Dynamic-weighted ensemble for fatigue crack degradation state prediction, Eng. Fract. Mech, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01988976

Y. Hu, P. Baraldi, F. D. Maio, and E. Zio, A particle filtering and kernel smoothing-based approach for new design component prognostics, Reliab. Eng. Syst. Saf, vol.134, pp.19-31, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01265661

L. Liao and F. Köttig, A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction, Appl. Soft Comput. J, 2016.

H. Nguyen, W. Fauriat, E. Zio, and J. Liu, A Data-Driven Approach for Predicting the Remaining Useful Life of Steam Generators, 2018 3rd International Conference on System Reliability and Safety (ICSRS), pp.255-260, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02194938

Y. Xiao and L. Feng, A novel neural-network approach of analog fault diagnosis based on kernel discriminant analysis and particle swarm optimization, Appl. Soft Comput. J, 2012.

Y. Lin, X. Li, and Y. Hu, Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications, Appl. Soft Comput. J, 2018.

J. Yu, A hybrid feature selection scheme and self-organizing map model for machine health assessment, Appl. Soft Comput. J, 2011.

J. Sanz, R. Perera, and C. Huerta, Gear dynamics monitoring using discrete wavelet transformation and multi-layer perceptron neural networks, Appl. Soft Comput. J, 2012.

J. Liu, V. Vitelli, E. Zio, and R. Seraoui, A Novel Dynamic-Weighted Probabilistic Support Vector Regression-Based Ensemble for Prognostics of Time Series Data, IEEE Trans. Reliab, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176316

A. Rai and S. H. Upadhyay, An integrated approach to bearing prognostics based on EEMD-multi feature extraction, Gaussian mixture models and Jensen-Rényi divergence, Appl. Soft Comput. J, 2018.

L. L. Li, Z. F. Liu, M. L. Tseng, and A. S. Chiu, Enhancing the Lithium-ion battery life predictability using a hybrid method, Appl. Soft Comput. J, 2019.

F. O. Heimes, Recurrent neural networks for remaining useful life estimation, 2008 International Conference on Prognostics and Health Management, 2008.

P. J. Angeline, G. M. Saunders, and J. B. Pollack, An Evolutionary Algorithm that Constructs Recurrent Neural Networks, IEEE Trans. Neural Networks, 1994.

Z. Li, D. Wu, C. Hu, and J. Terpenny, An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction, Reliab. Eng. Syst. Saf, 2019.

J. Chen, H. Jing, Y. Chang, and Q. Liu, Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process, Reliab. Eng. Syst. Saf, 2019.

E. Zio, M. Broggi, L. R. Golea, and N. Pedroni, Failure and reliability predictions by infinite impulse response locally recurrent neural networks, Chem. Eng. Trans, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777485

A. E. Elsaid, F. E. Jamiy, J. Higgins, B. Wild, and T. Desell, Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration, Appl. Soft Comput. J, 2018.

Y. Zhang, R. Xiong, H. He, and M. G. Pecht, Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries, IEEE Trans. Veh. Technol, 2018.

J. Liu, A. Saxena, K. Goebel, B. Saha, and W. Wang, An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries, Natl. Aeronaut. Sp. Adm. Moffett F. Ca Ames Res. Cent, 2010.

D. Liu, W. Xie, H. Liao, and Y. Peng, An integrated probabilistic approach to lithium-ion battery remaining useful life estimation, IEEE Trans. Instrum. Meas, 2015.

Y. Cheng, H. Zhu, J. Wu, and X. Shao, Machine Health Monitoring Using Adaptive Kernel Spectral Clustering and Deep Long Short-Term Memory Recurrent Neural Networks, IEEE Trans. Ind. Informatics, 2019.

B. Zhang, S. Zhang, and W. Li, Bearing performance degradation assessment using long short-term memory recurrent network, Comput. Ind, 2019.

L. Ren, X. Cheng, X. Wang, J. Cui, and L. Zhang, Multi-scale Dense Gate Recurrent Unit Networks for bearing remaining useful life prediction, Futur. Gener. Comput. Syst, 2019.

A. Malhi, R. Yan, and R. X. Gao, Prognosis of defect propagation based on recurrent neural networks, IEEE Trans. Instrum. Meas, 2011.

R. Ma, T. Yang, E. Breaz, Z. Li, P. Briois et al., Data-driven proton exchange membrane fuel cell degradation predication through deep learning method, Appl. Energy, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02299953

K. Javed, R. Gouriveau, N. Zerhouni, and D. Hissel, Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks, J. Power Sources, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02380396

L. Guo, N. Li, F. Jia, Y. Lei, and J. Lin, A recurrent neural network based health indicator for remaining useful life prediction of bearings, Neurocomputing, vol.240, pp.98-109, 2017.

N. A. Gershenfeld, A. S. Weigend, N. A. Gershenfeld, and A. S. Weigend, The future of time series, Time Ser. Predict. Forecast. Futur. Underst. Past, 1993.

G. U. Yule, On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, 1927.

E. Erdem and J. Shi, ARMA based approaches for forecasting the tuple of wind speed and direction, Appl. Energy, 2011.

B. Doucoure, K. Agbossou, and A. Cardenas, Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data, Renew. Energy, 2016.

R. G. Kavasseri and K. Seetharaman, Day-ahead wind speed forecasting using f-ARIMA models, Renew. Energy, 2009.

C. D. Zuluaga, M. A. Álvarez, and E. Giraldo, Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison, Appl. Energy, 2015.

M. Wu, C. Stefanakos, Z. Gao, and S. Haver, Prediction of short-term wind and wave conditions for marine operations using a multi-step-ahead decomposition-ANFIS model and quantification of its uncertainty, 2019.

I. Kaushik and S. Singh, Seasonal ARIMA Model for Forecasting of Monthly Rainfall and Temperature, J. Environ. Res. Dev, 2008.

M. A. Mariño, J. C. Tracy, and S. A. Taghavi, Forecasting of reference crop evapotranspiration, Agric. Water Manag, 1993.

M. Ohyver and H. Pudjihastuti, Arima Model for Forecasting the Price of Medium Quality Rice to Anticipate Price Fluctuations, Procedia Computer Science, 2018.

Q. Wang, X. Song, and R. Li, A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production, 2018.

M. Qin, Z. Li, and Z. Du, Red tide time series forecasting by combining ARIMA and deep belief network, 2017.

J. Wang and Y. Li, Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy, Appl. Energy, 2018.

J. Berbi?, E. Ocvirk, D. Carevi?, and G. Lon?ar, Application of neural networks and support vector machine for significant wave height prediction, 2017.

B. Kamranzad, A. Etemad-shahidi, and M. H. Kazeminezhad, Wave height forecasting in Dayyer, the Persian Gulf, 2011.

J. Wang and Y. Li, Short-Term Wind Speed Prediction Using Signal Preprocessing Technique and Evolutionary Support Vector Regression, Neural Process. Lett, 2018.

G. W. Chang, H. J. Lu, Y. R. Chang, and Y. D. Lee, An improved neural network-based approach for short-term wind speed and power forecast, Renew. Energy, 2017.

P. Jain and M. C. Deo, Real-time wave forecasts off the western Indian coast, Appl. Ocean Res, 2007.

J. Wang and Y. Li, An innovative hybrid approach for multi-step ahead wind speed prediction, Appl. Soft Comput. J, 2019.

G. Li and J. Shi, On comparing three artificial neural networks for wind speed forecasting, Appl. Energy, 2010.

J. P. Catalão, H. M. Pousinho, and V. M. Mendes, Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal, IEEE Trans. Sustain. Energy, 2011.

M. Özger and Z. ?en, Prediction of wave parameters by using fuzzy logic approach, 2007.

T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi, Time series forecasting using a deep belief network with restricted Boltzmann machines, Neurocomputing, 2014.

H. Wang, G. Li, G. Wang, J. Peng, H. Jiang et al., Deep learning based ensemble approach for probabilistic wind power forecasting, Appl. Energy, 2017.

Y. Li, H. Wu, and H. Liu, Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction, Energy Convers. Manag, 2018.

D. R. Cox, Prediction by Exponentially Weighted Moving Averages and Related Methods, J. R. Stat. Soc. Ser. B, 1961.

S. Ben-taieb, G. Bontempi, A. Sorjamaa, and A. Lendasse, Long-term prediction of time series by combining direct and MIMO strategies, Proceedings of the International Joint Conference on Neural Networks, 2009.

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Comput, 1997.

C. Olah, Understanding LSTM Networks, 2015.

W. Zaremba, I. Sutskever, and O. Vinyals, Recurrent Neural Network Regularization, 2014.

I. Sutskever, G. Hinton, A. Krizhevsky, and R. R. Salakhutdinov, Dropout : A Simple Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res, 2014.

A. Livnat, C. Papadimitriou, N. Pippenger, and M. W. Feldman, Sex, mixability, and modularity, Proc. Natl. Acad. Sci. U. S. A, 2010.

F. T. Liu, K. M. Ting, and Z. H. Zhou, Isolation forest, Proceedings -IEEE International Conference on Data Mining, ICDM, 2008.

W. Zhang, Z. Qu, K. Zhang, W. Mao, Y. Ma et al., A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting, Energy Convers. Manag, 2017.

S. R. Moreno and L. Dos-santos-coelho, Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System, Renew. Energy, 2018.

X. Mi, H. Liu, and Y. Li, Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine, Energy Convers. Manag, 2019.

T. Niu, J. Wang, K. Zhang, and P. Du, Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy, Renew. Energy, 2018.

J. Chen, G. Q. Zeng, W. Zhou, W. Du, and K. Lu, Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization, Energy Convers. Manag, 2018.

C. Tian, Y. Hao, and J. Hu, A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization, Appl. Energy, 2018.

Z. Yang and J. Wang, A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm, Energy, vol.160, pp.87-100, 2018.

M. Santhosh, C. Venkaiah, D. M. Vinod, and . Kumar, Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction, Energy Convers. Manag, 2018.

J. Naik, P. Satapathy, and P. K. Dash, Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression, Appl. Soft Comput. J, 2018.

Z. Yang and J. Wang, A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm, Appl. Energy, vol.160, pp.87-100, 2018.

Q. Han, F. Meng, T. Hu, and F. Chu, Non-parametric hybrid models for wind speed forecasting, Energy Convers. Manag, 2017.

H. Liu, Z. Duan, F. Han, and Y. Li, Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm, Energy Convers. Manag, vol.38, 2018.

M. A. Chitsazan, M. Sami, A. M. Fadali, and . Trzynadlowski, Wind speed and wind direction forecasting using echo state network with nonlinear functions, Renew. Energy, 2019.

D. Y. Hong, T. Y. Ji, M. S. Li, and Q. H. Wu, Ultra-short-term forecast of wind speed and wind power based on morphological high frequency filter and double similarity search algorithm, Int. J. Electr. Power Energy Syst, 2019.

H. Liu, X. Mi, and Y. Li, Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM, Energy Convers. Manag, 2018.

Y. Li, H. Shi, F. Han, Z. Duan, and H. Liu, Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy, Renew. Energy, 2019.

J. Liu and E. Zio, SVM hyperparameters tuning for recursive multi-step-ahead prediction, Neural Comput. Appl, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01342889

J. Liu and E. Zio, A SVR-based ensemble approach for drifting data streams with recurring patterns, Appl. Soft Comput. J, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01342890

Z. Qu, K. Zhang, W. Mao, J. Wang, C. Liu et al., Research and application of ensemble forecasting based on a novel multi-objective optimization algorithm for wind-speed forecasting, Energy Convers. Manag, 2017.

J. Hu, J. Wang, and L. Xiao, A hybrid approach based on the Gaussian process with t-observation model for short-term wind speed forecasts, Renew. Energy, 2017.

L. Xiao, F. Qian, and W. Shao, Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm, Energy Convers. Manag, 2017.

P. Du, J. Wang, Z. Guo, and W. Yang, Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting, Energy Convers. Manag, 2017.

J. Wang, P. Du, T. Niu, and W. Yang, A novel hybrid system based on a new proposed algorithm-Multi-Objective Whale Optimization Algorithm for wind speed forecasting, Appl. Energy, 2017.

X. Wei-mi, H. Liu, and Y. Li, Wind speed forecasting method using wavelet, extreme learning machine and outlier correction algorithm, Energy Convers. Manag, 2017.

D. Wang, H. Luo, O. Grunder, and Y. Lin, Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction, Renew. Energy, 2017.

M. Feurer and F. Hutter, Hyperparameter Optimization, 2019.

R. Kohavi and G. H. John, Automatic Parameter Selection by Minimizing Estimated Error, Machine Learning Proceedings, 1995.

J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian optimization of machine learning algorithms, Advances in Neural Information Processing Systems, 2012.

G. Melis, C. Dyer, and P. Blunsom, On the state of the art of evaluation in neural language models, 6th International Conference on Learning Representations, ICLR 2018 -Conference Track Proceedings, 2018.

J. Bergstra, D. Yamins, and D. D. Cox, Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures, 30th International Conference on Machine Learning, ICML 2013, 2013.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, Algorithms for Hyper-Parameter Optimization, Advances in Neural Information Processing Systems (NIPS), vol.24, p.2546, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00642998

D. Ramachandram, M. Lisicki, T. J. Shields, M. R. Amer, and G. W. Taylor, Bayesian optimization on graph-structured search spaces: Optimizing deep multimodal fusion architectures, Neurocomputing, 2018.

J. Bergstra and D. Cox, Hyperparameter Optimization and Boosting for Classifying Facial Expressions: How good can a 'Null' Model be?, International Conference on Machine Learning, 2013.

L. F. Rodrigues, M. C. Naldi, and J. F. Mari, Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images, Comput. Biol. Med, 2019.

S. F. Chevtchenko, R. F. Vale, V. Macario, and F. R. Cordeiro, A convolutional neural network with feature fusion for real-time hand posture recognition, Appl. Soft Comput. J, 2018.

J. Lago, F. De-ridder, P. Vrancx, and B. Schutter, Forecasting day-ahead electricity prices in Europe: The importance of considering market integration, Appl. Energy, 2018.

J. Lago, K. De-brabandere, F. D. Ridder, and B. Schutter, Short-term forecasting of solar irradiance without local telemetry: A generalized model using satellite data, Sol. Energy, 2018.

R. Mohammadi, Q. He, F. Ghofrani, A. Pathak, and A. Aref, Exploring the impact of foot-by-foot track geometry on the occurrence of rail defects, Transp. Res. Part C Emerg. Technol, 2019.

K. Kang and H. Ryu, Predicting types of occupational accidents at construction sites in Korea using random forest model, Saf. Sci, 2019.

Y. Gal and Z. Ghahramani, Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, 2015.

G. Corredera, M. Alves-vieira, and O. De-bouvier, Fouling and TSP Blockage of Steam Generators on EDF Fleet : Identified Correlations with Secondary Water Chemistry and planned Remedies, International Conference, 2008.

S. Girard, Physical and Statistical Models for Steam Generator Clogging Diagnosis, 2014.

P. Luca, Development of Unsupervised and Semi-Supervised Clustering-Based Methods for Degradation Assessment of Nuclear Power Plant Steam Generators, Politecnico Di Milano, 2018.

M. B. Kennel, R. Brown, and H. D. , Determining embedding dimension for phase-space 40 reconstruction using a geometrical construction, Phys. Rev. A, 1992.