M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, A review of novelty detection. Signal Process, vol.99, pp.215-249, 2014.

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM Comput. Surv, vol.41, pp.1-58, 2009.

D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P. Vincent et al., Why Does Unsupervised Pre-training Help Deep Learning?, J. Mach. Learn. Res, vol.11, pp.625-660, 2010.

M. Markou and S. Singh, Novelty detection: A review-Part 1: Statistical approaches. Signal Process, vol.83, pp.2481-2497, 2003.

M. Markou and S. Singh, Novelty detection: A review-Part 2: Neural network based approaches. Signal Process, vol.83, pp.2499-2521, 2003.

A. Zimek, E. Schubert, and H. P. Kriegel, A survey on unsupervised outlier detection in high-dimensional numerical data, Stat. Anal. Data Min, vol.5, pp.363-387, 2012.

C. C. Aggarwal, Outlier ensembles: Position paper, ACM SIGKDD Explor. Newslett, vol.14, p.49, 2013.

X. Xu, H. Liu, and M. Yao, Recent Progress of Anomaly Detection, Complexity, pp.1-11, 2019.

M. Längkvist, L. Karlsson, and A. Loutfi, A review of unsupervised feature learning and deep learning for time-series modeling, Pattern Recognit. Lett, vol.42, pp.11-24, 2014.

L. Akoglu, H. Tong, and D. Koutra, Graph based anomaly detection and description: A survey, Data Min. Knowl. Discov, vol.29, pp.626-688, 2015.

R. Chalapathy and S. Chawla, Deep Learning for Anomaly Detection: A Survey. arXiv 2019

A. Gavrilovski, H. Jimenez, D. N. Mavris, A. H. Rao, S. Shin et al., Challenges and opportunities in flight data mining: A review of the state of the art, Proceedings of the AIAA Infotech@ Aerospace, pp.4-8, 2016.

M. M. Breunig, H. P. Kriegel, R. T. Ng, J. Sander, and . Lof, Identifying Density-based Local Outliers. SIGMOD Rec, vol.29, pp.93-104, 2000.

A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, A comparative study of anomaly detection schemes in network intrusion detection, Proceedings of the 2003 SIAM International Conference on Data Mining, pp.25-36, 2003.

H. P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, LoOP: Local outlier probabilities, Proceedings of the 18th ACM Conference on Information and Knowledge Management, 2009.

J. Oehling and D. J. Barry, Using machine learning methods in airline flight data monitoring to generate new operational safety knowledge from existing data, Saf. Sci, vol.114, pp.89-104, 2019.

S. D. Bay and M. Schwabacher, Mining distance-based outliers in near linear time with randomization and a simple pruning rule, Proceedings of the Ninth ACM SIGKDD International Conference On Knowledge Discovery and Data Mining, pp.29-38, 2003.

S. Budalakoti, A. N. Srivastava, and M. E. Otey, Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety, IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev, vol.39, pp.101-113, 2008.

L. Li, M. Gariel, R. J. Hansman, and R. Palacios, Anomaly detection in onboard-recorded flight data using cluster analysis, Proceedings of the 2011 IEEE/AIAA 30th Digital Avionics Systems Conference, pp.4-4, 2011.

L. Li, S. Das, R. John-hansman, R. Palacios, and A. N. Srivastava, Analysis of flight data using clustering techniques for detecting abnormal operations, J. Aerosp. Inf. Syst, vol.12, pp.587-598, 2015.

L. Li, R. J. Hansman, R. Palacios, and R. Welsch, Anomaly detection via a Gaussian Mixture Model for flight operation and safety monitoring, Transp. Res. Part C Emerg. Technol, vol.64, pp.45-57, 2016.

A. M. Churchill and M. Bloem, Clustering Aircraft Trajectories on the Airport Surface, Proceedings of the 13th USA/Europe Air Traffic Management Research and Development Seminar, pp.10-13, 2019.

M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proceedings of the Second KDD'96 International Conference on Knowledge Discovery and Data Mining, pp.226-231, 1996.

R. J. Campello, D. Moulavi, and J. Sander, Density-based clustering based on hierarchical density estimates, Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.160-172, 2013.

M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, OPTICS: Ordering Points to Identify the Clustering Structure, Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pp.49-60, 1999.

D. Iverson, R. Martin, M. Schwabacher, L. Spirkovska, W. Taylor et al., General Purpose Data-Driven System Monitoring for Space Operations, J. Aerosp. Comput. Inf. Commun, p.9, 2012.

R. J. Campello, D. Moulavi, A. Zimek, and J. Sander, Hierarchical density estimates for data clustering, visualization, and outlier detection, ACM Trans. Knowl. Discov. Data (TKDD), vol.10, 2015.

J. A. Hartigan and M. A. Wong, Algorithm AS 136: A k-means clustering algorithm, J. R. Stat. Soc. Ser. C (Appl. Stat.), vol.28, pp.100-108, 1979.

I. T. Jolliffe, Principal Component Analysis

, Springer Series in Statistics, 1986.

L. V. Maaten and G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res, vol.9, pp.2579-2605, 2008.

F. T. Liu, K. M. Ting, and Z. H. Zhou, Isolation forest, Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, pp.413-422, 2008.

F. T. Liu, K. M. Ting, and Z. H. Zhou, Isolation-based anomaly detection, ACM Trans. Knowl. Discov. Data (TKDD), vol.6, 2012.

H. Zenati, M. Romain, C. S. Foo, B. Lecouat, and V. Chandrasekhar, Adversarially Learned Anomaly Detection, Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), pp.727-736, 2018.

Z. Ding and M. Fei, An Anomaly Detection Approach Based on Isolation Forest Algorithm for Streaming Data using Sliding Window, IFAC Proc, vol.2013, pp.12-17

S. Hariri, M. C. Kind, and R. Brunner, J. Extended Isolation Forest, 2018.

N. H. Pontoppidan and J. Larsen, Unsupervised condition change detection in large diesel engines, Proceedings of the 2003 IEEE XIII Workshop on Neural Networks for Signal Processing, pp.565-574, 2003.

X. Jiang, X. Wen, M. Wu, M. Song, and C. Tu, A complex network analysis approach for identifying air traffic congestion based on independent component analysis, Phys. A Stat. Mech. Appl, vol.523, pp.364-381, 2019.

I. Melnyk, B. Matthews, H. Valizadegan, A. Banerjee, and N. Oza, Vector Autoregressive Model-Based Anomaly Detection in Aviation Systems, J. Aerosp. Inf. Syst, vol.13, pp.161-173, 2016.

I. Melnyk, A. Banerjee, B. Matthews, and N. Oza, Semi-Markov Switching Vector Autoregressive Model-Based Anomaly Detection in Aviation Systems, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD '16, pp.1065-1074, 2016.

A. M. Bianco, M. Garcia-ben, E. Martinez, and V. J. Yohai, Outlier detection in regression models with arima errors using robust estimates, J. Forecast, vol.20, pp.565-579, 2001.

D. Chen, X. Shao, B. Hu, and Q. Su, Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra, Anal. Sci, vol.21, pp.161-166, 2005.

V. Vapnik, The Nature of Statistical Learning Theory

B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-taylor, and J. C. Platt, Support vector method for novelty detection, Proceedings of the 12th International Conference on Neural Information Processing Systems, pp.582-588, 1999.

S. Das, B. L. Matthews, A. N. Srivastava, and N. C. Oza, Multiple kernel learning for heterogeneous anomaly detection: Algorithm and aviation safety case study, Proceedings of the 16th ACM SIGKDD International Conference On Knowledge Discovery and Data Mining, pp.47-56, 2010.

H. Dutta, C. Giannella, K. Borne, and H. Kargupta, Distributed top-k outlier detection from astronomy catalogs using the demac system, Proceedings of the 2007 SIAM International Conference on Data Mining, pp.473-478, 2007.

S. Günter, N. N. Schraudolph, and S. V. Vishwanathan, Fast Iterative Kernel Principal Component Analysis, J. Mach. Learn. Res, vol.8, pp.1893-1918, 2007.

E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, J. ACM (JACM), vol.58, 2011.

J. Ramsay, J. Ramsay, B. Silverman, H. Silverman, and S. S. Media, Functional Data Analysis

, Springer Series in Statistics, 2005.

J. C. Deville, Méthodes Statistiques Et Numériques De L'analyse Harmonique, Annales de l'INSEE, pp.3-101, 1974.

J. Dauxois, Les Analyses Factorielles en Calcul Des Probabiblités Et En Statistique: Essai D'étude Synthétique, 1976.

J. Dauxois, A. Pousse, and Y. Romain, Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference, J. Multivariate Anal, vol.12, pp.136-154, 1982.

G. Jarry, D. Delahaye, F. Nicol, and E. Féron, Aircraft Atypical Approach Detection using Functional Principal Component Analysis, Proceedings of the SESAR Innovations Days, pp.3-7, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01944595

G. B. Huang, Q. Y. Zhu, and C. K. Siew, Extreme learning machine: A new learning scheme of feedforward neural networks, Proceedings of the International Joint Conference on Neural Networks (IJCNN2004), vol.2, pp.985-990, 2004.

G. B. Huang, Q. Y. Zhu, and C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, vol.70, pp.489-501, 2006.

G. Huang, G. B. Huang, S. Song, and K. You, Trends in extreme learning machines: A review, Neural Netw, vol.61, pp.32-48, 2015.

V. M. Janakiraman and D. Nielsen, Anomaly detection in aviation data using extreme learning machines, Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), pp.1993-2000, 2016.

P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, Long Short Term Memory Networks for Anomaly Detection in Time Series, Proceedings of the ESANN 2015, pp.22-24, 2015.

A. Nanduri and L. Sherry, Anomaly detection in aircraft data using Recurrent Neural Networks (RNN), Proceedings of the 2016 Integrated Communications Navigation and Surveillance (ICNS), pp.5-7, 2016.

T. Ergen, A. H. Mirza, and S. S. Kozat, Unsupervised and Semi-supervised Anomaly Detection with LSTM Neural Networks, 2017.

R. Vinayakumar, K. Soman, and P. Poornachandran, Applying convolutional neural network for network intrusion detection, Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp.1222-1228, 2017.

Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, Intrusion detection using convolutional neural networks for representation learning, Proceedings of the International Conference on Neural Information Processing, pp.858-866, 2017.

D. Kwon, K. Natarajan, S. C. Suh, H. Kim, and J. Kim, An empirical study on network anomaly detection using convolutional neural networks, Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp.1595-1598, 2018.

P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal et al., LSTM-based encoder-decoder for multi-sensor anomaly detection, 2016.

C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu et al., A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate, Time Series Data, 2018.

K. K. Reddy, S. Sarkar, V. Venugopalan, and M. Giering, Anomaly detection and fault disambiguation in large flight data: A multi-modal deep auto-encoder approach, Proceedings of the Annual Conference of the Prognostics and Health Management Society, pp.3-6, 2016.

W. Luo, W. Liu, and S. Gao, Remembering history with convolutional lstm for anomaly detection, Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), pp.439-444, 2017.

H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar, Efficient gan-based anomaly detection, 2018.

D. Li, D. Chen, J. Goh, and S. Ng, Anomaly Detection with Generative Adversarial Networks for, Multivariate Time Series, 2018.

M. Soelch, J. Bayer, M. Ludersdorfer, and P. Van-der-smagt, Variational Inference for On-line Anomaly Detection in High-Dimensional Time Series. arXiv 2016

Y. Guo, W. Liao, Q. Wang, L. Yu, T. Ji et al., Multidimensional time series anomaly detection: A gru-based gaussian mixture variational autoencoder approach, Proceedings of the Asian Conference on Machine Learning, pp.97-112, 2018.

Z. Kong, A. Jones, A. Medina-ayala, E. Aydin-gol, and C. Belta, Temporal Logic Inference for Classification and Prediction from Data, Proceedings of the 17th HSCC '14 International Conference on Hybrid Systems: Computation and Control, pp.273-282, 2014.

A. Jones, Z. Kong, and C. Belta, Anomaly detection in cyber-physical systems: A formal methods approach, Proceedings of the 53rd IEEE Conference on Decision and Control, pp.848-853, 2014.

Z. Kong, A. Jones, and C. Belta, Temporal logics for learning and detection of anomalous behavior, IEEE Trans. Autom. Control, vol.62, pp.1210-1222, 2016.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput, vol.9, pp.1735-1780, 1997.

K. Cho, B. Van-merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01433235

H. Goel, I. Melnyk, N. Oza, B. Matthews, and A. Banerjee, Multivariate Aviation Time Series Modeling: VARs vs. LSTMs, Proceedings of the SIAM International Conference on Data Mining (SDM), pp.27-29, 2017.

D. M. Tax and R. P. Duin, Support vector data description, Mach. Learn, vol.54, pp.45-66, 2004.

E. Habler and A. Shabtai, Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages, Comput. Security, vol.78, pp.155-173, 2018.

S. Bai, J. Z. Kolter, and V. Koltun, An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, 2018.

O. Gorokhov, M. Petrovskiy, and I. Mashechkin, Convolutional neural networks for unsupervised anomaly detection in text data, Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, pp.500-507, 2017.

S. Xingjian, Z. Chen, H. Wang, D. Y. Yeung, W. K. Wong et al., Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Proceedings of the Neural Information Processing Systems Conference, pp.802-810, 2015.

D. Hallac, S. Vare, S. Boyd, and J. Leskovec, Toeplitz inverse covariance-based clustering of multivariate time series data, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.215-223, 2017.

D. Song, N. Xia, W. Cheng, H. Chen, and D. Tao, Deep r-th root of rank supervised joint binary embedding for multivariate time series retrieval, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.2229-2238, 2018.

R. K. Malaiya, D. Kwon, J. Kim, S. C. Suh, H. Kim et al., An empirical evaluation of deep learning for network anomaly detection, Proceedings of the 2018 International Conference on Computing, Networking and Communications (ICNC), pp.893-898, 2018.

X. Fu, H. Luo, S. Zhong, and L. Lin, Aircraft engine fault detection based on grouped convolutional denoising autoencoders, Chin. J. Aeronaut, vol.32, pp.296-307, 2019.

S. Akerman, E. Habler, A. Shabtai, and . Vizads-b, Analyzing Sequences of ADS-B Images Using Explainable Convolutional LSTM Encoder-Decoder to Detect Cyber Attacks. arXiv 2019

C. Zhou and R. C. Paffenroth, Anomaly Detection with Robust Deep Autoencoders, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD '17, pp.665-674, 2017.

D. Erhan, A. Courville, and Y. Bengio, Understanding Representations Learned in Deep Architectures; Department d' Informatique et Recherche Operationnelle, Canada, vol.1355, 2010.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Proceedings of the Neural Information Processing Systems Conference, pp.2672-2680, 2014.

T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-erfurth, G. ;. Langs et al., Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery, Information Processing in Medical Imaging; Niethammer, vol.10265, pp.146-157, 2017.

T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-erfurth, Fast unsupervised anomaly detection with generative adversarial networks, Med. Image Anal, vol.54, pp.30-44, 2019.

D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes. arXiv 2013

J. An and S. Cho, Variational autoencoder based anomaly detection using reconstruction probability. Spec, Lecture IE, vol.2, pp.1-18, 2015.

D. M. Blei, A. Kucukelbir, and J. D. Mcauliffe, Variational Inference: A Review for Statisticians, Am. Stat. Assoc, vol.112, pp.859-877, 2017.

J. Bayer and C. Osendorfer, Learning Stochastic Recurrent Networks, 2014.

S. Zhai, Y. Cheng, W. Lu, and . Zhang, Z. Deep Structured Energy Based Models for Anomaly Detection. arXiv, 2016.

N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni et al., Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders. arXiv 2017

B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu et al., Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection, Proceedings of the 6th International Conference on Learning Representations, p.19, 2018.

P. Ghosh, M. S. Sajjadi, A. Vergari, M. Black, and B. Schölkopf, From Variational to Deterministic Autoencoders. arXiv 2019

B. Ustun, S. Traca, and C. Rudin, Supersparse linear integer models for interpretable classification, 2013.

E. Asarin, A. Donzé, O. Maler, and D. Nickovic, Parametric Identification of Temporal Properties, Proceedings of the Second RV'11 International Conference on Runtime Verification, pp.147-160, 2011.

O. Maler and D. Nickovic, Monitoring temporal properties of continuous signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pp.152-166, 2004.

R. Deshmukh and I. Hwang, Anomaly Detection Using Temporal Logic Based Learning for Terminal Airspace Operations, Proceedings of the AIAA Scitech 2019 Forum, pp.7-11, 2019.

S. Das, B. L. Matthews, and R. Lawrence, Fleet level anomaly detection of aviation safety data, Proceedings of the 2011 IEEE Conference on Prognostics and Health Management, pp.20-23, 2011.

. Ieee:-denver, . Co, and . Usa, , pp.1-10, 2011.

T. G. Puranik and D. N. Mavris, Anomaly Detection in General-Aviation Operations Using Energy Metrics and Flight-Data Records, J. Aerosp. Inf. Syst, pp.22-36, 2017.

J. Guimin, F. Cheng, Y. Jinfeng, and L. Dan, Intelligent checking model of Chinese radiotelephony read-backs in civil aviation air traffic control, Chin. J. Aeronaut, vol.31, pp.2280-2289, 2018.

X. Zhang, J. Chen, and Q. Gan, Anomaly Detection for Aviation Safety Based on an Improved KPCA Algorithm, J. Electr. Comput. Eng, p.4890921, 2017.

X. Olive, J. Grignard, and T. Dubot, Saint-Lot, J. Detecting Controllers' Actions in Past Mode S Data by Autoencoder-Based Anomaly Detection, Proceedings of the 8th SESAR Innovation Days, pp.3-7, 2018.

X. Olive and L. Basora, Identifying Anomalies in past en-route Trajectories with Clustering and Anomaly Detection Methods, Proceedings of the 13th USA/Europe Air Traffic Management Research and Development Seminar, pp.17-21, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02345597

T. Dubot, Predicting sector configuration transitions with autoencoder-based anomaly detection, Proceedings of the International Conference for Research in Air Transportation, pp.26-29, 2018.

R. Deshmukh, D. Sun, and I. Hwang, Data-Driven Precursor Detection Algorithm for Terminal Airspace Operations, Proceedings of the 13th USA/Europe Air Traffic Management Research and Development Seminar, pp.17-21, 2019.

T. Puranik, H. Jimenez, and D. Mavris, Energy-based metrics for safety analysis of general aviation operations, vol.54, pp.2285-2297, 2017.

G. Jia, Y. Lu, W. Lu, Y. Shi, and J. Yang, Verification method for Chinese aviation radiotelephony readbacks based on LSTM-RNN, Electron. Lett, vol.53, pp.401-403, 2017.

L. Basora, V. Courchelle, J. Bedouet, and T. Dubot, Occupancy Peak Estimation from Sector Geometry and Traffic Flow Data, Proceedings of the 8th SESAR Innovation Days, pp.3-7, 2018.

H. Ltkepohl, New Introduction to Multiple Time Series Analysis, 2007.

J. Janssen and N. Limnios, Semi-Markov Models and Applications, 2013.

A. Nanduri and L. Sherry, Generating Flight Operations Quality Assurance (FOQA) Data from the X-Plane Simulation, Proceedings of the 2016 IEEE Integrated Communications Navigation and Surveillance (ICNS), pp.5-6, 2016.

E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, S. Curran et al., Detection, and Disambiguation of Sensor Faults for Aerospace Applications, IEEE Sens. J, vol.9, pp.1907-1917, 2009.

A. Saxena, K. Goebel, D. Simon, and N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, Proceedings of the 2008 International Conference on Prognostics and Health Management, pp.1-9, 2008.

H. M. Elattar, H. K. Elminir, and A. M. Riad, Prognostics: A literature review, Complex Intell. Syst, vol.2, pp.125-154, 2016.

Y. Lei, N. Li, L. Guo, N. Li, T. Yan et al., Machinery health prognostics: A systematic review from data acquisition to RUL prediction, Mech. Syst. Signal Process, vol.104, pp.799-834, 2018.

V. Atamuradov, K. Medjaher, P. Dersin, B. Lamoureux, and N. Zerhouni, Prognostics and health management for maintenance practitioners-Review, implementation and tools evaluation, Int. J. Prognostics Health Manag, vol.8, pp.1-31, 2017.

J. Rabatel, S. Bringay, and P. Poncelet, Anomaly detection in monitoring sensor data for preventive maintenance, Expert Syst. Appl, vol.38, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00670917

G. Nicchiotti and J. Rüegg, Data-Driven Prediction of Unscheduled Maintenance Replacements in a Fleet of Commercial Aircrafts, Proceedings of the European Conference of the PHM Society, p.10, 2018.

N. Gugulothu, V. Tv, P. Malhotra, L. Vig, P. Agarwal et al., Predicting Remaining Useful Life using, Time Series Embeddings based on Recurrent Neural Networks, 2018.

R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang et al., Deep learning and its applications to machine health monitoring, Mech. Syst. Signal Process, vol.115, pp.213-237, 2019.

D. Gunning, Explainable artificial intelligence (xai) Program, Proceedings of the 24th International Conference on Intelligent User Interfaces, pp.17-20, 2019.