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 

Abstract—Mapping of rice field is done with a 
conventional two step process: training process and 
classification.The results of mapping process are highly 
influenced by accuracy of spectral reference obtained in 
training process. Robust reduction dimension improvements 
are proposed for computing estimators. The first 
improvement consists in a modification of robust subset with 
preliminary data inspection. The inspection is useful for 
screening and removing  the potential outliers. As a second 
improvement the replacement of process inversion of 
covariance matrix with a new depth function is proposed. 
The case study of research is rice fields located in 
Karawang, West Java. Data from MODIS (Moderate 
Resolution Imaging Spectroradiometer) satellite are 
used for rice field mapping. 

Index Terms— C-Step, depth function, minimum vector 
variance, principal component analysis, remote sensing, 
robustness. 

 

I. INTRODUCTION 

ice is the main staple consumption in Indonesia. It is a 
very important commodity for most Indonesian 
people. The growth of Indonesian population during 

the period from year 2000 to year 2010 is 1.49 percent. 
The census in 2010 stated that the population is 
approximately 237.56 million people. As the population 
growth rate continues to grow, the demand for rice will 
continue to increase every year. On the other hand the 
number of farmers during this period has decreased. 
Apriyana [11] stated Indonesian needs 13 millions hectare 
productive land on 2012 and it only has 8.1 millions 
hectare available. 

Indonesia is one of  the good rice producers in the 
world. The climate and geography of Indonesian are 
suitable with the rice plant, the  problem of reducing rice 
production  should not  be  found. Decreasing production 
capacity of rice have caused decreasing of capacity in food  
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supply. Government policies to increase of rice production 
capacity have been done, such as: rehabilitation and 
extensification in irrigation infrastructure, expansion of 
new land for rice, and the acceleration of technology 
innovation, including revitalization of development  
research. 

This paper discusses our research on rice mapping using 
data remote sensing. Lillesand et.al [18] defined remote 
sensing as the science and art of obtaining information 
about an object through the analysis of data acquired by a 
device  that is not in contact with the object under 
investigation. Data of research are  supported by 
Indonesian Agency for the Assessment and Application of 
Technology (BPPT).  The mapping process is done 
through two steps; the training process and the mapping or 
classification process. In  the first process, data  are 
collected by ground-based sensor  and  in the next process; 
i.e. mapping or classification process, data  come from 
multispectral of  MODIS  sattelite (Moderate Resolution 
Imaging Spectroradiometer).  The case study of this 
research is rice plantation field in Karawang, West Java, 
Indonesia. 

Many data mining approaches have been used  for 
classification processes. In this case we introduce the 
robust dimension reduction method for mapping of rice 
field.  Classification is one technique of data mining used 
to predict group membership based on information on one 
or more characteristics of data. In this research, we use 
terminology ‘mapping’ for classification process 

Several problems might appeare  in the mapping 
process, such as unprecission of  ground-based data 
collection, data of training process have the tendency to be 
collinear, and  the inconsistency of the weather during the 
sattelite capturing of objects.  The robust dimension 
reduction is  believed  to be the solution of the problems. 

Principal component analysis (PCA) is the most 
commonly used for dimension reduction technique.    The 
main idea PCA is to reduce the dimensionality of a data 
set consisting of a large number of interrelated variables, 
while retaining as much as possible of the variation 
present in the data set,  Jollife[7]. 

Robust  principal component (ROBPCA) is the famous 
robust dimension reduction method introduced by  Huber 
et al [9].  ROBPCA is a method combining two 
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advantages of both projection pursuit and robust method 
minimizing covariance determinant (MCD). ROBPCA has 
good properties but the computation is still elaborative for 
images classification. Herwindiati  and Isa [4] introduced 
MVV robust PCA for reducing the time of computation. 

MVV robust PCA is  defined as robust method  
minimizing vector variance (VV) with dimension 
reduction.   The vector variance (VV) is multivariate 

dispersion that is formulated as  2Tr  , geometrically 

VV is a square of the length of the diagonal of a 

parallelotop generated by all principal components of X


.  

This  paper deals with mapping rice field by using 
MODIS sattelite data  with spatial resolution (500m x 
500m). One  pixel of MODIS can acquire (500m x 500m)  
of land covers, NASA [11]. It means that one pixel gives 
the great information of  variety of land covers. Indeed for 
robust computation the convergence of estimator is not 
fast. The estimator is fluctuated till at last it meets its 
stability.  An efficient and effective robust method must be 
used to encounter the problems.  An improvement of  
MVV Robust PCA is introduced. The objective of this 
paper is to enhance MVV robust PCA  for mapping rice 
field . The enhancements consist of the modification of 
robust subset selection and replacement of inversion 
process of covariance matrix  with a new depth function 
proposed by Djauhari and Umbara [8]. 

II. GROUND-BASED DATA  AND OUTLIER 

 Ground-based data that is used as input in our training 
process of mapping rice research are hyper spectral data of 
rice plants collected by using International Light (ILT900) 
spectrometer which has wavelength range between 250-
900 nm and its sensor has 25 degree of field of view 
(FOV) angle.  

To acquire the spectral of rice plant as an object, the 
sensor is located at least 2 meter height above the objects 
in order to be able to cover about 1m x 1m area. The 
spectral itself is represented by reflectance of light 
transmitted into the sensor, and its properties are then 
converted into digital number of 2048 channels. The 
obtaining data were logged directly into notebook 
computer which integrated with the equipment during 
observation. This manner is recurrently done 8 times 
during rice planting period of April – July 2012 in 
experiment farmland located in Subang district of West 
Java. Moreover, to simplify the data, all of the obtained 
data were adjusted and reformed into 4 channels of 
MODIS data by computational process.  

Supervised ground-based data collection is done by user 
interaction. The potential anomolous observation is 
appeared in the training process. Beckman and Cook [17] 
divided outliers into two major categories (cited from 
Anscombe 1960). First, there might be errors in the data 
due to some errors; and second, outliers may be present 
from the inherent variability of the data. The robust 
method deals with a very real problem in statistical 
applications, the robust estimator provide a  reliable 
classification when the data contain outliers. 

There are some robust criteria proposed to get effective 
estimators. The most well known criterion is to minimize 
the volume of ellipsoid of a parallelotop. Among them, 
MVE (minimizing the volume of ellipsoid) and MCD 
(minimizing the covariance determinant) introduced by 
Rousseeuw [14] are the most popular. However, in recent 
years MCD receives much more attention than MVE dueto 
its performance in estimating the true location and scatter.  
Some improved versions of MCD algorithm are available, 
for example feasible solution algorithm in Hawkins [5] 
and Hawkins and Olive [6] Fast MCD (FMCD) algorithm 
in Rousseeuw and van Driessen [15], block adaptive 
computationally-efficient outlier nominators (BACON) in 
Billor et al. [13], improved FMCD algorithm in Hubert et 
al. [9] 

The main objective of this paper is to introduce an 
effective and efficient method for mapping rice field using 
the supervised mapping field. The supervised mapping 
field is done with two steps: the training process process 
and the mapping or classificafion of land. The robust 
dimension reduction method  is implemented to this 
research. The following discussion  will explain the 
concept of the used method. 

   

III. PRINCIPAL COMPONENT ANALYSIS 

Feature selection or reduction in remote sensing has 
been used for different purposes. The most exploration is 
used for classification of multispectral or hyperspectral 
image. One of the most common forms of feature 
reduction is PCA.  The main idea PCA is to reduce the 
dimensionality of data set consisting of a large number of 
inter related variable, while retaining as much as possible 
of variation in the data set, see Jollife[7]. S. Mulyono[1] 
used a genetic algorithm based new sequence principal 
component regression (GA-NSPCR) on how to effectively 
reduce the number of those bands with high accuracy for 
reliable rice yield prediction. 

Computation of the principal components reduces to the 
solution of an eigenvalue-eigenvector problem for a 
positive-semidefinite symmetric matrix. Suppose that the 

random vector  X


 of p  components has the classical 

covariance matrix S which is a p p  symmetric and 

positive semi definite, 
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Covariance matrix S  has eigenvalues 

1 2 0p       and eigenvector U  such that

U SU L   ; where L  is diagonal matrix.  

Principal components are weighted linear 

combinations of Y


 whose variances are as large as 
possible. The first principal component is given by 

1 1Y U X
 

  which has the largest proportion of total 
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variance. Technically, the pricipal components can be 
defined as a linear combination of optimally-weighted 
observed variable, they are orthogonal to and independent 
of other components. 

The proportion of total variance of the  k  principal 
component is often explained by the ratio of the 

eigenvalues k 
k

i
i i



 . The decision to choose the best 

low dimensional space can be determined by the largest  
proportion of total variance  

The  classical PCA, which is based on sample mean and 
sample covariance is very sensitive to outliers in the 
training data set. The k  principal component consisting of 
the largest proportion of total variance S is often pushed 
toward the outliers, see Herwindiati and Isa [4]. The 
efficient and effective robust  dimension reduction is 
described in the next section. 

IV. THE MVV SUBSET MODIFICATION  ALGORITHM 

Robust subset algorithms have been proposed in recent 
years for a large range of applications. In brief, the task of 
the robust subset algorithm can be interpreted as that of 
selection of subset from a data set that is then used to 
calculate the robust estimator. We know that Rousseeuw 
and van Driessen [15] approximated the FMCD estimator 
by searching among all subsets containing half of the data 
that is most tightly clustered together. This subset has 
minimum generalized variance or minimum covariance 
determinant. The FMCD algorithm is fast and high 
breakdown point robust procedure that is constructed 
based on the so-called concentration step (C-step). 

Herwindiati et al. [3] proposed a criterion for robust 
estimation of location and covariance matrix minimizing 
vector variance (VV), the method is known as minimum 
vector variance (MVV). The subset of MVV is guided on 
C-step.  The robust MVV is in progress to be implemented 
in the applications of problems in data mining;  especially 
for cheap and fast computational time. For large data such 
as hyper spectral remote sensing data, the C-step is not 
efficient.  

The subset  modification is introduced for  robust 
computation in  training process. The preliminary of 
modification  is conducted by Z-Score approach which is  
useful to screen and remove the potential outliers.  The Z-
Score is used for data screening before C-Step is started. 

Iglewicz and Hoaglin [2] proposed  the resistant Z-
Score to remove the potential outliers.  The resistant Z-
Score is defined as    

   
   

   
0.6745

1
MAD

i
i

x x
M




       
 

where : the estimator MAD (the median of the absolute 

deviation)     MAD i imedian x x    and the constant 

0.675 is calculated from (MAD) for large n . The 

observations are potential outliers if  iM D  and  D is 

constanta ( 3.5D  )  calculated from a simulation study. 

The following experiments describe the performance 
of subset MVV and subset modification of MVV.  

The numbers of 1000 data are generated from the 
multivariate normal mixture model,  

    3 1 31 , IN 


 +  3 2 3, IN  ,  

with 3p  , 0.05  , 1 0 


, 2 8 e 
 

, and  e


 is a 

vector of dimension  3 and all of its components are 
having value 1. Figure 1 and Figure 2 show the MVV 
subset and subset modification  of  MVV respectively. The 
ellipsoide of MVV subset modification is more 
concentrated than MVV Subset, consequently  the 
minimum of vector varianve is faster  to be convergence 

 

 

 

Figure 1. Subset of MVV 

 

 

Figure2. Subset Modification of MVV 

 

The next experiment is our experience when we to 
compute of robust estimator in the training process. The 
small data training  (it has only 574 onservations)  from 4 
channels is treated. We use two subsets to compute the  
estimator. Here, we see the subsets selections of ‘original’ 
C-Step which are done with several replications and the 
minimum vector variance is oscillated to be convergence. 
Preliminary data inspection is used to reduce the high 
computational time. The result of experiment is shown in 
Figure 3. 
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As shown in this figure, the C-step is running on two 
approaches, and the modification subset algorithm is faster 
to the convergence since the modification subset of MVV 
only needs 9 replications of C-step, while MVV needs 15 
replications of C-Step.   

 

 

Figure 3. The Comparisson of C-Step 

 

V. THE DEPTH FUNCTION AND ROBUST ESTIMATOR 

COMPUTATION 

Covariance matrix plays an  important role in 
multivariate data analysis. The inversion of covariance 
matrix  is one of the problems encountered in robust 
estimation. Djauhari and Umbara [8] introduced a new 
depth function iM ; which is equivalent to Mahalanobis 

depth,  but  it is less complicated than Mahalanobis depth  
to replace the inversion process of covariance matrix. 

Let  1 2, , , nX X X   be a random sample from p - variate 

distribution where the second moment exists. The sample 
mean vector and sample covariance matrix are, 
respectively, 

1

1 n

i
i

X X
n 

   and   
1

1

1

n t

i i
i

S X X X X
n 

  
 

 
  

( 1, 2, ,i n  ) 

 

The new depth function  iM  is defined as 

 

          
 

 
 

1
2

t

i

i

i

X X
M

X X S

  
  
 
 



  

iM  is a matrix of size    1 1p p    is associated with 

1 2, , , nX X X . The good characteristics of iM  is that the 

measure does not need any matrix inversion in its 
computation. 

The depth function  iM  is applied to the robust 

algoritm of training process, the inversion process of 
covariance matrix is replaced with iM . The detailed 

explanation of algorithm is available in Section VII. 

VI. CASE STUDY 

The case study of research is rice fields located in 
Karawang, West Java. Data from MODIS (Moderate 
Resolution Imaging Spectroradiometer) satellite is used 
for mapping  rice field. 

Modis satellite is one of sattelites provided by EOS 
(Earth Observing System). The satellite rotates the surface 
of the earth once in one or two day(s). There are 36 
spectral bands receiving the wave length. MODIS plays a 
significant role in validation development, global, 
interactive earth system model, prediction the global 
changing in an accurate way in supporting policy makers 
in creating right decision about the environment 
conservation, see Boccardo et.al [16]. The Indonesian 
Agency for the Assessment and Application of 
Technology (BPPT) have supported and provided the 
ground based hyper spectral data of rice plant for the 
research.  

 

  
Figure 4. Karawang-West Java Using MODIS Satellite, in size 

(100x100) pixels 

 

VII. TRAINING AND MAPPING PROCESS 

Mapping of rice field is defined as classification as rice 
field and as non rice field. The rice field is categorized to 
vegetative rice field and reproductive rice field.  The result 
of mapping field is highly influenced by the result of 
training process, therefore the use of powerful training 
algorithm is needed in providing acurate spectral reference 
in mapping process. 

Two data sources given from two different measures;  
ground-based sensor and MODIS satellite sensor; are used 
in this research. The transformation of data sources are 
considered to have spectral reference of rice plant and 
mapping rice field.  The transformation of source causes 
the potential problem in the training process. 
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A. Training Process 

The objective  of training step is to predict the range of 
reference spectral of rice plant consisting of two phases of 
plant; i.e vegetative and reproductive phase.  
Training process is done before mapping process. The 

implementation of algorithm of training process is: 

i.  To reduce dimension reduction  
ii.  To select  the preliminary  initial of data subset using 

the  Z-  Score approach 
iii. To estimate robust estimator using the depth function 

iM        

iv. To calculate the range  spectral reference of two phases 
of rice plant (vegetative and reproductive phase).  

 

The robust  algoritm of training  is described as follows, 

1. Assume  a data set  of p-variate observations is    

 1 2, , , nX X X
  

     
 
 

 2. Let  0 1, 2, ,H n  with 0H h  and 
1

2

n p
h

       

 3. Compute the mean vector   
OHX


and covariance matrix 

OHS  of OH  

 4. Compute   
 

 
1

t

i O

i

i O O

X X
M

X X S








      for 

1, 2, ,i n   

5. Sort  iM  in decreasing order,      1 2 nM M M      

6. Define        1 2, , ,W hH X X X  
  

  

7. Calculate the new mean vector   and covariance matrix 

of WH , that are  
WHX


 and 

WHS   

8. If   2 0
WHTr S    the process is stopped.   If 

   2 2

W OH HTr S Tr S  repeat  steps (2 – 8)  the process is 

continued until the k-th iteration if 

   2 2
1k kTr S Tr S    

   and    is a small constant 

9. Let VVT


 and VVS  be the location and covariance matrix 

given by that process.    

 
   

      Robust squared MVV  Mahalanobis distance  for  the 

data training set is calculated from robust estimator VVT


 and 

VVS  the distance is defined as, 

          
       2 1, 3t

VV i VV i VV VV i VVd X T X T S X T  
     

  

for all i = 1, 2, … , n. 

 
The last step of training process is to predict the range  

spectral reference of two phases of rice plant. The spectral 
references are useful as guidance of mapping process. The 
boxplot of robust distance is applied as tool to determine the 
spectral references. In this case, spectral reference of 
vegetative phase is 0.0034 11.998VVGd   and 

12.023 42.987VVPd  is spectral reference of reproductive 

phase. 

 

 

Figure 5. The Boxplot of Robust Distance 

 

B. Mapping of Rice Field 

The mapping of rice field using MODIS satellite image 
collected on March 25th is done for Karawang-West Java 
area with the spectral references in the training step.  

Consider 1 2, , nz z z
  

  are  the pixels of  whole  imaging 

karawang having  p-variate. The spectral references are used 

to classify of whole area. Assume, VVGT


 and VVGS  are being 

the location and covariance matrix of vegetative phase, the 

distance  , , where 1, 2,...RG i VVGd z T i n


 is computed to 

classify  an each pixel .  The pixels are belonging due to 
vegetative rice plant if the distances are in the vegetative 
spectral range 0.0034 11.998RGd  . 

Figure 6 is the result of mapping of Karawang rice field. 
The vegetative phase of rice field  is labeled with the soft 
green color,  the productive phase of rice plant colored in 
the dark green. The result of mapping is given in Table 1. 
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Figure 6. Mapping of Karawang Rice Field, in size (100x100) pixels 

 

 
TABLE 1.  

THE RESULT OF RICE FIELD MAPPING 

 

 

VIII. CONCLUSION 

This paper presents new alternative method for robust 
estimation  in rice field mapping. This method is useful to 
enhance the mapping result, which consist of the 
modification of robust subset selection and replacement 
inversion process of covariance matrix  with a new depth 
function iM  . The benefit of our method in training process 

are the spectral references of rice plant are well estimated, 
and the computational cost is become faster.  
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