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Abstract. Checking the soundness of cyclic induction reasoning for
first-order logic with inductive definitions (FOLp) is decidable but the
standard checking method is based on an exponential complement opera-
tion for Biichi automata. Recently, we introduced a polynomial checking
method whose most expensive steps recall the comparisons done with
multiset path orderings.

We describe the implementation of our method in the CyYCLIST prover.
Referred to as E-CycLisT, it successfully checked all the proofs included
in the original distribution of CycrLisT. Heuristics have been devised
to automatically define from the analysis of the proof derivations the
ordering measures that satisfy the ordering constraints.

FOLip cyclic proof derivations may also be hard to certify. E-CycLIsT
witnesses a strong relation between the two cyclic and well-founded in-
duction reasonings. This opens the perspective of using the known cer-
tification methods that work for well-founded induction proofs.

Introduction. Cyclic pre-proofs for the classical first-order logic with induc-
tive predicates (FOLjp) have been extensively studied in [4, 5, 7]. They are
finite sequent-based derivations where some terminal nodes, called buds, are
labelled with sequents already occurring in the derivation, called companions.
Bud-companion (BC) relations, graphically represented as back-links, are de-
scribed by an induction function attached to the derivation, such that only one
companion is assigned to each bud, but a node can be the companion of one or
several buds. The pre-proofs can be viewed as digraphs whose cycles, if any, are
introduced by the BC-relations.

It is easy to build unsound pre-proofs, for example by creating a BC-relation
between the nodes labelled by the sequents from a stuttering step. The classical
soundness criterion is the global trace condition. Firstly, the paths are annotated
by traces built from inductive antecedent atoms (IAAs) found on the lhs of the
sequents in the path. Then, it is shown that for every infinite path p in the cyclic
derivation of a false sequent, there is some trace following p such that all succes-
sive steps starting from some point are decreasing and certain steps occurring
infinitely often are strictly decreasing w.r.t. some semantic ordering. We say that



a progress point happens in the trace when a step is strictly decreasing. A proof
is a pre-proof if every infinite path has an infinitely progressing trace starting
from some point.

The standard checking method [5] of the global trace condition is decidable
but based on an exponential complement operation for Biichi automata [9]. It
has been implemented in the CYCLIST prover [6] and experiments showed that
the soundness checking can take up to 44% of the proof time. On the other
hand, we presented in [10,12] a less costly, polynomial-time, checking method.
The pre-proof to be checked is firstly normalized into a digraph consisting of a
set of derivation trees to which is attached an extended induction function. The
resulting digraph counts among its roots the companions, as well as the root of
the pre-proof to be checked. A sufficient condition for any pre-proof to be a proof
is to show that every strongly connected component (SCC) of the digraph of the
normalized pre-proof satisfies some ordering and derivability constraints, where
the ordering constraints are similar to those used for certifying cyclic Noetherian
induction proofs [11].

Implementation. Our method has been integrated in CYCLIST, by replacing
the standard checking method which leads to an extension called E-CYCLIST.
CycLiST builds the pre-proofs using a depth-first search strategy that aims at
closing open nodes as quickly as possible. Whenever a new cycle is built, model-
checking techniques provided by an external model checker are called to validate
it. If the validation result is negative, the prover backtracks by trying to find
another way to build new cycles. Hence, it may happen that the model checker
be called several times during the construction of a pre-proof.

To each root r from the digraph P of a normalized pre-proof tree-set, the
method attaches a measure M(r) consisting of a multiset of IAAs of the sequent
labelling r, denoted by S(r). One of the challenges is to find the good measure
values that satisfy the ordering constraints. A procedure for computing these
values is given by Algorithm 1.

Algorithm 1 GenOrd(P): to each root r of P is attached a measure M(r)
for all root r do

M(r):=0
end for
for all rb-path » — b from a non-singleton SCC do
if there is a trace between an IAA A of S(b) and an IAA A’ of S(r) then
add A to M(rc) and A’ to M(r), where rc is the companion of b
end if
end for

Firstly, the value attached to each root is the empty set. Then, for each root-
bud (rb) path from a cycle, denoted by r — b, and for every trace along r — b,
leading some TAA of S(r) to another TAA of S(b), we add the corresponding



IAAs to the values of r and the companion of b, respectively. Since the number
of rb-paths is finite, Algorithm 1 terminates.

Algorithm 1 may compute values that do not pass the comparison test for
some non-singleton SCCs that are validated by the model checker. For this case,
we considered an improvement consisting of the incremental addition of IAAs
from a root sequent that are not yet in the value of the corresponding root r.
Since the validating orderings are multiset extensions of multiset path orderings,
such an addition does not affect the comparison value along the rp-paths starting
from r. On the other hand, it may affect the comparison tests for the rp-paths
ending in the companions of r. This may duplicate some IAAs from the values of
the roots from the rp-paths leading to these companions. The duplicated TAAs
have to be processed as any incrementally added TAA, and so on, until no changes
are performed.

Table 1 illustrates some statistics about the proofs of the conjectures consid-
ered in Table 1 from [6], checked with the standard as well as our method. The
TAAs are indexed in CYCLIST to facilitate the construction of traces; the way
they are indexed influence how the pre-proofs are built. Different indexations for
a same conjecture may lead to different proofs (see the statistics for the second
and third conjectures). The column labelled ‘Time-E’ presents the proof time
measured in milliseconds by using our method. Similarly, the ‘Time’ column dis-
plays the proof time when using the standard method, while ‘SC%’ shows the
percentage of time taken to check the soundness by the model checker. ‘Depth’
shows the depth of the proof, ‘Nodes’ the number of nodes in the proof, and
‘Bekl.” the number of back-links in the proof. The last column gives the num-
ber of calls for pre-proof validations. The proof runs have been performed on a
MacBook Pro featuring a 2,7 GHz Intel Core i7 processor and 16 GB of RAM.
It can be noticed that, by using our method, the execution time is reduced by a
factor going from 1.43 to 5.

Theorem Time-E Time SC% Depth Nodes Bckl. Queries
Oiz + Nox 2 7 61 2 9 1 3
FrxV Ozx - Nsx 4 11 63 3 19 2 6
FizV Oz - N3z 2 9 77 2 13 2 6
Niz F Oz V Esx 3 7 52 2 8 1 4
Niz A Nay F Q1 (z,y) 207 425 40 4 19 3 665
Niz - Addi(z,0,z) 1 5 76 1 7 1 4
Niz A Noy A Adds(z,y,2) F N1z 8 14 38 2 8 1 16
Niz A Noy A Adds(z,y,z) F 15 22 32 2 14 1 14
Add, (z, sy, sz)

Niz A Noy b Ri(z,y) 266 484 48 4 35 5 759
Niz A Noy F p1(z,y) 597 ? ? 4 28 3 2315

Table 1. Statistics for proofs checked with the standard and our method.



The last conjecture was not tested in [6] and refers to the 2-Hydra example [3].
A pre-proof of it, reproduced in Fig. 1, can also be generated by CYCLIST, as
shown in Fig. 2. In the pre-proof, the (root) companion and the buds are denoted
by (a). Unfortunately, CYCLIST was not able to validate it using the standard
method, hence the missing figures are denoted by 7 in the table.

(a)Nz, Ny b pzy (a)Nz, Ny - pzy (a)Nz, Ny - pzy
Nsz",Na'" + psaa" Nsy", Ny" b psy"'y” Na', Ny b pa'y”
NOF pl0 Nsx',Nz" - pssz”0 Nsy'',Ny" b possy” Nsy", Nz', Ny" & psa’ssy”
P 3 P Na
F p00 Nz' = psz'0 NO, Nz b pzl Nsy"', Nz, Ny" + pzssy” )
Nz pz0 * Nz, Ny' F prsy’
Ny

(a)Nz, Ny - pzy

Fig. 1. The Berardi and Tatsuta’s cyclic pre-proof of the 2-Hydra example.

On the other hand, the proposed measure values may not pass some com-
parison tests that succeed with the standard method, even when using the
improved version of Algorithm 1. Indeed, this was happened while proving
Niz A Nay b R(z,y). Hopefully, the prover backtracked and finally found the
same proof as that built using the model checker.!

@: N_1(x) /\ N_2(y) |- p_1(x,y) (N L.Unf.) [1,2]
1: N_2(x) /\ N_3(@) |- p_1(x,@) (N L.Unf.) [3,4]
3: N_3(@) /\ N_4(@) |- p_1(@,0) (p R.Unf.) [5]
: N_3(0) /\ N_4(@) |- T (Id)
4: N_1(y) /\ N_3(@) /\ N_4(s(y)) |- p_1(s(y),@) (N L.Unf.) [6,7]
: s(y)=0 /\ N_1(y) /\ N_3(@) /\ N_5(s(y)) |- p_1(s(y),0) (Ex Falso)
7: N_1(y) /\ N_3(@) /\ N_4(y) /\ N_5(s(y)) |- p_1(s(y),@) (N L.Unf.) [8,9]
8: N_1(e) /\ N_3(@) /\ N_5(s(@)) /\ N_6(0) |- p_1(s(@),0) (p R.Unf.) [10]
10: N_1(0) /\ N_3(@) /\ N_5(s(@)) /\ N_6(8) |- T (Id)
9: N_1(s(z)) /\ N_3(@) /\ N_4(z) /\ N_5(s(s(z))) /\ N_6(s(z)) |- p_1(s(s(z)),0) (p R.Unf.) [11]
11: N_1(s(z)) /\ N_3(@) /\ N_&4(z) /\ N_5(s(s(z))) /\ N_6(s(z)) |- p_1(s(z),z) (Weaken) [12]
12: N_1(s(z)) /\ N_2(z) |- p_1(s(z),z) (Subst) [13]
13: N_1(x) /\ N_2(y) |- p_1(x,y) (Backl) [@]
2: N_1(x) /\ N_2(z) /\ N_3(s(z)) |- p_1(x,s(z)) (N L.Unf.) [14,15]
14: N_2(z) /\ N_3(s(z)) /\ N_4(@) |- p_1(@,s(z)) (N L.unf.) [16,17]
16: N_3(s(@)) /\ N_4(@) /\ N_5(8) |- p_1(@,s(@)) (p R.Unf.) [18]
18: N_3(s(@)) /\ N_4(@) /\ N_5(8) |- T (Id)
17: N_2(y) /\ N_3(s(s(y))) /\ N_4(@) /\ N_5(s(y)) |- p_1(@,s(s(y))) (p R.Unf.) [19]
19: N_2(y) /\ N_3(s(s(y))) /\ N_4(@) /\ N_5(s(y)) |- p_1(s(y),y) (Weaken) [20]
20: N_1(s(y)) /\ N_2(y) |- p_1(s(y),y) (Subst) [21]
21: N_1(x) /\ N_2(y) |- p_1(x,y) (Backl) [@]
15: N_1(y) /\ N_2(z) /\ N_3(s(z)) /\ N_4(s(y)) |- p_1(s(y),s(z)) (N L.unf.) [22,23]
22: N_1(y) /\ N_3(s(@)) /\ N_&(s(y)) /\ N_5(@) |- p_1(s(y),s(@)) (p R.Unf.) [24]
24: N_1(y) /\ N_3(s(@)) /\ N_&(s(y)) /\ N_5(@) |- T (Id)
23: N_1(y) /\ N_2(w) /\ N_3(s(s(w))) /\ N_4(s(y)) /\ N_5(s(w)) |- p_1(s(y),s(s(w))) (p R.Unf.) [25]
25: N_1(y) /\ N_2(w) /\ N_3(s(s(w))) /\ N_&(s(y)) /\ N_5(s(w)) |- p_1(y,w) (Weaken) [26]
26: N_1(y) /\ N_2(w) |- p_1(y,w) (Subst) [27]
27: N_1(x) /\ N_2(y) |- p_1(x,y) (Backl) [@]

Fig. 2. The screenshot of the 2-Hydra pre-proof generated by CyYCLIST.

! The source code of the implementation and the examples can be downloaded at
https://members.loria.fr/SStratulat /files/e-cyclist.zip



In the following, we detail how our method has been applied for validating
the 2-Hydra pre-proof from Fig. 2.

The 2-Hydra case. We explain the notations, the specification of the inductive
predicates, the inference rules and the pre-proof from Fig. 2. Contrary to the
pre-proof from Fig. 1, the CYCLIST pre-proof is horizontally indented by the level
of nodes. The nodes are numbered and labelled by sequents where the comma
(,) is replaced on the lhs of the sequents by the conjunction connector (/\). As
stated previously, the inductive predicate symbols are indexed.

The axioms defining the inductive predicates N and p are:

= p(0,0) p(x,y) = p(s(z), s(s(y)))
= N(0) = p(s(0),0) p(s(y),y) = p(0,s(s(y))
N(x) = N(s(z)) = p(z, 5(0)) p(s(x), ) = p(s(s(x)),0

The applied inference rule for each sequent is pointed out at the end of the
sequent.

(N L.Unf) [n1,n2] generates the nodes n; and ns by choosing an IAA of
the form N(t). If ¢ is a variable, ¢ will be replaced by 0 and s(z), where z is a
fresh variable. For the second instantiation, the TAA is replaced by N(z). This
represents a progres point. If ¢ is of the form s(¢’), the original sequent is reduced
to another sequent by replacing the chosen IAA N(s(t')) with N(¢).

(p R.Unf) [n] produces the node n resulting from the replacement of the
consequent atom from the sequent labelling n with the condition of some axiom
defining p and whose conclusion matches the atom.

(Id) and (Ex Falso) delete trivial conjectures. (Weaken) (resp., (Subst))
[n] is the LK’s weaking (resp., substitution) rule [8] whose premise labels n.
Finally, (Backl) [n] shows that the current node is a bud for the companion n.

The pre-proof from Fig. 2 is already normalized and there is only one non-
singleton SCC. It can be easily noticed that every rb-path in a pre-proof tree
has the form:

(Backl)

bud (Subst)

S/

root

where the only time when (Subst) is applied in the rb-path is just before
(Backl).

Our validity method is based on properties to be satisfied locally, at the level
of rb-paths. An rb-path r — b is valid if b is “smaller” than r w.r.t. a trace-based
multiset extension relation. The standard and the trace-based definitions are:



— (multiset extension) B <p.; A if there are two finite multisets X and Y
such that B=(A—-X)WY, X £ and Vy €Y, 3z € X,y < x holds.

— (trace-based multiset extension) b is “smaller” than r if, after pairwisely delet-
ing the IAAs linked by a non-progressing trace along r — b (the result is X
and Y as above), X # () and Vy € Y, 3z € X such that there is a progressing
trace along r — b between x and y.

The three rb-paths from the unique non-singleton SCC link the root to the
following nodes:

Ni(y), N1(z)] and [Na(y), Na(2), N2(2), Na(w), Na(w), Na(w), Na(y)],
2. 21; the possible traces along it are: [Na(y), Na(z), N2(2), Na(y), Na(y), Na(y),
NQ(Q)] and [N2(y)’NQ(Z)7N2(z)’N5(S(y )’N5(S(y))>N1(s y))le(x)]v and

3. 13; its possible traces are: [Ny (x), N1(z), N1(y), N1(y), N1(s(2)), N1(s(2)),
%1ES§T))»N1($)] and [N (2), N1(2), Na(s(y)), Na(y), Na(z), Na(z), Na(
2\y)|-

All the above traces are progressing; we took care to underline the TAAs
corresponding to progress points. By definition, these rb-paths are valid.

The improved version of Algorithm 1 can be applied to find the measure of
the root. It consists of the multiset {N1(z), N2(y)}. In Fig. 3, we show a summary
of these results for a non-optimized version of the pre-proof from Fig. 2.

Measures proposed for the roots in cycles:
0: [2, 1]

Checking the link of IAAs from buds to roots:
28 to @: | 1 —> 1 [true 1] 2 —> 2 [true 1]

21 to @: | 1 —> 2 [true 1] 2 —> 2 [true 1]
13 to @: | 1 —> 1 [true 1] 2 —> 1 [true 1]
The proof has succeeded

Fig. 3. The E-CycLisT validation of the 2-Hydra pre-proof from Fig. 2.

Even if the proof of validity for every rb-path found on the non-singleton
SCCs is enough to conclude the satisfaction of the global trace condition, we
will perform a last step, essential to represent the cyclic proofs as well-founded
induction proofs: the introduction of the ordering constraints. For doing this, we
consider only the pre-proofs for which every application of (L.Unf.) instantiates
variables along the rb-paths. This restriction allows us to annotate with some
substitution each step encountered by following an rb-path, i.e.:

— the instantiation substitution used by (L.Unf.), for the (L.Unf.)-steps, and
— the identity substitution replacing the free variables from the current sequent
by themselves, for the other steps.



Let p be an rb-path, 6 the cumulative substitution built by composing the
substitutions encountered while following p, and ¢ the substitution used by the
(Subst)-step. We say that the bud b of p is discharged by the root r of p if
there is a well-founded and ‘stable under substitution’ ordering < such that
M(e(b))d < M(r)f, where ¢(b) is the root companion of b and M(r)f (resp.,
M(c(b))0) is the multiset obtained by instantiating each TAA from M (r) with
0 (resp., each TAA from M (c(b)) with 9).

We recall the main theorem stating when a pre-proof is a proof:

Theorem 1 (adapted from [10,12]) LetT'S be the normalized pre-proof tree-
set of a pre-proof P. If there is a well-founded and ‘stable under substitution’

ordering such that the buds from all rb-paths encountered in the non-singleton
SCCs of TS are discharged, then P is a proof.

For the 2-Hydra example, the well-founded and ‘stable under substitution’
ordering can be defined as the multiset extension of some multiset path ordering
(mpo) [2] built from any precedence over the symbols {N,s,0}. The reason is
that the ordering comparisons are boiled down to show that ¢ is smaller than s(¢),
for some terms ¢, which holds for every such mpo, due to its subterm property.

The comparison required for the rb-path linking the root to the node:

= 27 is {N(y), N(w)} < {N(s(y)), N(s(s(w)))},
= 2Lis {N(s(y)), N(y)} < {N(0), N(s(s(y)))}, and
— Bis {N(s(2)), N(2)} < {N(s(s(2))), N(0)}.

This result allows to ‘interpret’ FOLp cyclic pre-proofs in Coq [13] as well-
founded induction proofs. By using methods for certification similar to those for
formula-based Noetherian induction reasoning [11], we pave the way to a solution
for certifying FOLp cyclic reasoning, in general, and (E-)CYCLIST pre-proofs,
in particular.?

Conclusions and future work. We have implemented in CYCLIST a more effective
technique for validating FOLp cyclic pre-proofs which allows to speed up the
proof runs by 5. Besides its polynomial time complexity, an important factor
for its efficiency is the lack of the overhead time required to communicate with
external tools.

The considered proof examples are rather small. We intend to test our method
on bigger examples and on cyclic proofs from domains other than FOLp, e.g.,
separation logic. We also plan to implement a certification tool for CYCLIST
proofs, similar to what has been developed for certifying (cyclic) well-founded
induction proofs built with the SPIKE prover [1].

2 For the reviewers, the full Coq specifications and proofs for certifying the pre-proof
from Fig. 2 are given at https://members.loria.fr/SStratulat/files/hydra-coq.zip
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