

IRSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Testing thermal scattering law for light water at 600 K using VESTA 2.2.0 depletion calculations

ICNC 2019 September 2019, Paris

MEMBER OF ETSON REGNICALS NETWORK IRSN Raphaëlle Ichou Vaibhav Jaiswal Luiz Leal

PhLAM - CNRS - Lille1 Florent Réal Valérie Vallet

16 Septembre 2019

© IRSN

- Motivations and new H(H₂O) TSL
- VESTA simulations
- Results
 - k_{INF} results
 - Validation results
- Conclusions

Motivations and new H(H₂O) TSL

3

Motivations

- To improve the design and safety of critical systems and thermal reactors, it is necessary to:
 - perform high-precision neutron transport calculations
 - use state-of-the-art nuclear data
- For reactors applications: light water is the most common moderator
- Thermal scattering cross-section data often termed as Thermal scattering law (TSL) for light water **play a major role !**
- Recent release of the US ENDF/B-VIII.0 library included H₂O reviewed version of TSL data based on Molecular Dynamics (MD) simulations whereas JEFF ones are based on old experiments

Motivations

For room temperature: they perform well, but temperatures other than room temperature are needed for reactor physics!

At IRSN, an effort has been devoted to the investigation and evaluation of $H(H_2O)$ TSL for temperatures higher than room temperature for reactor safety and criticality safety applications (BUC). For so, thermal neutron scattering cross section for hydrogen bound in H_2O was re-evaluated at 600 K based on MD simulations

In this work, we present the impact of the new $H(H_2O)$ TSL data for PWR using VESTA 2.2.0 depletion calculations, by comparing the results obtained using both ENDF/B-VIII.0 $H(H_2O)$ TSL and the new IRSN TSL data

New IRSN H(H₂O) TSL

In ENDF/B-VIII.0: a new TSL library based on the CAB model has been adopted. This new library involves MD simulations of light water using the non-polarizable TIP4P/2005f flexible light water potential. This methodology is not completely approximation-free, due to the intrinsic limitation of the classical MD simulations.

At IRSN: H(H₂O) TSL was recently re-evaluated at reactor operating temperature, i.e., at 600 K based on MD simulations using the **PolarisMD code** and **TCPE polarizable rigid water potential**.

This potential takes into account the **effect of polarization of the water molecules**, believed to be an important parameter while defining a water potential at high temperature. V. Jaiswal thesis, 2018

VESTA simulations

@IRSN

VESTA : Monte-Carlo depletion code

- Goal: accurately simulate material composition under irradiation
- Applications: criticality safety, reactor safety studies (PWR, BWR, research reactors, fusion systems, ..), cycle (transport, scenario ..), waste characterization, material activation ..
- VESTA philosophy: a generic interface customisable to a user's needs:
 - > Monte Carlo code: MCNP(X/6), MORET 5
 - > Depletion module: ORIGEN 2.2, PHOENIX, FISPACT,...
 - Nuclear data libraries: JEFF, JENDL, ENDF/B at different temperatures

VESTA 2.1.5 has been validated for 65 isotopes on 96 radiochemical assay and decay heat measurements using JEFF-3.1 and ENDF/B-VII.0

VESTA 2.2.0 validation is ongoing using JEFF-3.2 and ENDF/B-VII.1

@IRSN

esta

The ARIANE GU3 sample

The ARIANE (Actinide Research In A Nuclear Element) program examined irradiated MOX and LEU fuel samples in both commercial PWR and BWR power reactors.

The ARIANE.GU3 sample:

- PWR UO₂ sample
- ➢ ²³⁵U/U: 4.1%
- > Estimated BU = 52.5 MWd kgHM⁻¹.
- 3 cycles in the Gösgen PWR in Switzerland between 1994 and 1997
- Extracted from the original assembly after 2 cycles and inserted into another fresh assembly for the 3rd cycle.
- Analyzed by 2 labs: ITU and SCK-CEN

SFCOMPO 2.

Model characteristics

General model characteristics:

- 2D model infinite medium
- Im active height
- Average boron concentration
- Individual pins are being depleted (32 zones)
 - No radial zones for normal UO₂ or MOX fuel pins
- Model temperature:
 - Tmoderator (water) = 600 K
 - Tclad = 600 K
 - Tfuel = 900 K
- Nuclear data

10

- Different JEFF & ENDF/B libraries
- w/wo new IRSN H(H₂O)
- 53 BU steps of 1 GWd.tHM⁻¹

2

3

4

5

6

7

G

Η

K_{inf} results

- Quite large discrepancies on k_{∞} results.
- ENDF/B-VII.1 and ENDF/B-VII.0 are overestimating B8.0 results by 200-400 pcm.
- JEFF-3.1 is in better agreement with B8.0 for the BOL, and is underestimating B8.0 by around 200 pcm for longer irradiation times.
- JEFF-3.2 overestimates B8.0 at BOL by 100-200 pcm, and is in very good agreement with B8.0 for most irradiation times.
- The maximum discrepancy, goes up to 800 pcm (ENDF/B-VII.0 and JEFF-3.1)

K_{inf} results

- Impact of using any TSL data: up to 300 pcm during irradiation
- The recent $H(H_2O)$ TSL at 600 K in B8.0, compared to TSL from JEFF-3.3 do not show any significant impact during irradiation

K_{inf} results - w/wo U-O(UO₂) TSL

TSL for UO_2 has been evaluated in ENDF/B-VIII.0 using modern Ab Initio Lattice Dynamics (AILD) techniques. Neutron thermalization in UO_2 fuel may be impacted by the crystal binding effects of oxygen, the calculation of which may be facilitated with the use of TSL.

The partial $U(UO_2)$ and $O(UO_2)$ densities of states were used in the LEAPR module of NJOY2016.35 to generate TSL for $U(UO_2)$ and $O(UO_2)$ at 900 K for use in our model.

The new TSL for UO₂ at 900 K in the ENDF/B-VIII.0 data library do not show any significant impact during irradiation

K_{inf} results - H(H₂O) IRSN TSL

The k_{∞} results obtained when using:

- the new IRSN H(H₂O) TSL
- the new IRSN $H(H_2O)$ TSL combined to the $U(UO_2)$ and $O(UO_2)$ TSL

show a slight over-estimation of roughly 30-50 pcm during irradiation, compared to full ENDF/B-VIII.0.

This indicates a slight impact of the new IRSN $H(H_2O)$ TSL at 600 K obtained with MD simulations and TCPE polarizable rigid water model potential.

Validation results

ENDF/B-VII.1 library

- For applications in the neutronics and criticality safety field, experimental validation is paramount.
- Provide a set of C/E values for the measured nuclides
- Define an **uncertainty range** for every nuclide, which includes:
 - the measurement uncertainty
 - the uncertainty introduced due to the irradiation history calibration (the combined value of ¹⁴⁵Nd, ¹⁴⁶Nd, and ¹⁴⁸Nd burn up tracers is applied)

Laboratory	ITU		SCK-CEN		SCK-CEN: error about 1.5 % a
	Normalization factor	Burn up [MWd.kgHM ⁻¹]	Normalization factor	Burn up [MWd.kgHM ⁻¹]	3 σ (leads to a total uncertainty on the BU of ~ 0.8 MWd.kgHM ⁻¹)
Nd reference	0.9753	49.47	1.0300	52.24	ITU: error of 5-6 % at 3σ (leads
Nd lower limit	0.9222	46.78	1.0142	51.44	to a total uncertainty on the
Nd upper limit	1.0285	52.17	1.0457	53.04	BU of ~3 MWd.kgHM ⁻¹)

Validation results - Fission products

ENDF/B-VII.1 library

SCK-CEN analysis.

- The Nd content is very well predicted within about 1-2 %
- FP are generally predicted within 20 %.
- Exceptions are: ¹⁰³Rh and ¹⁰⁹Ag (but large measurement uncertainties).

ITU analysis:

- The Nd content is within 5-10 %.
- The other FP are generally predicted within 20 %.
- Exceptions are: ¹⁴⁹Sm, ¹⁰³Rh, ⁹⁵Mo, and ⁹⁹Tc.
- ¹⁴⁹Sm and ¹⁵⁵Gd exhibit a large underestimation, whereas a good agreement in +10 % is obtained for SCK.

Validation results - Actinides

ENDF/B-VII.1 library

For the SCK analysis:

- The U and Pu: correctly estimated within 5 % (with the exception of ²³⁴U and ²⁴⁴Pu)
- Am: generally overestimated between 1 to 10 %. ^{242m}Am is underestimated by 10 %.
- Cm: generally predicted in 5 to 20 %, ²⁴³Cm is overestimated by 50 %.

For the ITU analysis:

- ²³⁵U: overestimated by 18 %.
- Pu content: underestimated by 2.5 to 12.5 %.
- Am: within 10 to 20 %
- Cm is largely underestimated.

18

Impact ENDF/B-VIII.0 vs ENDF/B-VII.1

Actinides			Fission products		
U234	0.73	%	Mo95	-0.08	%
U235	3.36	%	Тс99	0.17	%
U236	-1.57	%	Ru101	0.07	%
U238	-0.01	%	Rh103	0.38	%
Np237	-1.62	%	Ag109	1.11	%
Pu238	-1.27	%	Cs133	0.25	%
Pu239	-0.21	%	Nd143	0.03	%
Pu240	-0.76	%	Nd145	0.04	%
Pu241	0.41	%	Sm147	0.58	%
Pu242	1.13	%	Sm149	0.45	%
Pu244	-5.60	%	Sm150	0.36	%
Am241	0.51	%	Sm151	0.55	%
Am242M	0.80	%	Sm152	0.91	%
Am243	0.73	%	Eu153	-0.47	%
Cm242	0.70	%	Gd155	-0.91	%
Cm243	0.61	%			
Cm244	0.14	%			
Cm245	-0.96	%			
Cm246	-0.79	%			

At end of irradiation time

Very low discrepancies on both actinides and fission products

Maximum discrepancies:

- ²⁴⁴Pu decrease of -5.6 %
- ²³⁵U increase of 3.4 % with ENDF/B-VIII.0.

Impact ENDF/B-VIII.0 + IRSN H(H₂O) vs ENDF/B-VIII.0

Actinides			Fission products		
U234	0.50	%	Mo95	0.00	%
U235	-0.10	%	Тс99	0.07	%
U236	0.07	%	Ru101	-0.01	%
U238	0.00	%	Rh103	-0.11	%
Np237	-0.59	%	Ag109	0.39	%
Pu238	-0.30	%	Cs133	0.09	%
Pu239	-0.45	%	Nd143	-0.04	%
Pu240	-0.34	%	Nd145	0.02	%
Pu241	-0.10	%	Sm147	0.34	%
Pu242	0.24	%	Sm149	-0.10	%
Pu244	0.13	%	Sm150	-0.06	%
Am241	-0.13	%	Sm151	0.03	%
Am242M	-0.01	%	Sm152	0.36	%
Am243	0.14	%	Eu153	-0.10	%
Cm242	0.17	%	Gd155	-0.70	%
Cm243	0.41	%			
Cm244	0.23	%			
Cm245	-0.53	%			
Cm246	-0.40	%			

At end of irradiation time

Very low discrepancies on both actinides and fission products

Maximum discrepancies: 237 Np decrease of -0.6 % with new IRSN H(H₂O) TSL.

Conclusions

- VESTA 2.2.0 depletion calculations were performed using different libraries and H(H₂O) TSL data for the ARIANE.GU3 sample extracted from a PWR UO₂ fuel rod of the SFCOMPO database.
 - The recent H(H₂O) TSL at 600 K in ENDF/B-VIII.O, compared to TSL from JEFF does not show any significant impact. Moreover, adding the new ENDF/B-VIII.O UO₂ TSL at 900 K does not show neither any significant impact.
 - The new IRSN H(H₂O) TSL at 600 K show a slight over-estimation of roughly 30-50 pcm during irradiation, compared to full ENDF/B-VIII.0.
- VESTA 2.2.0 validation results on the ARIANE.GU3 fuel sample using ENDF/B-VII.1 show good agreement with experimental values, the U and Pu content being generally nicely estimated within 5 % (for the SCK-CEN analysis).
- The ENDF/B-VIII.0 concentration results agree pretty well with the ENDF/B-VII.1 ones, which is also the case when using the new IRSN H(H₂O) TSL at 600 K within ENDF/B-VIII.0.

Thanks! Any question ?

ICNC 2019 - Raphaëlle ICHOU et al.

Back up

ICNC 2019 - Raphaëlle ICHOU et al.

VESTA 2.1.5 validation database

- > Experimental validation of VESTA 2.1.5
 - MCNPX 2.6.0 & PHOENIX
 - JEFF 3.1 & ENDF/B-VII.0 nuclear data
- > The experimental validation database for VESTA : 96 cases
 - 42 samples with radiochemical analysis of actinides and fission products : for 65 nuclides (versus 53 for VESTA 2.0.0)
 - 54 complete fuel assemblies with decay heat measurements

Program	Reactor	Fuel	Туре	Samples
ARIANE	PWR	UO2 & MOX	Chemical assay	6
MALIBU	PWR	UO2 & MOX	Chemical assay	5
REBUS	PWR	UO ₂	Chemical assay	1
ISTC2670	VVER	UO ₂	Chemical assay	8
JAERI	PWR	UO ₂ & Gd ₂ O ₃ -UO ₂	Chemical assay	22
CLAB	PWR	UO ₂	Decay heat	34
GE-MORRIS	PWR	UO ₂	Decay heat	14
HEDL	PWR	UO ₂	Decay heat	6
Total				96

ICNC 2019 - Raphaëlle ICHOU et al.

VESTA validation procedure

- Estimate the sample BU and provide a reference C/E value for each nuclide
- An iterative procedure:
 - As long as the C/E of [¹⁴⁵Nd+¹⁴⁶Nd+¹⁴⁸Nd] is different from 1, we modify the power (we scale the irradiation history)
 - For every iteration, determine the C/E value and its error for the burn up tracers

• Estimate a new scaling factor

- ²³⁸U normalization:
 - Transform into a unit that can be derived from the output
 - As the C/E of 238 U is ~1, we divide all the C/E results by the C/E of 238 U

C/E results

ICNC 2019 - Raphaëlle ICHOU et al.

TSL Theoretical formalism

The double differential cross-section for neutrons with incident energy **E**, secondary energy **E'**, μ is the neutron scattering cosine and scattering angle Ω is related to S(α , β) by :

ICNC 2019 - Raphaëlle ICHOU et al.

ETSON

TSL Theoretical formalism

New IRSN H(H₂O) TSL

ICNC 2019 - Raphaëlle ICHOU et al.

