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Summary

We consider a multi-scale approach for the discrete approximation of a functional
proposed by Bake and Zisserman (BZ) for solving image denoising and segmentation
problems. The proposed method is based on simple and effective higher order varia-
tionalmodel. It consists of building linear discrete energies familywhichΓ-converges
to the non-linear BZ functional. The key point of the approach is the construction of
the diffusion operators in the discrete energies within a finite element adaptive pro-
cedure which approximate in the Γ-convergence sense the initial energy including
the singular parts. The resulting model preserves the singularities of the image and
of its gradient while keeping a simple structure of the underlying PDEs, hence effi-
cient numerical method for solving the problem under consideration. A new point to
make this approach work is to deal with constrained optimization problems that we
circumvent through a Lagrangian formulation. We present some numerical experi-
ments to show that the proposed approach allows us to detect first and second-order
singularities. We also consider and implement to enhance the algorithms and conver-
gence properties, an augmented Lagrangian method using the alternating direction
method of Multipliers (ADMM).

KEYWORDS:
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1 INTRODUCTION

Image denoising and segmentation problems have been intensively studied in the last decades and several approaches based on
statistical methods, learning, wavelets or PDEs were developed with variable success have been registered, depending on the
nature of the images under consideration (geometric features, textures, . . . )1,2,3,4,5,6. Both the difficulties and the advantages of
each method are deeply related to a best handling of small singular sets (edges, corners,. . . ). In the PDEs community, a second-
order model, proposed first by Mumford and Shah (M-S)7, turns out to be among the most successful. It consists of minimising
the energy:


2 ∫
Ω∖Γ

|∇u|2 dx + 1
2 ∫
Ω

�0(u − f )2dx +1(Su), (1)

where u is the (reconstructed) image, f the initial image and Su is the set of the contours of u. 1 denotes the 1−dimensional
Hausdorff measure is the size of Su, which generalizes the length for regular curves. The variational framework, allows for var-
ious approximations of the Mumford & Shah functional in both continuous and discrete settings (see8,9,10,11. In8, Ambrosio and
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Tortorelli proposed an elliptic approximation on the Sobolev spaces via the Γ-convergence. In their approach, the discontinuity
set Su is approximated by an auxiliary variable z which plays the role of an indicator function intended to take the value 0 at the
edges and 1 in the rest. In9,10, a discrete approximation of the Mumford-Shah energy were proposed and it is based on a finite
element discretization and an adaptive mesh strategy.
However, the Mumford-Shah functional fails to capture the “discontinuities of second kinds", i.e., the set of gradient discon-

tinuity. This limitation produces also some staircasing effect. In order to overcome such shortcomings of the Mumford-Shah
functional, Blake and Zisserman (B-Z)12 proposed a new variational model (1987) which exhibits a second order derivatives by
considering the following energy:

∫
Ω⧵(Su∪S∇u)

|∇2u|2dx + �n−1(Su ∩ Ω) + �n−1((S∇u ⧵ Su)) ∩ Ω) +
1
2 ∫
Ω

�0(u − f )2 dx. (2)

The previous energy is defined in the class of functions of

BV 2(Ω) = {v ∈ BV (Ω), ∇v ∈ BV (Ω)} .

It depends on the free discontinuities, free gradient discontinuities and second derivatives of u (see13,14,15,16 for more details).
The discontinuities of u and of∇u are “a priori "unknown, hence the associated minimization problem turns out to be essentially
non trivial. A challenging problem is how to get effective and suitable numerical schemes for the computation of solutions for
Blake-Zisserman energy? In the same spirit of the elliptic approximation of the Mumford-Shah energy, Ambrosio et al. (2001)
proposed the following functional:

BZ�(u) = ∫
Ω

z2|∇2u|2dx + ∫
Ω

(s2 + �)|∇u|2dx + (� − �)∫
Ω

�|∇s|2 +
(s − 1)2

4�
dx

+ � ∫
Ω

�|∇z|2 +
(z − 1)2

4�
dx + 1

2 ∫
Ω

�0(u − f )2dx,
(3)

defined on Sobolev spaces. The minimization of the previous energy acts not only on the restored image u but also on two
auxiliary functions: swhich is a control function for∇u and zwhich is a control function of the Hessian of u, i.e.,∇2u (see12,17).
Thus, the functional BZ� implies a minimization over the variables (u, s, z) of a non-linear PDEs system. Besides, one of
the limitation of this method is the dependency on threshold parameters, producing thickness around the edges. But a major
shortcoming is the knowledge of the exact constants � and � the difference of which gives exactly the size Su ⧵ S∇u and which
is difficult, if not impossible to have a priori.

CONTRIBUTION AND ORGANIZATION OF THE PAPER

In previous works, we have proposed another approach close to the one followed by9, based on the construction of a family of
discrete energies which converge (in the Γ-convergence sense) to MS -like functional, i.e. with the length term 1(Su),18,19.
The method acts essentially with two ingredients: a tight location of the singular set using a posteriori error indicators, and a
decreasing of a diffusion function which inhibits the diffusion cross the edges. the method doesn’t uses threshold parameters and
the length of singular sets is controlled by the Lebesgue measure of the set where the diffusion value is minimal. In this article,
we follow this idea and build a Γ-convergent family of discrete energies which aims to obtain, in the limit, the BZ-energy. We
consider the following higher order energy

(u) = 1
2 ∫
Ω

�(x)|∇2u|2dx + 1
2 ∫
Ω

�(x)|∇u|2 dx +
�1
2 ∫

Ω

|u − f |2dx +
�2
2 ∫

Ω

|∇u − ∇f�|2 dx, (4)

where 0 < �min ≤ �, 0 < �min ≤ �. ∇2u is the Hessian matrix of u, �1 > 0, �2 ≥ 0. The first and the second part in the energy
(4) are regularization terms. The third part is a data fidelity term which enforce the solution to be close to the initial image f
(in the L2 orH1 norms). We emphasize that under this expression the relevant information on the singularity set Su and S∇u is
contained in the diffusion functions � and �, but the set Su ⧵S∇u is contained in the set

{

x ∈ Ω; � = �minΛ� > �min
}

. We notice
also that taking �2 > 0, adds a term which is not in the initial BZ functional; this term is only added to enhance the gradient of u.
In order to solve problem (4), we consider a Lagrangian approach , where we transform our problem in a constrained min-

imization one, by considering as a variables u and w = ∇u, this has also the advantage of leading to solve only second order
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problems. Thus, problem (4) takes the form

min
u,w

1(u) + 2(w), subject to Au + Bw = 0,

where 1(⋅) and 1(⋅) are (second order) convex functions,A and B are linear operators (namely∇ and I the identity). Then, we
make an alternating process to solve separately 1(⋅) (with fixed � and w) and 2(⋅) (with fixed u, �). In each step, we perform
the adaptive strategy with � and � obtained following the method in20,18,19. The selection of these functions is performed locally
and adaptively – using error indicators and an efficient mesh adaptation –, to decrease with explicit formulae their values close
to edges and corners. These considerations lead to an overall approach that is numerically easy, low cost (in the sense that
homogeneous regions are coarsed in the meshes), and efficient in determining the singular sets without a priori knowledge except
that they have some length.

E-I

The paper is organized as follows: In section 2, we prove the existence of solution of the minimization problem (4) under a varia-
tional mixed formulation and we introduce the Lagrangian formulation. In section 3, we build a family of discrete approximation
energies and perform the analysis in the framework of Γ-convergence approach. We give the main algorithm and the a posteriri
error indicators which allows us to perform the diffusion coefficients selection that preserves the singular sets for the function
and its gradient. In section 4, in order to improve the convergence rate of the algorithm we present an alternative approach to deal
the higher order model (4) via an augmented Lagrangian formulation. In particular, we use an ADMM algorithm (alternating
direction descent) to enhance the convergence of the Lagrange multiplier variable. In section 5, we present several numerical
simulations to show that both singularities of first and second kind are preserved while the diffusion operators act as high order
filtering in the homogeneous zones. We give some conclusions and perspectives to the proposed approach.

2 SPLITTING METHOD

The minimization of the energy (4) leads to a fourth-order partial differential equation. In this work, we consider the following
constrained optimization problem:

1
2 ∫
Ω

�(x)|∇w|2dx + 1
2 ∫
Ω

�(x)|∇u|2 dx +
�1
2 ∫

Ω

|u − f |2dx +
�2
2 ∫

Ω

|w − ∇f�|2 dx, (5)

w.r.t ∇u = w, (6)
Thus, the previous optimization problem splits as follows:

min
(u,w)∈H1(Ω)×H1(Ω)

1(u) + 2(w), subject to (6) (7)

where
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1(u) =
1
2 ∫
Ω

�(x)|∇u|2dx +
�1
2 ∫

Ω

|u − f |2dx

2(w) =
1
2 ∫
Ω

�(x)|grad (w)|2dx +
�2
2 ∫

Ω

|w − ∇f�|2dx

and

w =
[

w1
w2

]

=

[ )u
)x1
)u
)x2

]

, grad (w) =
[ )w1
)x1

)w1
)x2

)w2
)x1

)w2
)x2

]

.

Proposition 1. The problem (5) admits a unique solution (u∗,w∗) ∈ H1(Ω) ×H1(Ω)
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Proof. The functional  (⋅, ⋅), as a sum of norms, is continuous, strictly convex onH1(Ω)×H1(Ω). In fact, let (u1,w1), (u2,w2) ∈
H1(Ω) ×H1(Ω) such that (u1,w1) ≠ (u2,w2) and � ∈]0, 1[, then we have:

� (u1,w1) + (1 − �) (u2,w2) ≥min(�2, (1 − �)2)
⎡

⎢

⎢

⎣

∫
Ω

�(x)|∇(u1 − u2)|2 dx + �1 ∫
Ω

|u1 − u2|2 dx
⎤

⎥

⎥

⎦

+

min(�2, (1 − �)2)
⎡

⎢

⎢

⎣

∫
Ω

�(x)|grad (w1 − w2)|2 dx
⎤

⎥

⎥

⎦

+ �2 ∫
Ω

|w1 − w2|2dx > 0.

(8)

We also have that  (⋅, ⋅) is coercive and weakly lower semi continuous in H1(Ω) × H1(Ω). Moreover, the feasible set  =
{(u,w) ∈ H1(Ω)×H1(Ω),∇u = w} of the previousminimization problem is non empty, closed and convex set ofH1(Ω)×H1(Ω).
Thus, the existence and the uniqueness follows from classical results of calculus of variations21

Remark 1. Note that when �2 = 0, we modify in a standard way the space for w, such that w ∈ H1 ⧵ℝ.

A Lagrangian algorithm
We introduce the space

H0(div,Ω) =
{

p ∈ (L2(Ω))2; divp ∈ L2(Ω); p ⋅ n = 0, on )Ω
}

.
We associate to the primal problem (2.1) − (2.2) the following Lagrangian form:

1(u,w,p) = 1(u) + 2(w) − ∫
Ω

w ⋅ p + u divp dx, (9)

We can show that the there exists a saddle-point (u∗,w∗,p∗) ∈ H1 ×H1 ×H0(div,Ω) of the Lagrangian 1(⋅). In fact, let  be
the dual functional of 1(⋅), which is defined by the following concave functional:

(p) = inf
u∈H1(Ω),w∈H1(Ω)

1(u,w,p)

Then, the dual problem consists in solving the following maximization problem:

max
p∈H0(div,Ω)

(p). (10)

Then, since the constraint convexminimization problem (4) has a unique optimal solution (u∗;w∗), and the dual concave problem
(10) also has an optimal solution p∗, it follows that (u∗;w∗;p∗) is a saddle point for 1(⋅).

3 DISCRETE APPROXIMATION AND Γ-CONVERGENCE

In the sequel, we follows the adaptive method proposed in18,22 for the discrete approximation of Mumford-Shah energy (in the
scalar case) and we explain how it can be extended to our case for the the variables u, w and p. Notice that the Lagrangian is not
convex in p and thus this part of the energy should be treated separately within the data term.

Γ-convergence
In23, the authors proposed an adaptive approach which is based on two ingredients22: the usual mesh adaptation and a “func-
tional" adaptation which consists in choosing locally the diffusion coefficients in order to “cut" high gradients of the computed
solution. This approach turns out to be a well suited finite element approximation with a family of discrete energies, in the
Γ-convergence sense24 to the Mumford-Shah functional7 (see10 for more details).
For a fixed angle 0 < �0 ≤ 2�∕3, a constant c ≥ 6, and for � > 0, let �(Ω) = �(Ω; �0; c) be the set of all triangulations of Ω

whose triangles K have the following characteristics:

(i) The length of each of the three edges of K is between � and �c.

(ii) The three angles of K are greater than or equal to �0.
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Let V�(Ω) be the set of all continuous functions u ∶ Ω ←→ ℝ such that u is affine on each triangleK of a triangulation T ∈ �(Ω).
For a given u, we define �(u) ⊂ �(Ω) as the set of all triangulations adapted to the function u, i.e., such that u is piecewise
affine on T . We consider a non-decreasing continuous function gi ∶ [0,+∞) ←→ [0,+∞), (i = 1, 2) such that:

lim
t→0

gi(t)
t

= 1, lim
t→+∞

gi(t) = gi,∞ < +∞.

(one may take for such gi a concave regularization of g(t) = min(t, g∞)). For anyU = (u,w) ∈ (Lp(Ω))3, (p > 1) and T ∈ �(Ω),
following10,9,20 we consider the finite dimensional minimization problem:

G�(U ) = min
T∈�(Ω)

G̃�(U, T ), (11)

where

G̃�(U, T ) =
⎧

⎪

⎨

⎪

⎩

∑

K∈T |K ∩ Ω| 1
ℎK

g1(ℎK |∇u|2) + |K ∩ Ω| 1
ℎK

g2(ℎK |∇w|2), U ∈ (V�(Ω))3, T ∈ �(Ω),

+∞, otherwise.

When � goes to zero and provided �0 is less than some Θ > 0, we have that G� converges, in the Γ-convergence sense to the
functional G given by:

G(U ) =

⎧

⎪

⎨

⎪

⎩

∫
Ω

|∇u(x)|2 dx + |∇w(x)|2 dx + g1,∞1(Su) + g2,∞1(Sw), U ∈ (L2(Ω) ∩ GSBV (Ω))3,

+∞, U ∈ (L2(Ω)∖GSBV (Ω))3.

where GSBV (Ω) is the space of generalized special functions of bounded variation (see10,9,20 for details). This means, in
particular, that minimizers of G� converge to a minimizer of G.

Remark 2. Notice the following important property that we will use next. If F ∶ X ←→ [−∞,+∞] is continuous and (G�)�
Γ-converges to G, then (F + G�)� Γ-converges to F + G.

Remark 3. Notice also that at this stage, the Γ-limit G is different than BZ energy that we want to approximate as the singular
sets Su and Sw have no reason to be disjoints.

In the sequel, we better clarify the iterative algorithm used in this work (which mimic the proof of Γ-convergence), and we
will see the role and the way to “compute” the diffusion coefficients � and �. For this purpose, let  be the Legendre-Fenchel
transform of g(t, s) = g1(t) + g2(s) (concave for both variables). Then, we have  (t, s) =  1(t) + 2(s) where  1 and  2 are the
Legendre-Fenchel transforms of −(g1) and −(g2), respectively. For a given triangulation T� , it is readily checked (from convex
analysis arguments) that the minimization of G� is equivalent to the minimization problem

G′�(U,U1, T�) =
∑

K∈T�

|K ∩ Ω|
(

�K |∇u|2 +
 1(�K )
ℎK

)

+
∑

K∈T�

|K ∩ Ω|
(

�K |∇w|2 +
 2(�K )
ℎK

)

,

over all U = (u,w) and U1 = (�, �) where U ∈ V�(Ω) and � = (�K )K∈�(Ω), w ∈ (V�(Ω))2 and � = (�K )K∈�(Ω), piecewise
constant on each K ∈ � .
Now, the minimization over each � and � which may be explicitly computed by:

�K = g′1(ℎK |∇u|
2) and �K = g′2(ℎK |∇w|

2). (12)

Then, the choice of � and � depends on the functions g1 and g2 and may be computed analytically without solving any PDE. An
example of such choices could be given by :

gi(t) =
2gi,∞
�

arctan ( � t
2gi,∞

),

which produces smoothly decreasing sequences � and � (as the inverse of the magnitude of the respective gradients squared).
Whereas, the minimizers (u,w) solve, up to the data terms,

(u,w) =
∑

K∈T�
∫

K∩Ω

�K |∇u|2 dx +
∑

K∈T�
∫

K∩Ω

�K |∇w|2 dx (13)
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To complete the Γ-convergence analysis, let us denote the fidelity term of the Lagrangian by

Φ(U,p; f ) =
�1
2 ∫

Ω

|u − f |2dx + ∫
Ω

|w − ∇f�|2dx − ∫
Ω

w ⋅ p + u divp dx.

It is readily checked that Φ is continuous in (L2(Ω))3 ×H0(div,Ω), hence using remark -2, and Γ-convergence of the sequence
G� to G, yields:

Proposition 2. Let f be a given function in L2(Ω) and � > 0 be a positive parameter. Then the sequence of functionals
(G�(⋅) + Φ(⋅, ⋅; f ))� , Γ-converges for � ←→ 0. (G(⋅) + Φ(⋅, ⋅; f )).

Remark 4. The Lagrange multiplier p in the algorithm makes the data term also dependent on �. However, due to the continuity
of Φ, for this third variable, inH(div,Ω) this dependance does not affect the Γ-convergence of G� + Φ. More we precisely, we
write Φ(.,p�), as Φ(.,p) plus (Φ(.,p) − Φ(.,p�)) and use the strong convergence of the last term and the remark 2.

To conclude this section, let us interpret in term of a PDE the Γ-limit of each functional G, i.e., corresponding to u and w.
The minimizers (u� ,w�) converge to a minimum (u,w) ofG while (��), respectively (��), converges to 1Ω⧵Su , respectively 1Ω⧵Sw

.
The singular sets are identified as the sets where lim�←→0 �� = 0 for Su, respectively lim�←→0 �� = 0 for Sw. Notice that the two
singular sets are not necessarily disjoints. However, the Hausdorff measure of each set is bounded (tightly) by the Lebesgue
measure of the corresponding sets

{

� = �min
}

, respectively
{

� = �min
}

. Moreover, the Hausdorff measure of the set S∇u⧵Su is
then controlled by |

{

� > �min, and � = �min
}

|. The constants in the BZ functional (or its elliptic regularization) are obtained
directly from the data and not chosen a priori.

Alternate descent algorithm and adaptive approach
Following the method in20,18, we consider an alternate descent minimization scheme over (u,w,p), �, � and T� which reads:

G′�(U,U1, T�) + Φ(U� ,p�; f ), (14)

The alternate minimization is combined with an adaptive algorithm to approximate B-Z energy, see also22. Mainly, we use mesh
and “functional" adaptation which consists in choosing locally the diffusion coefficients � and � in order to “cut" high gradients
of the computed solution u and its gradient w. More precisely, we consider the following algorithm

Algorithm 1 MINIMIZATION METHOD:

1. Initialization: choose U0 = (u0,w0,p0), �0 and �0.

2. Iterations: for fixed �k and �k, find Uk+1 = (uk+1,wk+1) ∈ V�(Ω)3 and pk+1 ∈ V�(Ω)2, solution of problem (13).

3. with Uk+1 and pk+1 fixed:

a) Update T� with mesh refinement step (in our case using the metric adaptation with FreeFem++).

b) Perform a local choice of �(x) and �(x) on  k+1
ℎ to obtain new functions �k+1 and �k+1. (using a posteriori

error indicators).

4. Go to step (1) until convergence.

The step a), plays the role of minimization over a class of triangulations � , and allows us to obtain a tight location of the
singular sets as the residual error indicator is high (or equivalently with the metric adaptation). This means exactly that this
locations are the candidate to contain the singularities. We emphasize that we obtain also an approximate solution to problem
(14).
For a given u and w and T� , the step b) will consists in decreasing the diffusion parameters. Contrary to the scalar case, when

a part of the singular set is located with the step a) we don’t know whether this part is in Su or Sw or both. Thus, to perform this
step, we first consider the following local error indicators

�K = �
1
2
K‖∇uℎ‖L2(K) and �′K = �

1
2
K‖∇wℎ‖L2(K), (15)
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to decide which parameter (�, � or both) we decrease. The change in the intensity of the image, respectively the brightness,
indicate the set Su, respectively Sw. Thus we may know which parameter to change. The map of the above errors indicator
allows us to update locally � and � on each triangle K using either the formula (12), or the following one (fast decreasing)20,18
and which is given by

�k+1K = max

⎛

⎜

⎜

⎜

⎜

⎝

�kK

1 + �
(

�K
‖�‖∞

− 0.1
)+ , �tℎr

⎞

⎟

⎟

⎟

⎟

⎠

,

where �tℎr is a threshold parameter and � is a coefficient chosen to control the rate of decrease in �, u+ = max(u, 0). The same
formula is used to update the function �(x) and where � is replaced by �′. Notice that equivalently, we can use the residual errors
indicators related to the discrete u and w subproblems.
Let us gives the details for the step 2. of the algorithm

The u-subproblem
For �K , wk and pk fixed, the u-subproblem is quadratic and consists in solving the following minimization problem:

min
u∈H1(Ω)

{
∑

K∈T�
∫

K∩Ω

�K |∇u|2 dx + Φ(U,p; f )} (16)

The minimizer uk+1 satisfies the following first-order optimality condition
{

−Δ�uk+1 + �1uk+1 = �1f − divpk, in Ω,
)uk+1

)n
= 0, in Ω,

The w-subproblem
For a fixed uk+1, �K and pk, the w-subproblem consists in solving the following minimization problem:

min
w∈H1(Ω)

{
∑

K∈T�
∫

K∩Ω

�K |∇w|2 dx + Φ(U,p; f )} (17)

which clearly admits a unique solution wk+1 which fulfils:
{

−Δ�wk+1 + �2wk+1 = �2∇f − pk, in Ω,
)wk+1

)n
= 0, in Ω,

The p-subproblem
The multiplier p updates linearly as follows: for a given parameter � (small)

pk+1 = pk + � (wk+1 − ∇uk+1). (18)

Remark 5. 1. The existence of solutions of u- andw- problems follows from standard techniques of calculus of variations.
In fact, it is readily checked by direct calculation that the functional to be minimized are strictly convex, coercive and
weakly lower semi-continuous.

2. Notice that problems (16) and (17) may be solved in parallel to accelerate the convergence.

3. The role of �2 > 0 appears clearly at this step to deal with a “non degenerate" Neumann problem.

4 AUGMENTED LAGRANGIAN FORMULATION AND ALTERNATING DIRECTIONS
METHOD OF MULTIPLIERS (ADMM)

In order to enhance the quality and the cost of the numerical computations, we use the Augmented Lagrangian formulation,
which will be solved using the alternating directions method of multipliers (ADMM). The ADMM is one of the most extensively
used algorithms to solve constrained optimization problems, particularly for augmented Lagrangian formulations (see25,26,27,28
and the references therein).



8 A. Theljani and Z. Belhachmi

In our case, we associate to the primal problem (2.1) − (2.2) the following augmented Lagrangian form:

�(u,w,p) =
∑

K∈T�
∫

K∩Ω

(

�K |∇u|2 + �K |∇w|2 − w ⋅ p + u divp +
�
2
|w − ∇u|2

)

dx (19)

=
∑

K∈T�
∫

K∩Ω

(

(�K +
�
2
)|∇u|2 + �K |∇w|2 +

�
2
w2 − w ⋅ (p + �∇u) + u divp

)

dx (20)

for � > 0 (usually � = 1). The ADMM iterations consists in minimizing �(⋅, ⋅,p) with respect to one variable and keeping the
other fixed. The Lagrange multiplier p is up dated at each step in the algorithm and takes the same form (18) as for the classical
Lagrangian method. The only change comparing to Algorithm is the u and w subproblems. The overall algorithm consists in
the following steps:

Algorithm 2 ADMM ALGORITHM
Given �, �, �, f .
Starting guess: u0 ∈ H1(Ω), p0 ∈ H0(divΩ) and w0 ∈ H1(Ω).
For k = 0, 1, 2,⋯ until convergence:

1. Update uk+1 by uk+1 = argminu �(u,wk,pk).

2. Update wk+1 by solving wk+1 = argminw �(uk,w,pk).

3. Update pk+1 by solving pk+1 = pk + �(wk+1 − ∇uk+1).

In the new formulation, problems (16) and (17) are replaced by
⎧

⎪

⎨

⎪

⎩

−Δ�+ �
2
uk+1 + �1uk+1 = �1f − �div wk − divpk, in Ω,

)uk+1

)n
= 0, in Ω,

and
{

−Δ�wk+1 + �2wk+1 + �wk+1 = �2∇f + �∇uk+1 − pk, in Ω,
)wk+1

)n
= 0, in Ω.

The convergence of the ADMM algorithm
There are many convergence results for ADMMdiscussed in the literature29,30,31. The convergence is guaranteed if the following
assumptions are satisfied.

• Energies 1(⋅) and 2(⋅) are convex, closed and proper.

• The augmented Lagrangian � admits a saddle point (u∗,w∗,p∗) ∈ H1 ×H1 ×H0(div,Ω).

The first assumption is satisfied as each of the u- and w-subproblems admits a unique solution. For the second assumptions, we
can show that the there exists a unique saddle-point (u∗,w∗,p∗) ∈ H1 × H1 × H0(div,Ω) of the augmented Lagrangian �.
In fact, any saddle-point of the augmented Lagrangian �(⋅) is also a saddle-point of the Lagrangian 1(⋅) in (9), which has a
unique saddle point.

Remark 6. The use of the ADMM seems to enforce the diffusivity on the function u, which may cause loosing its singularities
set. Moreover, the analysis of the Γ-convergence is questionable in the new formulation. To keep the adaptive algorithm able to
detect the singularities sets of u, we set a new diffusivity function

�n(x) = �(x) +
�
2
.

Then, we adapt the function � using the same formula and the we rescale it into the interval [�min −
�
2
, �max −

�
2
]. Thus, we will

be able to detect singularities from the adaptation and the new diffusivity fulfils 0 < �min ≤ �n(x) ≤ �max, which guarantees the
well-posedness of the u- problem.
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5 NUMERICAL EXAMPLES

In this section, numerical experiments are conducted on images that are corrupted byGaussian noise.We test the proposedmodel
for first- and second-order discontinuities detection. For the denoising task, we compare our approach with the total variation
model (TV)4,2 and a high-order model that we call HOM, which corresponds the energy (4) for �(⋅) ≡ � ≡ (⋅) = 1. The original
image were corrupted with Gaussian noise having zero mean and different standard deviations, i.e., between 10 and 15.

Edge detection
In Fig 1 , we test proposed model for � ≠ 0 and � = 0 for edge detection. We note that the case � = 0 corresponds to the
discrete approximation of the Mumford-Shah energy20,9. The values of the functions � and � are 1 (white) on homogeneous
areas and they are 0 (black) in correspondence of the edges of u andw ≈ ∇u. It is clear the map � is unable to detect the gradient
discontinuity. These are regions where u is continuous while ∇u is discontinuous. The output map � of our approach is given
by meaningful boundaries corresponding to the discontinuity set of its first derivatives.

Lagrangian vs Augmented Lagrangian
In Figure 2 , we show the result of the proposed model, solved using the Lagrangian and ADMM, respectively. for both
approaches, We display the denoised images, the Lagrange multiplier p = (p1, p2) and the final mesh. The results of both
approaches look visually similar, however, the ADMM is much faster for solving the model (5)-(6).

Image denoising and edges detection
In Figure 3 , we test the proposed model, solved by ADMM, in denoising a satellite image which has some fine structures,
correspond to the roads. We show the denoised image, the maps of � and �. The function � maps the discontinuity of u and
the function � which maps the discontinuities of w, i.e., approximates the gradient of u. Form the map of �, it clear that latter
suitable in detecting fine structures. We also test the model in denoising a medical image, which contains some smooth regions
and edges. In these regions, the gradient of the image should discontinuous and they can seen in the map of �.

Medical image denoising and edges detection
In the last example, we give in Figure 4 the results obtained with the proposed model solved with the Lagrangian and with
ADMM for medical images. We present the plot of � and � and the final mesh. This example show the efficiency of the method
for medical images where in addition to the variety of fine structures to be detected, the high resolution of the images should
also be considered.
We compare the proposed model with the total variation (TV) and the high-order (HOM) models. In Figure 5 , we display

the restored image we give the PSNR values, which confirm that the proposed model can deliver better denoising quality than
the other models. We also display the diffusion functions � and � which indicates regions that approximate the discontinuity
sets of u and ∇u, i.e., Su and S∇u, respectively.

6 CONCLUSION

In this paper, we proposed a novel variational model with the good performance such as the alleviation of the staircase effect and
the preservation of the edges. By using an alternative approach, we obtain two simple subproblems, acting for alternatively for
the solution u and its first order derivatives ∇u. To solve these subproblems, the ADMM algorithm was used in the numerical
computation. The use of the ADMM allowed as to see the initial model, which is of high order, as two first-order variational
models with unknowns u and∇u. Then, we performed an adaptive strategy based on the objective selection of the regularization
parameters appeared in both energies and mesh adaptation techniques. Analysing the proposed algorithm using Γ-convergence
tools draw connections with the Blake and Zisserman energy. The numerical experiments have demonstrated the effectiveness
of our proposed method.
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(a) Original image (b) The map of �(⋅)

(c) The map of �(⋅) (d) The adapted mesh

FIGURE 1 Example of first- and second-order discontinuities detection using our model
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(a) The noisy image (b) The restored image using our
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(c) The map of �(⋅) (d) The map of �(⋅) (e) The adapted mesh

FIGURE 4 Our model solved by Augmented Lagrangian and ADMM: Example of medical image denoising and edges
detection.
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(a) The noisy image (b) TV: Restored image, PSNR =
29.1

(c) HOM: Restored image,
PSNR = 29.08

(d) Our model: Restored image,
PSNR = 29.35

(e) Our model: The map of �(⋅) (f) Our model: The map of �(⋅) (g) Our model: The adapted mesh

FIGURE 5 Medical image denoising and edges detection: Comparison between Total variation model (TV), the high-order
model (LLT) and our model.
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