Correlation between work impairment, scores of rhinitis severity and asthma using the MASK-air® App

Annabelle Bédard1,2,3 | Josep M. Antó1,2,3,4 | Joao A. Fonseca5,6 | Sylvie Arnavelhe7 | Claus Bachert8 | Anna Bedbrook9 | Carsten Bindslev-Jensen10 |
Sinthia Bosnic-Anticevich11 | Victoria Cardona12 | Alvaro A. Cruz13 | Wytske J. Fokkens14,15 | Judith Garcia-Aymerich1,2,3 | Peter W. Hellings15,16,17 |
Juan C. Ivancevich18 | Ludger Klimek19 | Piotr Kuna20 | Violeta Kyedariene21,22 | Désirée Larenas-Linnemann23 | Erik Melén24,25 | Ricardo Monti26 | Ralf Mösges27,28 |
Joaquim Mullol29,30 | Nikos G. Papadopoulos31 | Nhàn Pham-Thi32 | Boleslaw Samolski33 | Peter V. Tomazic34 | Sanna Toppila-Salmi35 | Maria Teresa Ventura36 | Arzu Yorgancioglu37 | Jean Bousquet8,38,39,40,15,41,42 |
Oliver Pfaar43 | Xavier Basagaña1,2,3 | the MASK study groupJr

1IGlobal, Barcelona, Spain
2Universitat Pompeu Fabra (UPF), Barcelona, Spain
3CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
4IMIM (Hospital del Mar Research Institute), Barcelona, Spain
5CINTESIS, Center for Research in Health Technology and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
6Medida, Lda Porto, Porto, Portugal
7Kyomed INNOV, Montpellier, France
8Upper Airways Research Laboratory, ENT Dept, Ghent University Hospital, Ghent, Belgium
9MACVIA-France, Montpellier, France
10Department of Dermatology and Allergy Centre, Odense University Hospital, Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark
11Woolcock Institute of Medical Research, University of Sydney and Woolcock Emphysema Centre and Sydney Local Health District, Glebe, NSW, Australia
12Allergy Section, Department of Internal Medicine, Hospital Vall d’Hebron & ARADyAL Research Network, Barcelona, Spain
13ProAR – Nucleo de Excelencia em Asma, Federal University of Bahia, Brasil and WHO GARD Planning Group, Salvador, Brazil
14Department of Otorhinolaryngology, Amsterdam University Medical Centres, AMC, Amsterdam, The Netherlands
15Euforea, Brussels, Belgium
16Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
17Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
18Servicio de Alergia e Immunología, Clínica Santa Isabel, Buenos Aires, Argentina
19Center for Rhinology and Allergology, Wiesbaden, Germany
20Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
21Department of Pathology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania

Abbreviations: AR, allergic rhinitis; ARIA, Allergic Rhinitis and its Impact on Asthma; CSMS, combined symptom and medication score; EAAACI, European Academy of Allergy and Clinical Immunology; EQ-SD, EuroQoL; ICT, information and communications technology; IER, Insufficient effort responding; IRV, Intra-individual response variability; MASK, Mobile Airway Sentinel Network; SMS, Symptom-medication score; VAS, visual analogue scale.
MASK study group members in Appendix.
Correspondence
Xavier Basagaña, ISGlobal, C/ Doctor Aigüader 88, 08003 Barcelona, Spain.
Email: xavier.basagana@isglobal.org

Funding information
Macvia France

Abstract

Background: In allergic rhinitis, a relevant outcome providing information on the effectiveness of interventions is needed. In MASK-air (Mobile Airways Sentinel Network), a visual analogue scale (VAS) for work is used as a relevant outcome. This study aimed to assess the performance of the work VAS work by comparing VAS work with other VAS measurements and symptom-medication scores obtained concurrently.

Methods: All consecutive MASK-air users in 23 countries from 1 June 2016 to 31 October 2018 were included (14 189 users; 205 904 days). Geolocalized users self-assessed daily symptom control using the touchscreen functionality on their smart phone to click on VAS scores (ranging from 0 to 100) for overall symptoms (global), nose, eyes, asthma and work. Two symptom-medication scores were used: the modified EAACI CSMS score and the MASK control score for rhinitis. To assess data quality, the intra-individual response variability (IRV) index was calculated.

Results: A strong correlation was observed between VAS work and other VAS. The highest levels for correlation with VAS work and variance explained in VAS work were found with VAS global, followed by VAS nose, eye and asthma. In comparison with VAS global, the mCSMS and MASK control score showed a lower correlation with VAS work. Results are unlikely to be explained by a low quality of data arising from repeated VAS measures.

Conclusions: VAS work correlates with other outcomes (VAS global, nose, eye and asthma) but less well with a symptom-medication score. VAS work should be considered as a potentially useful AR outcome in intervention studies.

Keywords
asthma, MASK, rhinitis, score, visual analogue scale
1 | INTRODUCTION

In allergic rhinitis (AR) and asthma, a relevant outcome providing information on the cost-effectiveness of interventions is needed. EQ-5D, a validated measure of quality of life, has been used in AR but it cannot be assessed daily.

MASK-air (Mobile Airways Sentinel Network) is an information and communication technology (ICT) system centred around the patient (Supporting information) and operational in 23 countries. It uses a treatment scroll list which includes all medications customized for each country as well as visual analogue scales (VASs) to assess global allergy, rhinitis, eye and asthma control. Over 30 000 users and 250 000 VAS days have been recorded. A pilot study found a highly significant correlation between VAS work and other VAS measurements (global, nose, eyes and asthma). Symptom-medication scores (SMSs) are also needed to investigate the effect of AR treatments, in particular allergen immunotherapy (AIT). The European Academy of Allergy and Clinical Immunology (EAACI) has defined the combined symptom and medication score (CSMS) for AIT trials.

Surveys collect information but data quality is a concern: in particular, insufficient effort responding (IER), a phenomenon by which respondents try to complete the questionnaire with the shortest time without providing reliable information. This can result in respondents providing the same value for all questions, which will artificially increase the correlation between items. Several methods are used to assess data quality including the intra-individual response variability (IRV) index, a flexible way to detect IER.

This study aimed to compare VAS work with other VAS measurements and SMSs obtained concurrently. In order to investigate data quality, we also assessed the IRV index.

2 | METHODS

2.1 | Users

All consecutive MASK-air users from 1 June 2016 to 31 October 2018 were included with no exclusion criteria, according to methods previously described. MASK-air® was used by people who found it on the Internet, Apple store, Google Play or in any other way. Some users were clinic patients who were asked by their physicians to use the app. This was the case for the transfer of innovation project. However, due to anonymization of data, no specific information could be gathered, as previously described in detail.

2.2 | Setting

Users from 23 countries filled in the MASK-air Allergy Diary (Table 1).

2.3 | Ethics

The Allergy Diary is CE1. CE marking indicates conformity with health, safety and environmental protection standards for products
TABLE 1  Number of users recording visual analogue scale score using MASK-air® by country

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of days</th>
<th>Number of users</th>
<th>Number of days per user (median, p25-p75)</th>
<th>Transfer of innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>1522</td>
<td>136</td>
<td>2 [1-6.5]</td>
<td>No</td>
</tr>
<tr>
<td>Austria</td>
<td>5348</td>
<td>498</td>
<td>1 [1-4]</td>
<td>No</td>
</tr>
<tr>
<td>Australia</td>
<td>2080</td>
<td>180</td>
<td>2 [1-7.5]</td>
<td>No</td>
</tr>
<tr>
<td>Belgium</td>
<td>1456</td>
<td>168</td>
<td>1 [1-6]</td>
<td>No</td>
</tr>
<tr>
<td>Brazil</td>
<td>8299</td>
<td>1336</td>
<td>1 [1-4]</td>
<td>No</td>
</tr>
<tr>
<td>Canada</td>
<td>204</td>
<td>31</td>
<td>2 [1-4]</td>
<td>No</td>
</tr>
<tr>
<td>Czech republic</td>
<td>1078</td>
<td>51</td>
<td>3 [1-17]</td>
<td>Yes</td>
</tr>
<tr>
<td>Denmark</td>
<td>993</td>
<td>103</td>
<td>2 [1-6]</td>
<td>No</td>
</tr>
<tr>
<td>Finland</td>
<td>3612</td>
<td>360</td>
<td>2 [1-5]</td>
<td>No</td>
</tr>
<tr>
<td>France</td>
<td>6794</td>
<td>911</td>
<td>1 [1-3]</td>
<td>No</td>
</tr>
<tr>
<td>Germany</td>
<td>14 877</td>
<td>895</td>
<td>2 [1-13]</td>
<td>Yes (partly)</td>
</tr>
<tr>
<td>Greece</td>
<td>7824</td>
<td>320</td>
<td>10 [2-28]</td>
<td>RCT</td>
</tr>
<tr>
<td>Italy</td>
<td>29 889</td>
<td>1562</td>
<td>2 [1-11]</td>
<td>Yes</td>
</tr>
<tr>
<td>Lithuania</td>
<td>20 881</td>
<td>572</td>
<td>9.5 [2-36]</td>
<td>Yes</td>
</tr>
<tr>
<td>Mexico</td>
<td>44 123</td>
<td>1225</td>
<td>15 [4-45]</td>
<td>Yes</td>
</tr>
<tr>
<td>Netherlands</td>
<td>7509</td>
<td>944</td>
<td>2 [1-5]</td>
<td>No</td>
</tr>
<tr>
<td>Poland</td>
<td>10 295</td>
<td>914</td>
<td>2 [1-6]</td>
<td>No</td>
</tr>
<tr>
<td>Portugal</td>
<td>11 310</td>
<td>1506</td>
<td>2 [1-4]</td>
<td>No</td>
</tr>
<tr>
<td>Spain</td>
<td>14 880</td>
<td>771</td>
<td>4 [1-17]</td>
<td>RCT</td>
</tr>
<tr>
<td>Sweden</td>
<td>1359</td>
<td>131</td>
<td>2 [1-7]</td>
<td>No</td>
</tr>
<tr>
<td>Switzerland</td>
<td>3955</td>
<td>815</td>
<td>1 [1-2]</td>
<td>No</td>
</tr>
<tr>
<td>Turkey</td>
<td>2595</td>
<td>238</td>
<td>2 [1-5]</td>
<td>No</td>
</tr>
<tr>
<td>UK</td>
<td>5021</td>
<td>522</td>
<td>2 [1-8]</td>
<td>No</td>
</tr>
<tr>
<td>Total</td>
<td>205 904</td>
<td>14 189</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: RCT, trial was carried out in the country.

*aThe transfer of innovation was started late and could not be considered in the study.

made in the EU and meets the essential requirements of all relevant European Medical Device Directives.24 The data were anonymized.

An independent Review Board approval was not required since the study is observational and users agreed to have their data analysed (terms of use).

2.4 | MASK-air® and outcomes

Geolocalized users self-assessed daily symptom control using the touchscreen functionality on their smart phone to click on VAS scores (ranging from 0 to 100) for overall symptoms (global), nose, eyes, asthma and work—asked in this order—with several other screens in between (Figure S1). Users input their daily medications using a scroll list containing all country-specific OTC and prescribed medications for each country.

Two SMSs were used: the modified EAACI CSMS score,16 accounting for a new medication that did not exist when it was devised (Table 2), and the MASK control score for rhinitis proposed according to existing data13 (Table 3). Medications considered in the study are detailed in Table S1.

2.5 | Statistical methods and analyses

A non-Gaussian distribution was found for the data. Nonparametric tests and medians (and percentiles) were used. Some users reported VAS scores more than once a day, and we used the highest level.13

For each score, we calculated and compared: (a) the within-subject correlation with VAS work (calculated using fixed-effect models

TABLE 2 | Definition of the modified EAACI CSMS

- mCSMS = \( \frac{\text{Symptom Score} + \text{Medication Score}}{2} \), where symptom score is the 0-100 global VAS score, and medication score is a 0-100 score depending on the medication taken. For the latter, we used the following proposed scoring system:
  - no medication = 0 points;
  - oral nonsedative H1 antihistamines (H1A) alone = 100 × \( \frac{1}{2} \) = 25 points;
  - intra-nasal corticosteroids (INCS) – except Azelastine-Fluticasone Propionate combination (MPAzeFlu) - with/without H1A = 100 × \( \frac{1}{4} \) = 25 points;
  - MPAzeFlu = 100 × \( \frac{3}{4} \) = 75 points;
  - oral corticosteroids with/without INCS, with/without H1A, with/without MPAzeFlu = 100 points.
TABLE 3 Definition of the MASK rhinitis control score

The MASK rhinitis control score was equal to 1 if:
1. VAS global ≥ 50/100
or
2. VAS global ≥ 35 with the use of INCS-containing medication
or
3. VAS global ≥ 20 with the use of at least 3 medications

The MASK rhinitis control score was equal to 0 otherwise.

using the Stata xtreg command and (b) the variance explained in VAS work (which corresponds to the correlation measured in (a) squared). Only person-days with a reported VAS work were tested. Differences in correlations by gender, age (above versus below median age—ie 32 years old) and season (pollen season—ie from 15 March to the end of June, versus the period outside pollen season—ie from August to December) were investigated. Regarding VAS asthma, since not all users are asthmatic, a lot of nonasthmatic users will fill in a VAS asthma of 0 (no missing information is allowed) when using the app. Therefore, differences in the correlation between VAS work and VAS asthma by asthma status were investigated.

The intra-individual response variability (IRV) index was calculated, based on answers to the five VAS scores, to detect IER. All person-days were tested. The IRV is the standard deviation of responses across a set of consecutive item responses for an individual. It is an indicator of insufficient effort responding.

The number of days of reporting per user was examined and a Mann-Whitney U test was used to make comparisons in countries where physicians were including patients using the transfer of innovation (Twining) project and in countries where this was not the case. This analysis was repeated after excluding countries with low numbers of users (eg Canada and Czech Republic).

3 | RESULTS

3.1 | Users

The study included 14 189 users and 205 904 days (Table 1). Approximately 5% of users did not report their age or reported an age below 10. Users ranged in age from zero to 92 years (mean, SD: 32.1 ± 15.3 years). There were 55.3% women and 44.7% men. 98 303 days were tested for VAS work correlations. In this group, there were 53 241 (54.2%) days without treatment (Figure 1).

3.2 | Main results

A strong correlation was observed between VAS work and other VAS (Table 4). The highest levels for correlation with VAS work and variance explained in VAS work were found with VAS global, followed by VAS nose, eye and asthma. In comparison with VAS global, the mCSMS and MASK control score showed a lower correlation with VAS work and explained less variance in VAS work.

The within-subject correlation between VAS work and VAS global did not vary by age, gender or season. For the other outcomes, the within-subject correlation with VAS work did not vary substantially between males and females (ie difference of less than 5%) or between days recorded during and outside the pollen season (ie difference of less than 4%). When we stratified by median age (ie 32 years old), the correlation varied the most between VAS work and VAS eyes (ie within-subject correlations of 0.60 for days recorded by older users and 0.52 for days recorded by younger users) and between VAS work and VAS asthma (ie within-subject correlations of 0.48 for days recorded by older users and 0.40 for days recorded by younger users).

The within-subject correlation between VAS work and VAS asthma was higher in days recorded by users who reported asthma when they started using the app, compared to days recorded by users who did not report asthma ($r = .54$ vs $.38$).

3.3 | Intra-individual response variability

Of the 205 904 person-days, there was no variability in 35 592 days (17.3%) (users respond with the same value to all five VAS). 35 373 (99.4%) of them corresponded to a value of zero (no symptoms) answered to all questions. Without counting person-days with all variables at zero, 48 086 person-days (23.4%) had an IRV ≤ 3.6 (Table 5). An IRV of 3.6 implies a difference of up to 10 points (on a 0-100 point scale) in at least one of the VAS measures.
TABLE 4 Within-subject correlations between VAS work and other rhinitis scores

<table>
<thead>
<tr>
<th></th>
<th>Number of days</th>
<th>Continuous scores</th>
<th>Binary score MASK control score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VAS global</td>
<td>VAS nose</td>
</tr>
<tr>
<td>Median, 25%-75% (continuous outcomes) or % (binary outcome)</td>
<td>98 303</td>
<td>11 [1-29]</td>
<td>12 [1-30]</td>
</tr>
<tr>
<td>Within-subject correlation with VAS work</td>
<td>98 303</td>
<td>0.73</td>
<td>0.68</td>
</tr>
<tr>
<td>Variance explained in VAS work</td>
<td>98 303</td>
<td>0.53</td>
<td>0.46</td>
</tr>
</tbody>
</table>

As a post hoc analysis, we recalculated the correlations with VAS work and variances explained in VAS work, after excluding person-days with low intra-individual response variability (ie defined as IRV ≤ 3.6) and similar results were obtained (Table S2).

3.4 | Number of days of reporting

The number of days of reporting per user was significantly greater in countries where a transfer of innovation was carried out than in those that did not perform this project (P for Mann-Whitney U test = .0001) (Table 1). When this analysis was repeated after excluding countries with low numbers of users (eg Canada and Czech Republic), the difference remained highly statistically significant (P for Mann-Whitney U test < .0001).

4 | DISCUSSION

The strengths of the study are the sample size and the wide distribution of users in 23 countries and 17 languages. There is one strong message and two extra messages. First, there is a high correlation between VAS work and rhinitis control assessed by VAS global or nose. Second, the strong correlations we observed between VAS work and other VAS scores are unlikely to be explained by a low quality of data arising from repeated VAS measures. Third, in comparison with VAS global, the two SMSs showed a lower correlation with VAS work and explained less variance in VAS work.

Our results are unlikely to be explained by a low quality of data arising from repeated VAS measures: (a) VAS work is the last VAS measure assessed, and it is measured after 5 screens without any VAS question, which makes it more difficult to reproduce the previous VAS (Figure S1); (b) correlations differ between outcomes; (c) over 99% of the person-days with no variation in the five VAS measures corresponded to a value of zero answered to all of them, which is plausible in days with no symptoms; (d) a very low variability in VAS measures was assessed by taking a cut-off of IRV index below 3.6. Although other cut-off values could be used, this represents a realistic maximal difference of 10 points on a 0-100 point scale of some of the VAS measures. Only 23.4% of person-days had a low variability in the response to several questions and were suspected of engaging in IER. However, this is an upper bound, as low variability in responses is actually possible in reality (ie on days in which the patient has the same or similar degree of impairment for all questions); (e) the strong correlations found between the different scores and VAS work were not substantially reduced when person-days with low intra-individual response variability were excluded from the analyses, suggesting that they are not “artificially” driven by IER.

In order to determine the relative cost-effectiveness of new interventions, many countries propose to conduct a health economic evaluation either by adopting a healthcare perspective only or by adding a societal perspective aiming to include all relevant effects and costs. Productivity costs are frequently omitted from economic evaluations, despite their often strong impact on cost-effectiveness outcomes, partly because of the lack of standardization regarding the methodology of estimating productivity costs. Allergic rhinitis impairs quality of life but never induces death. Thus, the decision analytic modelling (DAM) model may be difficult to apply. EQ5D is impaired in severe AR whereas work productivity is often impaired in moderate AR. Thus, VAS work may be a more sensitive surrogate endpoint to assess the economic evaluation of an intervention in AR. Moreover, a daily assessment of work productivity can be carried out with VAS. Using the novel feature of MASK, the integration of pollen season and air quality the same day as VAS work will provide a very sensitive outcome on health economics for clinical trials. In clinical practice, VAS global may be more relevant. To our knowledge, limitations of real-world data using an app are the same for all VAS measurements. VAS work validation was not done since this criterion was not included in the first version of the app.

In comparison with VAS global, the two SMSs showed a lower correlation with VAS work, and explained less variance in VAS work. This is probably because we used simple methods to assess SMSs and more sophisticated analyses are needed. In particular, it seems that adding the same coefficient to a symptom score or a VAS level may not be optimal. From the real-world evidence from MASK, it appears that (a) medications may have a different efficacy depending on rhinitis control level: higher impact for a lower VAS level and lower impact for a higher VAS level and (b) co-medication may be considered. New SMS are therefore needed.

One of the major problems with apps is the low adherence to their use. Achieving sufficient mHealth App engagement and user retention rates is a difficult task. In MASK, over 50% of the users use the app only once. Differences in the duration of reporting were found. It is clear that in countries where many patients have been enrolled by physicians during a transfer of innovation, the duration of reporting is longer than in countries where this protocol was not
<table>
<thead>
<tr>
<th>IRV</th>
<th>Number of person-days</th>
<th>Example of VAS values in a representative patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.44</td>
<td>2422</td>
<td>One of the VAS measures differs in 1 unit (i.e., on a 0-100 point scale) from the rest. For example, providing the following values for the five VAS measures: (0,0.1,0.0)</td>
</tr>
<tr>
<td>0.5</td>
<td>2622</td>
<td>One of the VAS measures differs in 1 unit from the rest (among person-days that have one missing value). For example, providing the following values for the five VAS measures: (0,0.1,0.0, missing)</td>
</tr>
<tr>
<td>0.548</td>
<td>1003</td>
<td>Two VAS measures differ in 1 unit from the rest. For example, providing the following values for the five VAS measures: (8,7.8,8.7)</td>
</tr>
<tr>
<td>1</td>
<td>1330</td>
<td>Variations of 3 units among the VAS measures. For example, providing the following values for the five VAS measures: (42,41,42,40,40)</td>
</tr>
<tr>
<td>1.5</td>
<td>1431</td>
<td>One of the VAS measures differs in 3 units from the rest (among person-days that have one missing value). For example, providing the following values for the five VAS measures: (22,22,19,22, missing)</td>
</tr>
<tr>
<td>2</td>
<td>690</td>
<td>Variations of 5 units among the VAS measures. For example, providing the following values for the five VAS measures: (26,24,27,22,26)</td>
</tr>
<tr>
<td>3.6</td>
<td>44</td>
<td>Variations of up to 10 units among the VAS measures. For example, providing the following values for the five VAS measures: (56,52,50,51,46)</td>
</tr>
<tr>
<td>Total ≤ 3.6</td>
<td>48 086</td>
<td>(23.4%)*</td>
</tr>
</tbody>
</table>

*Not counting person-days with all 0 values.

used. This information should be carefully considered to increase adherence to MASK use.

5 | GENERALIZABILITY

The data obtained were retrieved from 23 countries. Although there was no specific study in the different countries, the results appear generalizable.

6 | CONCLUSION

This study suggests that VAS work can be used as a surrogate end point for the assessment of health economics in rhinitis and that symptom-medication scores tested with real-world data need to be improved.

CONFLICTS OF INTEREST

Dr Bousquet reports personal fees from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Purina, Sanofi-Aventis, Takeda, Teva, Uriach, other from KYomed-Innov, outside the submitted work. Dr Bosnic-Anticevich reports grants from TEVA, personal fees from TEVA, AstraZeneca, Boehringer Ingelheim, GSK, Sanofi, Mylan, outside the submitted work. Dr Cardona reports personal fees from ALK, Allergopharma, Allergy Therapeutics, Diater, LETI, Thermofisher, Stallergenes, outside the submitted work. Dr Fonseca being a partner in a company developing mobile technologies for monitoring airways diseases. Dr Hellings reports grants and personal fees from Mylan, during the conduct of the study; personal fees from Sanofi, Allergopharma, Stallergenes, outside the submitted work. Dr Ivancevich reports personal fees from Faes Farma, Eurofarma Argentina, other from Sanofi, Laboratorios Casasco, personal fees from, outside the submitted work. Dr Kuna reports personal fees from Adamed, AstraZeneca, Boehringer Ingelheim, Hal, Chiesi, Novartis, Berlin Chemie Menarini, outside the submitted work. Dr Kvedariene reports personal fees from GSK, non-financial support from StallergenGreer, Mylan, AstraZeneca, Dimuna, Norameda, outside the submitted work. Dr Larenas Linnemann reports personal fees from Amstrong, AstraZeneca, Boehringer Ingelheim, Chiesi, DBV Technologies, Grunenthal, GSK, MEDA, Menarini, MSD, Novartis, Pfizer, Novartis, Sanofi, Siegfried, UCB, grants from Sanofi, Astrazeneca, Novartis, UCB, GSK, TEVA, Boehringer Ingelheim, Chiesi, outside the submitted work. Dr MULLOL reports personal fees from SANOFI-Genzyme-Regeneron, ALK-Abelló A/S, Menarini Group, MSD, GlaxoSmithKline, Novartis, GENENTECH - Roche_Novartis, grants and personal fees from UCB Pharma, MYLAN-MEDA Pharma, URIACH Group, outside the submitted work. Dr Papadopoulos reports personal fees from Novartis, Nutricia, HAL, MENARINI/FAES FARMA, SANOFI, MYLAN/MEDA, BIOMAY, AstraZeneca, GSK, MSD, ASIT BIOTECH, Boehringer
Ingelheim, grants from Gerolymatos International SA, Capricare, outside the submitted work. Dr Bousquet reports personal fees from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Purina, Sanofi-Aventis, Takeda, Teva, Urich, other from KYomed-Innov, outside the submitted work. Dr Pfarr reports personal fees from MEDA Pharma/MYLAN, ASIT Biotech Tools SA Laboratorios LETI/LETI Pharma, Anergis S.A., Mobile Chamber Experts (a GA²LEN Partner), Indoor Biotechnologies, Astellas Pharma Global, grants and personal fees from ALK-Abelló, Allergopharma, Stallergenes Greer, HAL Allergy Holding BV/HAL Allergy GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, grants from Biomay, Nuvo, Circassia, from, Glaxo Smith Kline, outside the submitted work.

AUTHOR CONTRIBUTIONS
A Bédard, JM Anto, JA Fonseca, X Basagana and J Bousquet conceived the study and drafted the manuscript. A Bédard and X Basagana conducted the statistical analyses. O Pfarr and J Bousquet designed the symptom-medications scores used in the analyses. All authors reviewed the study design and the manuscript and have approved the final version of the manuscript.

REFERENCES
APPENDIX

MASK STUDY GROUP

Louis d’Epidémiologie et de Santé Publique, Equipe EPAR, Paris, France.

11Innovación y nuevas tecnologías. Salud Sector sanitario de Barbastro, Barbastro, Spain.

12Equipe EPAR-IPLESP, Sorbonne Université, Paris, France.

13Department of Allergy and Immunology, Hospital Quirónsalud Bizkaia, Erandio, Spain.

14IGlobAl, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.

15IMIM (Hospital del Mar Research Institute), Barcelona, Spain.

16CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.

17Universitat Pompeu Fabra (UPF), Barcelona, Spain.

18Yomed INNOV, Montpellier, France.

19Argentine Society of Allergy and Immunopathology, Buenos Aires, Argentina.

20Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, and Astrid Lindgren Children’s Hospital, Department of Pediatric Pulmonology and Allergy, Karolinska University Hospital, Stockholm, Sweden.

21David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom.

22Regionie Puglia, Bari, Italy.

23Regione Liguria, Genoa, Italy.

24Upper Airways Research Laboratory, ENT Dept, Ghent University Hospital, Ghent, Belgium.

25University of Genoa, Department of Internal Medicine (DiMI) and IRCCS Ospedale Policlinico San Martino, Genova, Italy.

26PNDR, Portuguese National Programme for Respiratory Diseases, Faculdade de Medicina de Lisboa, Lisbon, Portugal.

27Director of the Geriatric Unit, Department of Internal Medicine (DIBIMIS), University of Palermo, Italy.

28Telbios SRL, Milan, Italy.

29Universidade do Estado do Pará, Belem, Brazil.

30Department of Medicine, University of Cape Town, Cape Town, South Africa.

31Hospital Civil de Guadalajara Dr Juan I Menchaca, Guadalara, Mexico.

32IQ4U Consultants Ltd, London, UK.

33Section of Respiratory Disease, Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy.

34Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, The Netherlands.

35Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Global Allergy and Asthma European Network (GA²LEN), Berlin, Germany.

36Dept of Respiratory Medicine, National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh.
Centre for Individualized Medicine, Department of Pediatrics, Faculty of Medicine, Linköping, Sweden.

36Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland.

37Department of Dermatology and Allergy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany

38Dept of Biochemistry and Clinical Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Warsaw Medical University, Warsaw, Poland.

39Department of Dermatology and Allergy Centre, Odense University Hospital, Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark.

40Department of Respiratory Medicine and Allergology, University Hospital, Lund, Sweden.

41Department of Geriatrics, Montpellier University Hospital, Montpellier, France.

42EA 2991, Euromov, University Montpellier, France.

43Department of Pathophysiology and Transplantation, University of Milan, IRCCS Fondazione Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy.

44Argentine Association of Respiratory Medicine, Buenos Aires, Argentina.

45Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Poland.

46Pediatric Department, University of Verona Hospital, Verona, Italy.

47UOC Pneumologia, Istituto di Medicina Interna, F. Policlinico Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy, and National Heart and Lung Institute, Royal Brompton Hospital & Imperial College London, UK.

48Institute of Translational Pharmacology, Italian National Research Council, Rome, Italy.

49Woolcock Institute of Medical Research, University of Sydney and Woolcock Emphysema Centre and Sydney Local Health District, Glebe, NSW, Australia.

50Allergist, La Rochelle, France.

51Associate professor of Clinical Medecine, Laval's University, Quebec city, Canada.

52Quebec Heart and Lung Institute, Laval University, Québec City, Canada.

53Centre Hospitalier Valenciennes, France.

54Head of Department of Clinical Pharmacy of Lithuanian University of Health Sciences, Kaunas, Lithuania.

55Institute of Lung Health, Respiratory Biomedical Unit, University Hospitals of Leicester NHS Trust, Leicestershire, UK; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.

56Department of Health Research Methods, Evidence and Impact, Division of Immunology and Allergy, McMaster University, Hamilton, ON, Canada.

57Chief of the University Pneumology Unit- AOU Molinette, Hospital City of Health and Science of Torino, Italy.

58Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany.

59Pharmacist, Municipality Pharmacy, Sarno, Italy.

60University of Medicine and Pharmacy Victor Babes, Timisoara, Romania.

61Instituto de Pediatria, Hospital Zambrano Hellion Tec de Monterrey, Monterrey, Mexico.

62Imperial College and Royal Brompton Hospital, London, UK.

63Centro Medico Docente La Trinidad, Caracas, Venezuela.

64Regional Director Assofarm Campania and Vice President of the Board of Directors of Cofaser, Salerno, Italy

65Service de pneumologie, CHU et université d'Auvergne, Clermont-Ferrand, France.

66Department of Pulmonology, Division of Allergy, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France.

67Imperial College London - National Heart and Lung Institute, London, UK.

68Federal University of Minas Gerais, Medical School, Department of Pediatrics, Belo Horizonte, Brazil

69Assistant Director General, Montpellier, Région Occitanie, France.

70Mayor of Sarno and President of Salerno Province, Director, Anesthesiology Service, Sarno "Martiri del Villa Malta" Hospital, Italy.

71Allergy Section, Department of Internal Medicine, Hospital Vall d'Hebron & ARADyAL Spanish Research Network, Barcelona, Spain.

72Department of Paediatrics, Oslo University Hospital and University of Oslo, Oslo, Norway.

73Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, EPE, Lisbon, and Nova Medical School, CEDOC, Integrated Pathophysiological Mechanisms Research Group, Lisbon, Portugal.

74Regional Ministry of Health of Andalusia, Seville, Spain.

75Allergy and Asthma Associates of Southern California, Mission Viejo, CA, USA.

76ASA - Advanced Solutions Accelerator, Clapiers, France.

77Division of Allergy/Immunology, University of South Florida, Tampa, Fl, USA.

78Celentano pharmacy, Massa Lubrense, Italy.

79SOS Allergology and Clinical Immunology, USL Toscana Centro, Prato, Italy.

80Allergy and Immunology Laboratory, Metropolitan University Hospital, Branquilla, Columbia.

81Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands

82Capital Institute of Pediatrics, Chaoyang district, Beijing, China.

83School of Medicine, University CEU San Pablo, Madrid, Spain.

84David Tvizdiani Medical University - AIETI Highest Medical School, David Tatishvili Medical Center Tbilisi, Georgia.

85Pulmonology Research Institute FMBA, Moscow, Russia and GARD Executive Committee, Moscow, Russia.

86National Heart & Lung Institute, Imperial College, London, UK.

87Specialist social worker, Sorrento, Italy.

88Argentine Federation of Otolorhinolaryngology Societies, Buenos Aires, Argentina.
93 Eskisehir Osmangazi University, Medical Faculty, ENT Department, Eskisehir, Turkey.

94 Medicine Department, IRCCS-Azienda Ospedaliera Universitaria San Martino, Genoa, Italy.

95 Universidade Federal da Bahia, Escola de Enfermagem, Brazil.

96 Plateforme Transversale d'Allergologie, Institut du Thorax, CHU de Nantes, Nantes, France.

97 LANUA International Healthcare Consultancy, Northern Ireland, UK.

98 Innovación y nuevas tecnologías, Salud Sector sanitario de Barbastre, Barbastre, Spain.

99 Innovation and Research Office, Department of Health and Social Solidarity, Autonomous Province of Trento, Italy.

100 Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.

101 Servicio de Allergología, Hospital Angeles del Carmen, Guadalajara, Mexico.

102 FIMMG (Federazione Italiana Medici di Medicina Generale), Milan, Italy.

103 UCIBIO, REQUINTE, Faculty of Pharmacy and Competence Center on Active and Healthy Ageing of University of Porto (Pronto4Ageing), Porto, Portugal.

104 Allergologo, Mexico City, Mexico.

105 IMT Mines Alès, Université Montpellier, Alès, France.

106 Department of Medicine, Nova Southeastern University, Davie, University of Miami Dept of Medicine, Miami, Florida, USA.

107 Regional Director Assofarm Campania and Vice President of the Board of Directors of Cofaser, Salerno, Italy.

108 ProAR – Nucleo de Excelencia en Asma, Federal University of Bahia, Brasil and GARD/WHO Executive Committee and Federal University of Bahia, Brazil.

109 Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, UK.

110 Medical Consulting Czarlewski, Levallois, France.

111 The Centre for Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

112 Azienda Provinciale per i Servizi Sanitari di Trento (APSS-Trento), Italy.

113 Department of Internal Medicine and Allergy Clinic of Professor Polydoro Ermanni de São Thiago University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.

114 Sleep Unit, Department of Neurology, Hôpital Gui-de-Chauliac Montpellier, Inserm U1061, France.

115 Department of Dermatology and Allergy, Technische Universität München, Munich, Germany; ZAUM-Center for Allergy and Environment, Helmholtz Center Munich, Technische Universität München, Munich, Germany.

116 Allergy Division, Chest Disease Department, University Hospital of Strasbourg, Strasbourg, France.

117 European Federation of Allergy and Airways Diseases Patients' Associations, Brussels, Belgium.

118 International Foundation for Integrated Care (IFIC), Wolfson College, Oxford, UK.

119 Policlínica Geral do Rio de Janeiro, Rio de Janeiro – Brazil.

120 Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy.

121 Peercode BV, Geldermalsen, The Netherlands.

122 Social workers coordinator, Sorrento, Italy.

123 Federal University of the State of Rio de Janeiro, School of Medicine and Surgery, Rio de Janeiro, Brazil.

124 Allergology and Immunology Discipline, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.

125 Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada.

126 Laboratoire de Pharmacologie Respiratoire UPRES EA220, Hôpital Foch, Suresnes, Université Versailles Saint-Quentin, Université Paris Saclay, France.

127 Farmacie Del Golfo Group, Massa Lubrense, Italy.

128 Lungcentre Larrey Hospital, Respiratory Diseases Department, Toulouse, France.

129 University Clinic of Pulmology and Allergy, Medical Faculty Skopje, Republic of Macedonia.

130 Allergologist, Mexico City, Mexico.

131 Service de Pneumo-Allergologie, Centre Hospitalo-Universitaire de Béni-Messous, Algiers, Algeria.

132 Clinic of infectious, chest diseases, dermatology and allergology, Vilnius University, Vilnius, Lithuania.

133 Allergy and Clinical Immunology National Heart and Lung Institute, Imperial College London, UK.

134 Guy's and st Thomas' NHS Trust, Kings College London, UK.

135 Section of Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA.

136 Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt.

137 Department of Computing Science, Umeå University, Sweden and Four Computing Oy, Finland.

138 Clinic of Children’s Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.

139 University of São Paulo Medical School, Sao Paulo, Brazil.

140 Andalusian Agency for Healthcare Quality, Seville, Spain.

141 Global Allergy and Asthma Platform GAAPP, Vienna, Austria.

142 Division of Allergy, Department of Pediatric Medicine - The Bambino Gesù Children's Research Hospital Holy see, Rome, Italy.

143 Department of Otorhinolaryngology, Academic Medical Centers, Amsterdam, the Netherlands, and EUFOREA, Brussels, Belgium.

144 CIENTESIS, Center for Research in Health Technologies and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal and MEDIDA, Lda, Porto, Portugal.

145 Allergist, Reims, France.

146 Hospital General Regional 1 "Dr Carlos Mc Gregor Sanchez Navarro" IMSS, Mexico City, Mexico.
Regional hospital of ISSSTE, Puebla, Mexico.
National Center for Disease Control and Public Health of Georgia, Tbilisi, Georgia.
Allergologo, Guadalajara, Mexico.
Allergy Clinic, National Institute of Respiratory Diseases, Mexico City, Mexico.
Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
Allergy unit, UHATEM “NPirogov”, Sofia, Bulgaria.
Medical University, Faculty of Public Health, Sofia, Bulgaria.
Allergy and Immunology Division, Clínica Ricardo Palma, Lima, Peru.
Department of Internal Medicine, section of Allergology, Erasmus MC, Rotterdam, The Netherlands.
Allergy & Asthma Unit, Hospital San Bernardo Salta, Argentina.
Allergy Clinic, Hospital Regional del ISSSTE ‘Lic. López Mateos’, Mexico City, Mexico.
Head and Professor, Centro Regional de Excelencia CONACYT y WAO en Allergia, Asma e Immunologia, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey NL, Mexico.
Center of Allergy and Immunology, Georgian Association of Allergology and Clinical Immunology, Tbilisi, Georgia.
Latvian Association of Allergists, Center of Tuberculosis and Lung Diseases, Riga, Latvia.
Federal District Base Hospital Institute, Brasilia, Brazil.
Institute of Health Policy and Management iBMG, Erasmus University, Rotterdam, The Netherlands.
University Hospital Olomouc – National eHealth Centre, Czech Republic.
Immunology and Allergy Division, Clinical Hospital, University of Chile, Santiago, Chile.
Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
Centich (Centre d'Expertise National des Technologies de l'Information et de la Communication pour l'autonomie), Groupe VyV, Conseil régional des Pays de la Loire, Centre d'expertise Partenariat Européen d'Innovation pour un vieillissement actif et en bonne santé, Nantes, France.
Autonomous University of Baja California, Ensenada, Baja California, Mexico.
Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
Hospital General Regional 1 “Dr Carlos MacGregor Sánchez Navarro” IMSS, Mexico City, Mexico.
Université Paris-Sud; Service de Pneumologie, Hôpital Bicêtre; Inserm UMR S999, Le Kremlin Bicêtre, France.
Dipartimento di medicina, chirurgia e odontoiatria, università di Salerno, Italy.
Division for Health Innovation, Campania Region and Federico II University Hospital Naples (R&D and DISMET) Naples, Italy.
Servicio de Alergia e Inmunología, Clinica Santa Isabel, Buenos Aires, Argentina.
President, Libra Foundation, Buenos Aires, Argentina.
Medical University of Gdaňsk, Department of Allergology, Gdansk, Poland.
Airway Disease Infection Section, National Heart and Lung Institute, Imperial College; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Gyeonggi-do, South Korea.
Department of Clinical Immunology, Wroclaw Medical University, Poland.
Ukrainina Medical Stomatological Academy, Poltava, Ukraine.
Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey.
Hacettepe University, School of Medicine, Department of Chest Diseases, Immunology and Allergy Division, Ankara, Turkey.
Allergy Centre, Tampere University Hospital, Tampere, Finland.
First Department of Family Medicine, Medical University of Lodz, Poland.
Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, and Institute for Clinical Epidemiology and Biometry, University of Wuerzburg, and Institute of Health Resort Medicine and Health Promotion, Bavarian Health and Food Safety Authority, Bad Kissingen, Germany.
Department of Medicine, McMaster University, Health Sciences Centre 3V47, West, Hamilton, Ontario, Canada.
National Research Center, Institute of Immunology, Federal Medico-biological Agency, Laboratory of Molecular immunology, Moscow, Russian Federation.
GARD Chairman, Geneva, Switzerland.
Allergy & Asthma Center Westend, Berlin, Germany.
Center for Rhinology and Allergology, Wiesbaden, Germany.
Department of Immunology and Allergy, Healthy Ageing Research Center, Medical University of Lodz, Lodz, Poland.
Children's Hospital and University of Helsinki, Finland.
Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm and Sach's Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden.
Institute of Biomedical Sciences, Department of Pathology, Faculty of Medicine, Vilnius University and Institute of Clinical medicine, Clinic of Chest diseases and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland.
Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, México City, Mexico.
Presidente CMMC, Milano, Italy.
Head of the Allergy Department of Pedro de Elizalde Children’s Hospital, Buenos Aires, Argentina.
University of Medicine and Pharmacy, Hochiminh City, Vietnam.
249 Scientific Centre of Children’s Health under the MoH, Moscow, Russian National Research Medical University named Pirogov, Moscow, Russia.
250 Director of Center of Allergy, Immunology and Respiratory Diseases, Santa Fe, Argentina Center for Allergy and Immunology, Santa Fe, Argentina.
251 Dept of Otorhinolaryngology, Medical University of Vienna, AKH, Vienna, Austria.
252 Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.
253 Die Hautambulanz and Rothaarth study center, Berlin, Germany.
254 Neumología y Alergología Infantil, Hospital La Fe, Valencia, Spain.
255 Center for Health Technology and Services Research - CINTESIS and Department of Internal Medicine, Centro Hospitalar Sao Joao, Porto, Portugal.
256 Caisse d’assurance retraite et de la santé au travail du Languedoc-Roussillon (CARSAT-LR), Montpellier, France.
257 Director of Department of Pharmacy of University of Naples Federico II, Naples, Italy.
258 ENT Department, University Hospital of Kinshasa, Kinshasa, Congo.
259 Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Immunology, Monash University, Melbourne, Victoria, Australia.
260 Medical center “Research expert”, Varna, Bulgaria.
261 National Hospital Organization, Tokyo National Hospital, Tokyo, Japan.
262 Dept of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan.
263 Dept of Otolaryngology, Nippon Medical School, Tokyo, Japan.
264 Allergologo, Jalisco, Guadalajara, Mexico.
265 Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso.
266 Dept of Comparative Medicine; Messerli Research Institute of the University of Veterinary Medicine and Medical University, Vienna, Austria.
267 Department of Immunology and Allergology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.
268 Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, UK, and Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens, Greece.
269 Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
270 Respiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
271 Allergy and Respiratory Diseases, Ospedale Policlinico San Martino -University of Genoa, Italy.
272 Farmacias Holon, Lisbon, Portugal.
273 Department of Pediatrics, Nippon Medical School, Tokyo, Japan.
274 University of Southern Denmark, Kolding, Denmark.
275 Université Grenoble Alpes, Laboratoire HP2, Grenoble, INSERM, U1042 and CHU de Grenoble, France.
276 Allergy Unit, CUF-Porto Hospital and Institute; Center for Research in Health Technologies and information systems CINTESIS, Universidade do Porto, Portugal.
277 Sociologist, municipality area n33, Sorrento, Italy.
278 Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Phillipps-Universität Marburg, Germany.
279 Division of Respiratory and Allergic Diseases, Hospital ‘A Cardarelli’, University of Naples Federico II, Naples, Italy.
280 Centre for empowering people and communites, Dublin, UK.
282 Société de Pneumologie de Langue Française, Espace franco-phone de Pneumologie, Paris, France.
283 Département de pédriatrie, CHU de Grenoble, Grenoble, France.
284 Medical School, University of Cyprus, Nicosia, Cyprus.
285 Children’s Hospital Srebrenjak, Zagreb, School of Medicine, University JJ Strossmayer, Osijek, Croatia.
286 Karl Landsteiner Institute for Clinical and Experimental Pneumology, Hietzing Hospital, Vienna, Austria.
287 University Hospital ‘Sv. Ivan Rilski’, Sofia, Bulgaria.
288 Allergy Diagnostic and Clinical Research Unit, University of Cape Town Lung Institute, Cape Town, South Africa.
288 Vice-Presidente de IML, Milano, Italy.
289 Observational and Pragmatic Research Institute, Singapore, Singapore.
290 Department of Otorhinolaryngology University of Crete School of Medicine, Heraklion, Greece.
292 European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA), Brussels, Belgium.
293 Allergologo, cancun quintana roo, Mexico.
294 LungenClinic Grosshansdorf, Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany Department of Medicine, Christian Albrechts University, Airway Research Center North, Member of the German Center for Lung Research (DZL), Kiel, Germany.
295 Department of Nephrology and Endocrinology, Karolinska University Hospital, Stockholm, Sweden.
296 Farmácia São Paio, Vila Nova de Gaia, Porto, Portugal.
297 St Vincent’s Hospital and University of Sydney, Sydney, New South Wales, Australia.
298 Allergologo, Mexico City, Mexico.
299 Serviço de Pneumologia-Hosp das Clinicas UFPE-EBSERH, Recife, Brazil.
300 Universidade Federal de São Paulo, São Paulo, Brazil.
301 Centre of Pneumology, Coimbra University Hospital, Portugal.
302 Polibienestar Research Institute, University of Valencia, Valencia, Spain.
Pediatric Allergy and Clinical Immunology, Hospital Angeles Pedregal, Mexico City, Mexico.

Getafe University Hospital Department of Geriatrics, Madrid, Spain.

Association Asthme et Allergie, Paris, France.

Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Primary Care Respiratory Research Unit Instituto de Investigación Sanitaria de Palma IdiSapalma, Palma de Mallorca, Spain.

Allergy Unit, Presidio Columbus, Rome, Catholic University of Sacred Heart, Rome and IRCSS Oasi Maria SS, Troina, Italy.

Hospital General, Mexico City, Mexico.

Regione Piemonte, Torino, Italy.

Medical University of Graz, Department of Internal Medicine, Graz, Austria.

Serviço de Imunoallergologia Hospital da Luz, Lisboa, Portugal.

Hospital de Clínicas, University of Parana, Brazil.

Division of Allergy Asthma and Clinical Immunology, Emek Medical Center, Afula, Israel.

Honorary Clinical Research Fellow, Allergy and Respiratory Research Group, The University of Edinburgh, Edinburgh, UK.

Showa University School of Medicine, Tokyo, Japan.

Association of Finnish Pharmacies, Helsinki, Finland.

Allergy and Clinical Immunology Department, Centro Médico-Docente La Trinidad y Clinica El Avila, Caracas, Venezuela.

 Faculty of Medicine, Autonomous University of Madrid, Spain.

The Royal National TNE Hospital, University College London, UK.

DIBIMIS, University of Palermo, Italy.

Allergy Unit, Department of Dermatology, University Hospital of Zurich, Zürich, Switzerland.

Asthma Reference Center, Escola Superior de Ciências da Santa Casa de Misericordia de Vitoria - Esperito Santo, Brazil.

The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK.

Department of Pediatrics & Child Health, Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.

INSERM, Université Grenoble Alpes, IAB, U 1209, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Université Joseph Fourier, Grenoble, France.

Sociedad Paraguaya de Alergia Asma e Inmunología, Paraguay.

Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil.

European Health Futures Forum (EHFF), Dromahair, Ireland.

ENT, Aachen, Germany.

Kyrgyzstan National Centre of Cardiology and Internal medicine, Euro-Asian respiratory Society, Bishkek, Kyrgyzstan.

University Hospital Olomouc, Czech Republic.

Department of Paediatric and Adolescent medicine, University Hospital of North Norway, Tromsø, Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UIT The Arctic University of Norway, Tromsø, Norway.

Presidente, IML (Lombardy Medical Initiative), Bergamo, Italy.

Pulmonary Division, Heart Institute (InCor), Hospital da Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.

Public Health Institute of Vilnius University, Vilnius, Lithuania.

Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.

RNSA (Réseau National de Surveillance Aérobiologique), Brussel, France.

The Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, Canada.

Imunoalergologia, Centro Hospitalar Universitário de Coimbra and Faculty of Medicine, University of Coimbra, Portugal.

Department of General ORL, H&NS, Medical University of Graz, ENT University Hospital, Graz, Austria.

Campania Region, Division on Pharmacy and devices policy, Naples, Italy.

Department of Respiratory Medicine, Hvidovre Hospital & University of Copenhagen, Denmark.

Universidade Federal dos Pampas, Uruguaya, Brazil.

Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, and Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.

Pneumology and Allergy Department CIBERES and Clinical & Experimental Respiratory Immunology, IDIBAPS, University of Barcelona, Spain.

Vilnius University Medical Faculty Institute of Clinical Medicine and Institute of Health Sciences, Vilnius, Lithuania.

Department of Lung Diseases and Clinical Immunology Allergology, University of Turku and Terveystalo allergy clinic, Turku, Finland.

PE Lyon; HESPER 7425, Health Services and Performance Research - Université Claude Bernard Lyon, France.

Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.

Department of Chest Medicine, Centre Hospitalier Universitaire UCL Namur, Université Catholique de Louvain, Yvoir, Belgium.

University of Bari Medical School, Unit of Geriatric Immunology allergy. Bari, Italy.

Pulmonary Unit, Department of Medical Specialties, Arcispedale SMaria Nuova/IRCCS, AUSL di Reggio Emilia, Italy.

FILHA, Finnish Lung Association, Helsinki, Finland.

Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy; and CNR Institute of Biomedicine and Molecular Immunology “A Monroy”, Palermo, Italy.

Medical University, Department of Otorhinolaryngology, Plovdiv, Bulgaria.
357 Sotiria Hospital, Athens, Greece.
358 Dept of Otorhinolaryngology, Universitätsklinikum Düsseldorf, Germany.
359 Asthma UK, Mansell street, London, UK.
360 Nova Southeastern University, Fort Lauderdale, Florida, USA.
361 Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
362 Department of Medicine, Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada.
363 Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.
364 Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Department of ENT diseases, Karolinska University Hospital, Stockholm, Sweden.
365 Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
366 International Primary Care Respiratory Group IPCRG, Aberdeen, Scotland.
367 Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UK.
368 Allergologist - Medical College of Medical Faculty, Thracian University, Stara Zagora, Bulgaria.
369 Department of Research, Olmsted Medical Center, Rochester, Minnesota, USA.
370 Cyprus International Institute for Environmental & Public Health in Association with Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus; Department of Pediatrics, Hospital "Archbishop Makarios III", Nicosia, Cyprus.
371 Celal Bayar University Department of Pulmonology, Manisa, Turkey.
372 The Allergy and Asthma Institute, Islamabad, Pakistan.
373 Department of Paediatrics and Child Health, Red Cross Children's Hospital, and MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa.
374 Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital and Beijing Institute of Otolaryngology, Beijing, China.
375 Universidad Católica de Córdoba, Córdoba, Argentina.
376 University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia.
377 Gesundheitsregion KölnBonn - HRCB Projekt GmbH, Kohn, Germany.
378 Akershus University Hospital, Department of Otorhinolaryngology, Akershus, Norway.
379 Chief of Staff, the Northern Health Science Alliance (NHSA) and Director and Founder of Northern Health Matters Ltd, Manchester, UK.
380 President of Kazakhstan Association of Allergology and Clinical Immunology, Department of Allergology and Clinical Immunology of the Kazakh National Medical University, Kazakhstan.
381 ICREA and Climate and Health (CLIMA) Program, ISGlobal, Barcelona, Spain
382 Department of Otorhinolaryngology, Head and Neck Surgery, Ankara, Turkey and Department of Otorhinolaryngology, Head and Neck Surgery, Salzburg Paracelsus Medical University, Austria
383 President of European Rhinologic Society, 1st Dept of ORL, Head & Neck Surgery, Aristotle University, Thessaloniki, Greece and Professor of FAU Erlangen-Nurnberg University, Germany
384 Thermofisher Scientific, Uppsala, Sweden
385 Institute of Health Resort Medicine and Health Promotion, Bavarian Health and Food Safety Authority, Bad Kissingen, Germany.