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On four numerical schemes for a unipolar
degenerate drift-diffusion model

Clément Cancès, Claire Chainais-Hillairet, Jürgen Fuhrmann and Benoı̂t Gaudeul

Abstract We consider a unipolar degenerate drift-diffusion system where the rela-
tion between the concentration of the charged species c and the chemical potential
h is h(c) = log c

1−c . For four different finite volume schemes based on four different
formulations of the fluxes of the problem, we discuss stability and existence results.
For two of them, we report a convergence proof. Numerical experiments illustrate
the behaviour of the different schemes.
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1 Introduction

The transport of a charged species with density c in the presence of a fixed or mov-
ing countercharge and a self-consistent electric field, deriving from an electrostatic
potential Φ , can be described by the non-dimensionalized system of equations

∂tc+div(J) = 0 in (0,T )×Ω , (1)
J =−c∇(h(c)+Φ) in (0,T )×Ω , (2)
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where h(c) = log
( c

1−c

)
is the chemical potential. The electrostatic potential Φ is

related to space charge density via the Poisson equation

−∆Φ = c+ cdop in (0,T )×Ω . (3)

In (3), cdop describes the doping profile of the media. Such models occur in appli-
cations ranging from organic semiconductors [5], high-temperature fuel cells [13]
or simplified models of ionic liquids [8]. Because of the singularity of h near 1, the
density c remains in the interval (0,1). We consider the evolution in a connected
bounded open domain Ω of Rd (d ≤ 3) with polyhedral and Lipschitz continuous
boundary ∂Ω during a finite but arbitrary time T > 0. The doping profile cdop is as-
sumed to be constant w.r.t. time and to be bounded, i.e., cdop ∈ L∞(Ω). The system
is supplemented with the prescription of the initial concentration

c|t=0 = c0 ∈ L∞(Ω) with 0≤ c0 ≤ 1 and 0 < c =
∮

Ω

c0dx < 1, (4)

of no-flux boundary conditions for the concentration

J ·n = 0 on (0,T )×∂Ω . (5)

For the electrostatic potential, inhomogeneous Dirichlet boundary conditions are
imposed on a subset ΓD of positive measure of ∂Ω , whereas homogeneous Neumann
boundary conditions are imposed on ΓN = ∂Ω \ΓD:

Φ = Φ
D on (0,T )×ΓD, ∇Φ ·n = 0 on (0,T )×ΓN . (6)

We assume that ΦD is defined in the whole domain, with ΦD ∈ H1(Ω)∩L∞(Ω).
In [3], we studied and compared several Finite Volume schemes for the sys-

tem (1)–(6). They are based on various reformulations of the flux J using the ex-
cess chemical potential ν(c) = h(c)− log(c) = − log(1− c), the activity and the
inverse of the activity coefficient respectively defined by a(c) = eh(c) = c

1−c , and
β (c) = c

a(c) = 1− c, or the diffusion enhancement r(c) = − log(1− c) satisfying
r′(c) = ch′(c). The flux J, initially defined by (2), can be alternatively rewritten as

J =−∇c− c∇(Φ +ν(c)) , (7)
=−β (c)(∇a(c)+a(c)∇Φ), (8)
=−r′(c)∇c− c∇Φ . (9)

Let us notice that, even ν(c) = r(c) for our specific choice of h(c), the excess chem-
ical potential and the diffusion enhancement arising respectively in (7) and (9) have
a different physical sense so that we keep different notations.

Each formulation (2), (7), (8) and (9) leads to a different scheme that we com-
pared from a numerical analysis point of view. Notice that the flux J can also be ex-
pressed as J=−∇r(c)−c∇Φ . This last formulation is used todefine a proper notion
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of weak solution to (1)–(6). In order to state this definition, we introduce the vector
space HΓ D = { f ∈H1(Ω), f|ΓD

= 0} and the space-time cylinder QT = (0,T )×Ω .

Definition 1. A couple (c,Φ) is a weak solution of (1)–(6) if

• c ∈ L∞(QT ; [0,1]) with r(c) ∈ L2((0,T );H1(Ω)), and Φ − ΦD ∈
L∞((0,T ),HΓ D);

• for all ϕ ∈C∞
c ([0,T )×Ω), there holds∫∫

QT

c∂tϕdxdt +
∫

Ω

c0
ϕ(0, ·)dx−

∫∫
QT

(∇r(c)+ c∇Φ) ·∇ϕdxdt = 0; (10)

• for all ψ ∈HΓ D and almost all t ∈ (0,T ), there holds∫
Ω

∇Φ(t,x) ·∇ψ(x)dx =
∫

Ω

(c(t,x)+ cdop(x))ψ(x)dx. (11)

We shortly discuss the gradient flow structure of the system (1)–(6). Define the
mixing entropy density

H(c) = c log(c)+(1− c) log(1− c),

which is an antiderivative of h, then the electrochemical energy is given by

E(c,Φ) =
∫

Ω

{
H(c)+

1
2
|∇Φ |2

}
dx−

∫
ΓD

Φ
D

∇Φ ·ndγ. (12)

The electrochemical energy is a Lyapunov functional. Moreover, the dissipation rate
for the energy is explicitly given.

Proposition 1.1 Let (c,Φ) be a smooth solution to (1)–(6), with c bounded away
from 0 and 1, then

d
dt

E(c,Φ)+
∫

Ω

c |∇(h(c)+Φ)|2 dx = 0.

2 TPFA Finite Volume approximations

For the space discretization, we use the standard notation of an admissible finite
volume mesh

(
T ,E ,(xK)K∈T

)
, see [3]. Control volumes are denoted by K ∈ T

with respective measures mK , whereas edges are denoted by σ ∈ E , their (d− 1)-
dimensional measure being denoted by mσ . Since our method relies on a two-point
flux approximation, we suppose that the mesh satisfies the classical orthogonality
condition [6, Chapter 9]. For the time discretization, we consider an increasing finite
family of times 0 = t0 < t1 < · · · < tN = T . We denote by ∆ tn = tn− tn−1 for 1 ≤
n≤ N, by ∆ t = (∆ tn)1≤n≤N , and by ∆ t = max1≤n≤N ∆ tn.
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The initial data c0 and the doping profile cdop are respectively discretized into(
c0

K
)

K∈T ,
(

cdop
K

)
K∈T

∈ RT by setting

c0
K =

1
mK

∫
K

c0(x)dx, cdop
K =

1
mK

∫
K

cdop(x)dx, ∀K ∈T , (13)

Assume that cn−1 =
(
cn−1

K

)
K∈T ∈ [0,1]

T is given for some n > 0. We define how to
compute (cn,Φn) = (cn

K ,Φ
n
K)K∈T . For all K ∈ T and all σ ∈ EK = Eint ∪Eext, the

set of interior and exterior control volume facets, we define the mirror values cn
Kσ

and Φn
Kσ

of cn
K and Φn

K respectively across σ by setting

cn
Kσ =

{
cn

L if σ = K|L ∈ Eint,

cn
K if σ ∈ Eext,

Φ
n
Kσ =


Φn

L if σ = K|L ∈ Eint,

Φn
K if σ ∈ E N ,

Φn
σ = 1

mσ

∫
σ

ΦDdγ if σ ∈ E D.

For σ ∈ E , we set dσ = |xK−xL| if σ = K|L ∈ Eint, dσ = |xK−xσ | if σ ∈ Eext, and
τσ = mσ

dσ
. Given u = (uK)K∈T ∈ RT , we define the oriented and absolute jumps of

u across σ ∈ EK by DKσ u = uKσ −uK , and Dσ u = |DKσ u|.
All the four schemes we consider are based on a backward Euler scheme for the

time discretization and a TPFA finite volume scheme for the space discretization.
They are written as follows:

− ∑
σ∈EK

τσ DKσ Φ
n = mK

(
cn

K + cdop
K

)
, ∀K ∈T , (14a)

mK
cn

K− cn−1
K

∆ tn
+ ∑

σ∈EK,int

Fn
Kσ = 0, ∀K ∈T . (14b)

To close the system (14), it remains to define the numerical fluxes Fn
Kσ

. Due to
the no-flux boundary condition, we only have to define the inner fluxes. They are
defined with a function F of the primary unknowns (cn

K ,c
n
L,Φ

n
K ,Φ

n
L):

Fn
Kσ = τσ F (cn

K ,c
n
L,Φ

n
K ,Φ

n
L), ∀K ∈T ,∀σ = K|L. (15)

The different schemes considered in this contribution correspond to different
choices of F . All of them verify F (cK ,cL,ΦK ,ΦL) =−F (cL,cK ,ΦL,ΦK), so that
the numerical fluxes are locally conservative. Three of the four schemes are exten-
sions of the Scharfetter-Gummel scheme [12] and feature the Bernoulli function
B(u) = u

eu−1 .
The centred flux is derived from (2), which suggests the following definition:

F (cK ,cL,ΦK ,ΦL) =−
cK + cL

2
DKσ (h(c)+Φ) . (C)

The associate flux can be seen as a particular case in the TPFA context of the fluxes
introduced in [4]. This scheme is not based on the Scharfetter-Gummel scheme.
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The Sedan flux is named after the SEDAN III simulator [14]. Formula (7) for the
flux J suggests to use a classical Scharfetter-Gummel scheme, but for a modified
potential Φ +ν(c) instead of only Φ , leading to

F (cK ,cL,ΦK ,ΦL) = B
(

DKσ (Φ +ν(c))
)

cK−B
(
−DKσ (Φ +ν(c))

)
cL. (S)

The activity based flux is a restriction of the flux introduced in [7]. It relies on
the expression (8). With frozen β (c), the flux J is linear w.r.t. a(c). This suggests
choosing a particular average for β (c) —here the arithmetic mean— and applying
the Scharfetter-Gummel scheme to approximate −∇a(c)−a(c)∇Φ , yielding

F (cK ,cL,ΦK ,ΦL) =
β (cK)+β (cL)

2

{
B(DKσ Φ)a(cK)−B(−DKσ Φ)a(cL)

}
.

(AB)
Formula (9) for the flux J suggests that, with introducing a variable diffusion

coefficient approximating the r′(c) per face, one can use the Scharfetter-Gummel
scheme. Following [1], the approximation dr(cK ,cL) of r′(c) is defined as

dr(cK ,cL) =


h(cK)−h(cL)

log(cK)− log(cL)
if cK 6= cL,

r′(cK) if cK = cL.

This leads to the following definition of the Bessemoulin-Chatard flux [1]:

F (cK ,cL,ΦK ,ΦL) = dr(cK ,cL)

{
B
(

DKσ Φ

dr(cK ,cL)

)
cK−B

(
− DKσ Φ

dr(cK ,cL)

)
cL

}
.

(BC)

2.1 Main results

The energy decay was one of the key properties of the continuous model, cf.
Proposition 1.1. This property is transposed to the discrete setting by all the four
discretizations we have considered. The discrete energy functional ET has to be
thought of as a discrete counterpart of the continuous energy functional E, cf. (12).
It is defined by:

ET (cn,Φn) = ∑
K∈T

mKH(cn
K)+

1
2 ∑

σ∈E
τσ (Dσ Φ

n)2− ∑
K∈T

∑
σ∈E D∩EK

τσ Φ
D
σ DKσ Φ

n.

Our first result focuses on the four schemes on a fixed mesh. It states that the
nonlinear system corresponding to each scheme admits a solution which preserves
the physical bounds on the concentrations and the decay of the energy:

Theorem 1. Let (T ,E ,(xK)K∈T ) be an admissible mesh and let c0 be defined
by (13). Then, for all 1≤ n≤N, the nonlinear system of equations (14)–(15), supple-
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mented either with (C), (S), (AB), or (BC), has a solution (cn,Φn) ∈ [0,1]T ×RT .
Moreover, the solution to the scheme satisfies, for all 1≤ n≤ N,

ET (cn,,Φn)≤ ET (cn−1,Φn−1) and 0 < cn
K < 1, ∀K ∈T .

Once a discrete solution to the scheme (cn,Φn)1≤n≤N at hand, we can define an
approximate solution (cT ,∆ t ,ΦT ,∆ t). It is the piecewise constant function defined
almost everywhere by

cT ,∆ t(t,x) = cn
K , ΦT ,∆ t(t,x) = Φ

n
K if (t,x) ∈ (tn−1, tn]×K.

Let (Tm,Em,(xK)K∈Tm)m≥1 be a sequence of admissible meshes such that
hTm ,∆ tm −→

m→∞
0 while the mesh regularity remains bounded (see [3] for the defi-

nition of the regularity of the mesh). A natural question is the convergence of the as-
sociated sequence of approximate solutions (cTm,∆ tm ,ΦTm,∆ tm)m≥1 towards a weak
solution to the continuous problem. The convergence result is stated in Theorem 2,
only for the centred scheme and the Sedan scheme. The proof is detailed in [3]. It is
based on compactness arguments. As far as we know, there is no uniqueness result
for the weak solutions, hence the convergence only holds up to a subsequence.

Theorem 2. For the centred scheme (inner fluxes defined by (15) and (C)) and the
Sedan scheme (inner fluxes defined by (15) and (S)), a sequence of approximate
solutions (cTm,∆ tm ,ΦTm,∆ tm)m≥1 satisfies, up to a subsequence,

cTm,∆ tm −→m→∞
c a.e. in QT , ΦTm,∆ tm −→m→∞

Φ in L2(QT ), (16)

where (c,Φ) is a weak solution to (1)-(6) in the sense of Definition 1.

3 A numerical example

The presented numerical example and those in [3] have been implemented
in the Julia language [2] based on the packages VoronoiFVM.jl [9] and
ForwardDiff.jl [11].

The example is a modification of one of the numerical examples in [3]. It consid-
ers the problem (1)-(3) in Ω = (0,50) with homogeneous Dirichlet boundary condi-
tions for Φ and homogeneous Neumann boundary conditions for c with cdop =−0.5
and c0 = 0.7. We choose a self-consistent initial value Φ0 for the electrostatic po-
tential such that (3) is fulfilled for c0.

For this test case, the four schemes behave similarly, as shown in the right picture
of Fig. 1. As demonstrated in [3], more extreme examples forcing concentrations to
be close to the physical bounds reveal important differences. The left picture of
Fig.1 shows that, for large t, the charge carrier concentration approaches a steady
state with two space charge regions. We remark that c stays in the range (0,1),
and that the energy (12) decreases during the time evolution for all four schemes
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Fig. 1 Left: time evolution of solution for scheme (S) on domain Ω = (0,50) with constant initial
value c = 0.7, homogeneous Dirichlet boundary conditions for Φ , cdop = − 1

2 and homogeneous
Neumann boundary conditions for c. Right: Evolution of the relative free energy according to (12)
for the different schemes.
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Fig. 2 Error e0 in L2
(
(0,T );L2(Ω)2

)
(left) and e1 in L2

(
(0,T );H1(Ω)2

)
on (c,Φ) for scheme (S)

vs. optimal energy dissipation per time step Dopt for grid step sizes h = 0.5∗2−m for m = 1 . . .6.

discussed in this paper, as stated in Theorem 1. At the end of the time evolution,
an electroneutral region occurs in the center of the domain. At both boundaries,
equally charged space regions set up enrichment boundary layers due to the fact
that the amount of charge carriers confined to the domain cannot be compensated
by the doping.

For the convergence experiment (see Fig. 2) we present results for scheme (S)
only, the other schemes discussed perform similarly. For the space discretization,
we used 6 levels of refinement building on a subdivision into 100 intervals for the
coarsest mesh. Following a suggestion of Gajewski and Gärtner [10], we used an
adaptive strategy based on the equidistribution of the energy dissipated per time step
for the control of the time step size. We start with t1 = 10−4 and use the following
expression to calculate the next time step:

tn+1 = min
{

tn ·1.2, tn ·
Dopt

Dn
,100

}
,
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where Dn = |En−En−1| is the change in the free energy during the previous time-
step and Dopt is the parameter which controls the time step size. This approach
ensures that the energy dissipated per time step remains of the same order as Dopt
outside of a start region where the time-step size is ramped up and a final region
where the dissipation rate approaches zero.

In Fig. 2, we show for a sequence of meshes the convergence of the L2(L2) and
L2(H1) errors for the approximate solution (cT ,∆ t ,ΦT ,∆ t) with respect to a refer-
ence solution calculated on a fine space-time grid. For coarse space discretizations,
errors are dominated by the spatial error, and decreasing the time step control pa-
rameter Dopt does not decrease the overall error. On the other hand, on fine spatial
grids, we observe that the errors seem to decrease proportionally to the square root
of Dopt which gives rise to a corresponding hypothesis to be investigated in further
research.
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