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ABSTRACT: We have recently shown in this journal (Müller et al., Anal. Chem. 2017, 89, 10889-10897) how a proton-transfer-

reaction mass spectrometry (PTR-MS) analyzer measured particulate organic matter in urban atmospheres using the “Chemical 

Analysis of Aerosol Online” (CHARON) inlet. Our initial CHARON studies did not take into account fragmentation of protonated 

analyte molecules, which introduced a small but significant negative bias in the determination of bulk organic aerosol parameters. 

Herein, we studied the ionic fragmentation of 26 oxidized organic compounds typically found in atmospheric particles. This al-

lowed us to derive a correction algorithm for the determination of the bulk organic mass concentration, mOA, the bulk-average hy-

drogen-to-carbon ratio, (H:C)bulk, the bulk-average oxygen-to-carbon, (O:C)bulk, and the bulk-average molecular formula, MFbulk. 

The correction algorithm was validated against AMS data using two sets of published data. Finally, we determined MFbulk of parti-

cles generated from the reaction of -pinene and ozone and compared and discussed the results in relation to the literature. 

Submicrometer-sized particles that are suspended in the at-

mosphere over cities and forests are predominantly composed 

of organic matter. The organic particle fraction consists of 

thousands of individual compounds with widely varying 

chemical and physical properties (e.g., volatility, polarity, 

water solubility). This makes the sampling, separation and 

detection of particulate organic matter (POM) one of the major 

remaining challenges in atmospheric analytical chemistry
1
. 

Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) is 

a well-established and widely used online monitoring tech-

nique for organic trace gases in the atmosphere
2,3

. The recently 

developed “Chemical Analysis of Aerosol Online” (CHARON) 

particle inlet
4
 enables PTR-MS instruments to measure POM 

online (i.e., without preconcentration on a filter or an impac-

tion plate) and in real time
5–10

. The CHARON inlet consists of 

an activated charcoal denuder which strips off gaseous organic 

compounds from the sample flow, an aerodynamic lens system 

which enriches the particle concentration in the instrument 

subsampling flow, and a vaporizer which evaporates POM 

prior to its introduction into the PTR-MS instrument. The 

PTR-MS analyzer in its standard configuration uses hydroni-

um (H3O
+
) ions to ionize organic analytes via proton transfer 

reactions
11

. H3O
+
 ions react with all larger organic molecules 

at unit efficiency, which means that the PTR-MS signal re-

sponse to typical atmospheric POM constituents varies by less 

than a factor of 2.5. This makes PTR-MS stand out from other 

emerging POM analyzers
12,13

 and well suited for a quantitative 

bulk organic aerosol analysis. 

An accurate measurement of the bulk organic mass concen-

tration, mOA, is essential for obtaining mass closure of 

submicrometer-sized atmospheric particulate matter. Bulk 

elemental ratios are widely used reduced parameters for de-

scribing the chemical state of POM. The bulk-average hydro-

gen-to-carbon ratio, (H:C)bulk, and the bulk-average oxygen-to-

carbon, (O:C)bulk, have been linked to important POM proper-

ties such as density, volatility, hygroscopicity, oxidation state, 

and refractive index
14–18

. mOA, (H:C)bulk and (O:C)bulk are now-

adays routinely measured by the Aerodyne aerosol mass spec-

trometer (AMS)
19

. The AMS is, however, not capable of de-

termining the bulk-average molecular formula, MFbulk, because 

most organic analytes decompose in this instrument before 

detection. MFbulk is also difficult to determine with soft ioniza-

tion methods which usually do not universally and quantita-

tively ionize all constituents of POM. The accurate determina-

tion of MFbulk of atmospheric POM thus remains a major ana-

lytical challenge. 

When determining mOA, (H:C)bulk and (O:C)bulk by 

CHARON PTR-MS, we have hitherto not taken into account 

the fragmentation of protonated analyte molecules and thus 

accepted a small but significant negative bias in the measure-

ment of these parameters. The work presented herein quanti-

fies this bias using the conceptual approach that Aiken et al.
20

 

and Canagaratna et al.
21

 have developed for characterizing the 

AMS analyzer. This approach consists in studying the instru-

ment’s response to a large number of analytes thought to be 

representative of atmospheric POM and in relating the biased 

measured data to the known molecular composition. In most 



 

urban and rural atmospheres, POM mainly consists of oxi-

dized species
22

 wherein oxygen is predominantly bound in 

hydroxy, carboxylic and keto groups
23

. We have studied the 

fragmentation of 26 compounds with these functionalities to 

derive an algorithm for correcting mOA, (H:C)bulk and (O:C)bulk. 

We have further validated this correction algorithm against 

AMS data using two sets of published data. Finally, we have 

determined MFbulk of particles generated from the reaction of 

-pinene and ozone and compared it with literature values. 

MATERIALS AND METHODS 

Fragmentation study. The 26 oxidized organic compounds 

studied in this work are listed in Table S1 in the Supplement. 

The compounds were individually dissolved in distilled water 

(isopropanol in the case of levoglucosan) and nebulized in a 

home-built nebulizer that was pressurized with ultra-pure air. 

The nebulizer outflow was diverted through a heated (80°C) 

tube and a diffusion dryer for removing water and two activat-

ed charcoal denuders (NovaCarb F, Mast Carbon International 

Ltd., Guilford, UK) for removing any volatile organics pre-

sent. The resulting flow of polydisperse particles was then 

injected into a differential mobility analyzer (DMA, TSI mod-

el 3070), with only 300 nm particles being transmitted to the 

CHARON PTR-MS analyzer. 

α-pinene ozonolysis study. 400 ppb of α-pinene (98%, 

Sigma-Aldrich), 525 ppb of ozone and 300 nm ammonium 

sulfate seed aerosols ( 1500 cm
-3

) were injected into a boro-

silicate flow tube (length: 3 m, volume: 30.6 l) that was con-

tinuously flushed at a rate of 1 liter per minute with humidi-

fied ultra-pure air (RH ~ 30%). The residence time in the flow 

tube was approximately 30 minutes, enough to generate abun-

dant secondary organic aerosol (SOA) from the reaction of -

pinene and ozone. The tube outflow was sampled by the 

CHARON PTR-MS analyzer via a home-built 

thermodenuder
6
, i.e., a heated tube combined with an activated 

charcoal denuder. The residence time in the thermodenuder 

was approximately 40 seconds, enough for equilibration. The 

thermodenuder temperature was increased in 10°C steps from 

room temperature to 105°C.  

PTR-MS operation and data analysis. The CHARON in-

let has been described in the introduction and in greater detail 

by Eichler et al.
4
 The inlet we used had a particle enrichment 

factor of 44. The vaporizer was operated at 140°C and ~8 

mbar absolute pressure. The CHARON inlet was connected to 

a commercial PTR-TOF 8000 analyzer (Ionicon Analytik 

GmbH, Innsbruck, Austria). The drift tube was kept at 120°C 

and operated at different reduced electric field strengths (see 

Results section). The raw data were processed using the PTR-

ToF Data Analyzer
24

. We assigned a molecular sum formula 

to each ion signal based on the measured accurate m/z and 

quantified it according to its elemental composition. The 

Langevin-Gioumousis-Stevenson theory
25

 was used for quanti-

fying signals assigned to pure hydrocarbon ions. The Su and 

Chesnavich parameterized capture rate theory
26

 was used for 

quantifying signals associated with heteroatom-containing 

ions. Isotropic molecular polarizabilities were determined 

from the ions’ elemental composition using the 

parametrization proposed by Bosque and Sales
27

. An average 

dipole moment of 2.75 D was used for quantifying ion signals 

associated with heteroatom-containing ions. This quantifica-

tion procedure is described in more detail in Müller et al.
5
 The 

Supplement of Müller et al.
5
 describes how to derive mOA, 

(H:C)bulk and (O:C)bulk from the elementally-resolved and 

quantified signals. 

RESULTS AND DISCUSSION 

Reduced fragmentation at 60 Td. The fragmentation of 

analyte ions in PTR-MS instruments is, to a large extent, 

caused by the energetic action of the electric field in the ioni-

zation region (i.e., in the drift tube). The electric field prevents 

the hydration of ions and thus ensures that bare H3O
+
 ions are 

the main ionizing agents. This is typically achieved by apply-

ing a reduced electric field strength, E/N (E being the electric 

field strength and N the gas number density), in the range 

between 100 and 160 Td (1 Td=10
−17

 V cm
2
) to the ionization 

region
28

.  

 

Figure 1. Scatter plots of measured nc vs. molecular nc (upper 

panel), measured O:C vs. molecular O:C (middle panel), and 

measured H:C vs. molecular H:C (lower panel), as obtained when 

pure-compound particles generated from 26 oxidized organic 

compounds, were sampled at 100 Td (red points) and 60 Td (blue 

points), respectively. 

CHARON PTR-MS analyzers do, however, operate in the 

H3O
+
 mode down to an E/N of 60 Td due to the dehumidifying 

action of the charcoal denuder and the increased drift tube 

temperature. We have recently shown on the example of cis-

pinonic acid particles that considerably less fragmentation 

occurs at 60 Td.
7
 This was investigated further in the present 

study by obtaining the mass spectra of 26 compounds at 100 

and 60 Td, respectively. The relative product ion abundances 

are reported in the Supplement. At 100 Td, 19 of the investi-

gated compounds fragmented to more than 90%. At 60 Td, 



 

fragmentation was considerably reduced, especially for the 

carboxylic acids (see Supplement). Importantly, at 60 Td 11 of 

the compounds studied did not exhibit any fragmentation of 

carbon-carbon bonds. It is also important to note that none of 

investigated compounds thermally decomposed (e.g., via 

decarboxylation) in the vaporizer or in the heated drift tube. 

 

Figure 2. Time series of mOA as measured by the AMS and the 

PTR-MS instrument (uncorrected, fragmentation-corrected) dur-

ing a 3 day side-by-side intercomparison5 in Lyon (upper panel). 

Scatter plot of mOA (AMS) vs. mOA (PTR-MS, fragmentation-

corrected) (lower panel) 

Fragmentation correction algorithm. The bulk-average 

parameters that can be extracted from the PTR-MS mass spec-

tra are biased low due to analyte ion fragmentation. The upper 

panel of Figure 1 shows that measured number of carbon 

atoms, nc, is, on a bulk average, by 12 % (100 Td) and 5% (60 

Td) lower than the molecular nC. The measured O:C is, on a 

bulk average, by 29% (100 Td) and 15% (60 Td) lower than 

the molecular O:C (Figure 1, middle panel). The measured 

H:C is, on a bulk average, by 23% (100 Td) and 16% (60 Td) 

lower than the molecular H:C (Figure 1, lower panel). Based 

on these data, a simple correction algorithm can be derived for 

the number of carbon atoms, the number of oxygen atoms, nO, 

and the number of hydrogen atoms, nH, respectively. 

       
           

  
         

  
  (1) 

kc is 0.88 and 0.95 for 100 Td and 60 Td, respectively. Here 

and in the equations below, k generally denotes a correction 

factor. 

                       
          

              

       
   

           (2) 

k(O:C) is 0.71 and 0.85 for 100 Td and 60 Td, respectively.  

                   
          

              

          
   

                         (3) 

k(H:C) is 0.77 and 0.84 for 100 Td and 60 Td, respectively. The 

correction factor     comes from an iterative correction 

process and is 0.96 and 1.05 for 100 Td and 60 Td, respective-

ly. 

The corrected mOA is obtained from: 

                     
                 

                         (4) 

The correction factor f for correcting mOA is given by:  

               
  
              

              
           

  
             

             
          

                (5) 

mC, mO and mH are the masses of carbon, oxygen and hydro-

gen atoms, respectively. The lower boundary of uncertainty 

for    
          is given by   

  
         

  
        . The upper boundary 

of uncertainty for    
          is given by   

  
         

  
          

. 

Validation. We have used two sets of published data for 

validating the fragmentation-corrected PTR-MS data against 

AMS data. 

The first set of data is taken from Müller et al.
5
 who com-

pared AMS (cTOF version) and CHARON PTR-MS meas-

urements of urban air in Lyon (France). The main finding was 

that the data from the two instruments correlate well, with the 

PTR-MS analyzer systematically underestimating mOA. Figure 

2 shows the time series and scatter plot obtained when the 

fragmentation correction was applied to the PTR-MS data. 

The AMS and PTR-MS data are now in excellent agreement, 

except for a period when organics were relatively high and 

nitrate was low. The linear regression slope decreases from 

1.13 (AMS vs. PTR-MSuncorrected, see Müller et al.
5
) to 0.96 

(AMS vs. PTR-MScorrected; R²=0.75). 

 

Figure 3. Time series of (O:C)bulk as measured by the AMS and 

the PTR-MS (uncorrected, fragmentation-corrected) in the 

SAPHIR atmosphere simulation chamber7 when SOA was gener-

ated from the ozonolysis of β-pinene, limonene, a β-pinene–

limonene mix and real plant emissions, respectively. 

The second set of data is taken from Gkatzelis et al.
7
 who 

monitored SOA that was generated in the SAPHIR atmosphere 

simulation chamber from the ozonolysis of β-pinene, limo-

nene, a β-pinene–limonene mix and real plant emissions, 

respectively. Figure 3 shows that the fragmentation correction 

brings the (O:C)bulk values determined by AMS (HTOF ver-

sion) and PTR-MS in close agreement. 

Average molecular formula. For many applications and 

parameterizations, the chemical description of POM via bulk 

elemental ratios is an oversimplification. An adequate descrip-



 

tion of bulk aerosol volatility, for example, needs to include at 

least the bulk-average molecular weight and the average num-

ber of oxygen atoms. In such a case, MFbulk may be better 

suited for a simplified chemical description of POM. 

 

 

Figure 4. PTR-MS (H3O
+
 mode, 60 Td) mass spectrum of particles generated from the ozonolysis of -pinene. The insert shows a 

thermogram of the organic mass fraction remaining when particles were heated before analysis in the CHARON PTR-MS system. 

 

Measuring MFbulk is, however, a major analytical challenge. 

As explained above, atmospheric POM mostly consists of 

oxidized hydrocarbons. While a lot of current research focuses 

on highly oxidized molecules, compounds including only one 

oxygen atom (e.g., sterols, aldehydes), two O’s (e.g., 

monocarboyxlic acids, ketoaldehydes) or 3 O’s (e.g., keto- and 

hydroxycarboxylic acids, triols) can make up for a significant 

fraction of the organic matter. Most of the soft ionization 

methods (e.g., iodide chemical ionization, acetate chemical 

ionization, electrospray ionization) currently used for POM 

analysis do, however, either not respond to poorly oxidized 

analytes or exhibit a highly variable compound-specific re-

sponse.
12,13,29,30

 It is thus not possible to quantitatively analyze 

bulk organic aerosol with these ionization techniques. Here is 

where PTR-MS with its universal (i.e., independent of nO) and 

quantitative ionization via H3O
+
 ions fills an important gap.  

Figure 4 shows the mass spectrum obtained from 130 µg m
-3

 

of SOA generated in a flow tube from the reaction of -pinene 

with ozone. The uncorrected MFbulk we extract from the mass 

spectrum is C7.6H10.7O2.6; the fragmentation-corrected MFbulk is 

C8.0H12.7O3.3. Being able to detect poorly oxidized species, 

PTR-MS observes on average 2-3 oxygen atoms less in -

pinene secondary organic aerosol than other ionization tech-

niques.
31,32

 This has, for example, an important implication for 

bulk volatility calculations. Using the method proposed by 

Daumit et al.
23

, we derive a bulk volatility logC
*
298K=4.2 from 

the fragmentation-corrected MFbulk. The insert in Figure 4 

shows the results from our thermodenuder measurements, 

which are in good agreement with the data reported by Saha et 

al.
33

 The experimentally derived bulk volatility logC
*
298K is 

2.5. This value in good agreement with the number obtained 

from the PTR-MS derived MFbulk, while an MFbulk with 5 or 6 

oxygen atoms would result in a much lower bulk volatility 

(logC
*
298K on the order of -1 or -2). More details about this 

topic will be given in a forthcoming publication (Leglise et al., 

in preparation). 

CONCLUSION 

We have studied the mass spectral response of the 

CHARON PTR-MS analyzer to 26 oxidized organic com-

pounds which are thought to be representative of atmospheric 

POM. Fragmentation was found to be significant both at 100 

and 60 Td reduced electric field strength and thus needs to be 

taken into account for a quantitative bulk aerosol analysis. 

Linear trends in measured vs. molecular nC, (O:C) and (H:C) 

allowed us to derive a correction algorithm for mOA, (O:C)bulk, 

(H:C)bulk and MFbulk. The work presented herein will help the 

small but steadily growing user community in establishing the 

CHARON PTR-MS instrument as a tool for bulk organic 

aerosol analysis. 
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