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Abstract. Current deep-learning based methods do not easily integrate
to clinical protocols, neither take full advantage of medical knowledge.
In this work, we propose and compare several strategies relying on cur-
riculum learning, to support the classification of proximal femur fracture
from X-ray images, a challenging problem as reflected by existing intra-
and inter-expert disagreement. Our strategies are derived from knowl-
edge such as medical decision trees and inconsistencies in the annotations
of multiple experts, which allows us to assign a degree of difficulty to each
training sample. We demonstrate that if we start learning “easy” exam-
ples and move towards “hard”, the model can reach a better performance,
even with fewer data. The evaluation is performed on the classification
of a clinical dataset of about 1000 X-ray images. Our results show that,
compared to class-uniform and random strategies, the proposed medi-
cal knowledge-based curriculum, performs up to 15% better in terms of
accuracy, achieving the performance of experienced trauma surgeons.

Keywords: Curriculum learning, multi-label classification, bone frac-
tures, computer-aided diagnosis, medical decision trees

1 Introduction

In a typical educational system, learning relies on a curriculum that introduces
new concepts building upon previously acquired ones. The rationale behind, is
that humans and animals learn better when information is presented in a mean-
ingful way rather than randomly. Bringing these ideas from cognitive science,
Elman [1] proposed the starting small concept, to train neural networks that
learn the grammatical structure of complex sentences. The networks were only
able to solve the task when starting with a small sample size, highlighting the
importance of systematic and gradual learning. Bengio et al. [2] made the formal
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Fig.1: AO standard and example radiographs.

connection between machine learning and starting small, demonstrating a boost
in performance by combining curriculum learning (CL) with neural networks
on two toy examples: shape recognition and language modeling. In the medical
image analysis community, the idea of exploiting CL with deep learning has only
recently been explored [3-5]. Even though these techniques have been successful
in applications such as image segmentation or computer-aided diagnosis, they
remain agnostic of clinical standards and medical protocols.

Our goal is to fill the gap between machine learning algorithms and clinical
practice by introducing medical knowledge integrated in a CL strategy. Current
applications of CL to medical images focus on gradually increasing context in
segmentation, whereas active learning approaches aim for reducing annotation
efforts. Our focus is on the integration of knowledge, extracted from medical
guidelines, directly from expert recommendations, or from ambiguities in their
annotations, to ease the training of convolutional neural networks (CNNs). Simi-
lar in spirit, [5] integrates, as part of a more complex method for disease localiza-
tion, a curriculum derived from clinical reports, extracted by natural language
processing.

We restrict our study to the classification of proximal femur fractures accord-
ing to the AO standard [6]. Some example X-ray images with their corresponding
category are depicted in Fig. 1. This kind of fracture represents a notable problem
in our society, especially in the elderly population, having a direct socioeconomic
repercussion [7]. Early detection and classification of such fractures are essen-
tial for guiding appropriate treatment and intervention. However, several years
of training are needed, and inter-reader agreement ranges between 66-71% for
trauma surgery residents and experienced trauma surgeons, respectively [8]. A
similar classification problem was recently addressed in [9], where the focus was
on the use of attention methods to improve fracture classification.

We explore the potential of curriculum learning to design three medical-
based data schedulers that control the training sequence every epoch. Results
on multi-label fracture classification show that by using our curriculum ap-
proaches, Fj-score can be improved up to 15%, outperforming two baselines:
without curriculum (random) and uniform-class reordering. Our proposed med-
ical data schedulers, on restricted training data, outperform also the baselines
having access to the entire training set. Furthermore, we reach a comparable
performance to those of experienced trauma surgeons.
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2 Related Work

Curriculum learning’s main hypothesis is that the order in which samples are
presented to an iterative optimizer is important, as it can drastically change
the outcome (i.e. which local-minima is found). Bengio et al. [2] showed that a
significant improvement in the generalization of the machine learning algorithm
could be achieved when samples were presented from “easy” to “hard”, where
the “hardness” of the samples was determined by some heuristic or a human
expert. Similar to Bengio et al., we propose a series of heuristics to infer the
hardness level of the training samples, but taking as guiding principles medical
knowledge in the form of standards, such as the AO [6], or disagreement between
experts.

There is little prior work in CL for medical image analysis. Maicas et al. [4]
proposed to emulate how radiologists learn based on a set of increasing difficulty
tasks. A combination of meta-learning and teacher-student curriculum learning
allowed them to improve the selection of the tasks to achieve a boosted detection
of malignancy cases in breast screening. For medical image segmentation, [3] also
demonstrated that gradually increasing the difficulty of the task benefits the
performance. A pseudo-curriculum approach was employed for segmentation of
brain tumors and multiple sclerosis lesions in magnetic resonance (MR) images.
Training starts from an easy scenario, where learning can be done from multi-
modal MR images, and after a few warm-up epochs some of the modalities are
randomly dropped.

Novel variants of curriculum learning include self-paced learning, where the
curriculum is automated. Such approach has been used to tackle imbalance in the
segmentation of lung nodules in computed tomography images [10]. Instead of
relying on prior medical knowledge, their approach updates the curriculum with
respect to the model parameters’ change, letting the learner focus on knowledge
near the decision frontier, where examples are neither too easy nor too hard. Self-
paced learning and active learning were used in [11] to reduce annotation efforts.
Though related, active learning has a different motivation than our work, as it
focuses on retrieving examples from an unlabeled pool aiming to achieve a better
performance with fewer labeled data. In our study, we restrict to the original
concept of CL aiming to ease the learning process and improve the classification
performance with the medical-based data schedulers.

3 Methods

We tackle multiclass image classification problems where an image z; needs to be
assigned to a discrete class label y; € {y1, 2, ..., yan |- Let us consider the train-
ing set {X, Y} composed of N element pairs, and assume training is performed
in mini-batches of size B for a total of E epochs. We address the problem by
training a CNN with stochastic gradient descent (SGD) along with CL, favoring
easier examples at the beginning of the training while solving the non-convex
optimization in the long term. A curriculum ¢ € C induces a bias in the order
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(i) uniform (ii) frequency (iii) AO (iv) kappa
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Fig. 2: Initial probabilities p(*) for our medical-based curriculums:

(i) uniform: samples are selected according to a uniform class-distribution.
(ii) frequency: proportional to their original frequency in the dataset.

(iii) AO: probabilities are assigned based on the difficulty of the AO classes.
(iv) kappa: intra-rater Cohen’s kappa coeflicient to define the probabilities.

of presenting samples to the optimizer. The bias reflects a notion of “hardness”,
which in this work depends upon different forms of prior medical knowledge.
In practice, any of the curriculums is implemented by assigning a probability
to each training pair, such that simpler cases have higher probabilities of being
selected first. Over different rounds, the probabilities are updated according to
a scheduler to reach a uniform distribution at the end.

Initially, each image x; € X is assigned a curriculum probability pgo), here
defined according to medical knowledge (see Eq. 3 for practical definitions of
pl(-o)). At the beginning of every epoch, the training set {X’, '} is permuted to
{X, Y} using a reordering function f (¢). This mapping results from sampling
the training set according to the probabilities at the current epoch p(¢). Mini-
batches are then formed from {X, )}¢ and the probabilities are decayed towards
a uniform distribution [2], based on the following function [12]:

qz@ = pge_l) -exp(—cn?/10) Ve >0, (1)
© a”
b, = * )’ (2)
ZzN:l qi( )

where ¢n; is a counter that is incremented when sample 7 is selected. The process
for training a CNN with our medical curriculum data scheduler is summarized
in Algorithm 1.

The proposed CL method is demonstrated on the classification of proximal
femur fractures according to the AO system. In this standard, the first level
of distinction differentiates fractures of type “A”, located in the trochanteric
region, from type “B” found in the femoral neck. Further subdivision of classes
A and B depends on the specific location of the fracture and its morphology,
i.e. the number of fragments and their arrangement. We target the fine-grained
classification to distinguish 6 types of fracture (A1-A3, B1-B3) plus the non-
fracture case, i.e. a 7-class problem, as shown in Figure 1.
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Algorithm 1: CNN with medical curriculum data scheduler

input : X (X-ray images), Y (classification labels), ¢ € C (curriculum)
B (mini-batch size) , F (expected training epochs)

for each epoch e do

if first epoch then

‘ Define initial probabilities: pgo) = wi,;
else

‘ Update probabilities with Egs. (1-2);
end

Get reordering function f(¢) by sampling {X, Y} according to e
Permute training set f(® : {X, Y} — {X,V}°;
for each training round do
Get the next mini-batch from {X, Y} : {xp, vo }oo1;
Calculate cross-entropy loss L(ys, 9 );
Compute gradients and update model weights;
end

end

The curriculum probabilities of each of the classes are given by:

P (yi = m) = wy,, (3)
where m € [1,2,..., M] serves as index of the classes, and w¢, is defined accord-
ing to ¢ € C = {uniform, frequency, AO, kappa} :

¢ : uniform (see Fig. 2-(i)): all classes are treated equally, i.e. |
W, = 1/M. (4)

¢ : frequency (see Fig. 2-(ii)): classes are assigned a probability equal to their
original frequency of appearance in the dataset,

1 N
W, = N Zléyi,mv (5)

where ¢ is the indicator function equal to one when y; = m, and 0 otherwise.

¢ : AO (see Fig. 2-(iii)): an experienced radiologist ranked the difficulty of the
classes in the following order v = [A3, B3, A2, B2, B1, A1, non-fracture] from
hardest to easiest. As a naive approach, we consider the categories equally
spaced and use the rank index k, such that:

k

M
Zm:l m
¢ : kappa (see Fig. 2-(iv)): Cohen’s kappa statistic is used to measure the
agreement of clinical experts on the classification between two readings. Basi-
cally, kappa quantifies the ratio between the observed and chance agreement.

Here, each class is assigned a probability proportional to the intra-reader
agreement found by a committee of experts.

Wy =

. (6)
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Fig. 3: Mean Fj-score and variance over 10 runs on the 7-way classifi-
cation of the different curriculum strategies, together with their corresponding
anti-curriculum, and compared against random and uniform-curriculum.

4 Experimental Validation

Dataset. Our in-house dataset consists of anonymized X-rays of the hip and
pelvis collected at the trauma surgery department of the Rechts der Isar Hos-
pital in Munich. The studies contain lateral view and anterior-posterior images.
The latter, which involved both femora, were parted into two, resulting into ad-
ditional non-fracture examples. The dataset consists of 327 type-A, 453 type-B
fractures and 567 non-fracture cases. Subtypes of the fracture classes are highly
unbalanced, reflecting the incidence of the different fracture types, as depicted in
Fig. 2-(ii). To address this problem, offline data augmentation techniques such
as translation, scaling and rotation were used. The dataset was split patient-
wise into three parts with the ratio 70%:10%:20% to build respectively the
training, validation and test sets. We employ a test distribution that is bal-
anced between fracture type-A, type-B and non-fracture. All evaluations below
are based on the weighted Fj-score, which takes into account the unbalanced
class-distribution using as weights the support of each class.

Clinical experts provided along with the classification (based on the AO
standard) a square region of interest (ROI) around the femur. ROIs were down-
sampled to 224 x 224 px to fit into the proposed architecture.

Implementation Details. We used a ResNet-50 [13] pretrained on the Ima-
genet dataset. The architecture and curriculums were implemented with Tensor-
Flow! and ran on an Nvidia Titan XP GPU. All models were run for 50 epochs
with cross-entropy loss, in mini-batches of 64 samples and saved at minimum
validation loss. SGD with a momentum of 0.9 was used as optimizer. Early stop
was implemented if there was no improvement in the last 20 epochs. 70% dropout
was used in the fully-connected layer. Initial learning rate was set to 1 x 1073
and decayed by 10 every 15 epochs.

Thttps://www.tensorflow.org/
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Table 1: Classification results over 10 runs. The highlighted indices in bold

correspond to the best two models.

7 classes 3 classes
Fi-score Mean Median SD Mean Median SD
Random 0.5662 0.5731 0.0423 0.8063 0.8171 0.0337
Uniform 0.5757 0.5923 0.0590 0.8011 0.7971 0.0399
AO 0.6757 0.6783 0.0197 0.8651 0.8657 0.0172
Kappa 0.6893 0.6900 0.0150 0.8623 0.8657 0.0146
AO - 60% 0.6325 0.6188 0.0302 0.8457 0.8486 0.0191
Kappa - 60% 0.6352 0.6500 0.0398 0.8446 0.8457 0.0222
4.1 Results

We evaluate our proposed medical curriculum data schedulers in which difficulty
is gradually increased (C: easy — hard) by comparing them against two baseline
approaches: random permutations and class-uniform reordering. Besides, we dis-
cuss their performance with respect to the opposite strategies in which difficulty
is decreased, and we refer to as anti-curriculum (anti-C: hard — easy).

Figure 3 presents the results over 10 runs of the 7-class classification problem.
Firstly, we find a similar performance between randomly shuffling the training
data and learning with a uniform-curriculum, with a mean (median) Fj-score of
0.57 (0.57) and 0.58 (0.59), respectively. Secondly, we found that the sequence of
the samples presented in each epoch has a significant effect in the classification,
i.e. there is a clear difference between curriculum and anti-curriculum strate-
gies. Interestingly, our experiments suggest that, in the case of the frequency-
curriculum, the easy scenario is the class-imbalance, which agrees with results
reported in [14]. The behaviour could also be related to the high imbalance in the
original distribution and the offline augmentation. Finally, our two explicit med-
ical AO- and kappa-curriculums boost the median Fj-score by approximately
15% when compared against the baselines. The differences were found statisti-
cally significant (Suppl. Material). Moreover, our proposed schedulers help to
reduce variance over the runs.

By aggregating the posterior probability distribution obtained from our model,
we can evaluate a 3-class problem, i.e. transform the predictions to “A”, “B”
and “non-fracture”. Although, we did not provide any supervision regarding
the 3-class problem while training the CNN, we obtain a median F}-score of
0.87 for AO- and kappa-curriculums, outperforming state-of-the-art results [9],
and about 7% better than random and uniform (0.82, 0.80). This means that
mispredictions are usually within the same fracture type.

Our dataset size is typical for medical applications. An additional experiment
was performed, under a restricted amount of balanced training data (only using
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60%), to investigate the performance of our medical-based data schedulers under
reduced amounts of annotated data. Our AO- and kappa-curriculums performed
even better than the baselines using all data (see Table 1).

Analyzing the training and validation loss curves while learning, we observed
that random and uniform-curriculum converged smoothly and fast, whereas our
proposed medical-based data schedulers were “noisier” in the first epochs. We
hypothesize that the curriculum might lead to a better exploration of the weights
during the first epochs.

5 Conclusions

We have shown that the integration of medical knowledge is useful for the design
of data schedulers by means of CL. Although we have focused on the AO stan-
dard and the multi-class proximal femur fracture problem, our work could be
exploited in other applications where medical decision trees are available, such
as grading malignancy of tumors, as well as whenever inter-expert agreement is
available. As future work, we plan to explore the combination of our medical
curriculum data schedulers with uncertainty of the model, and investigate which
samples play a more significant role in the decision boundary.

Acknowledgments. This project has received funding from the European
Unions Horizon 2020 research and innovation programme under the Marie Sktodowska-
Curie grant agreement No. 713673 and by the Spanish Ministry of Economy
[MDM-2015-0502]. A. Jiménez-Sdnchez has received financial support through

the “la Caixa” Foundation (ID Q5850017D), fellowship code: LCF/BQ/IN17/11620013.
D. Mateus has received funding from Nantes Métropole and the European Re-
gional Development, Pays de la Loire, under the Connect Talent scheme. Authors
thank Nvidia for the donation of a GPU.

References

1. Elman, J.L.: Learning and development in neural networks: the importance of
starting small. Cognition 48(1), 71-99 (jul 1993)

2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning. pp.
41-48. ICML ’09, ACM, New York, NY, USA (2009)

3. Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: Hemis: Hetero-modal image
segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W.
(eds.) Medical Image Computing and Computer-Assisted Intervention — MICCAI
2016. pp. 469-477. Springer International Publishing, Cham (2016)

4. Maicas, G., Bradley, A.P., Nascimento, J.C., Reid, .D., Carneiro, G.: Training
medical image analysis systems like radiologists. CoRR abs/1805.10884 (2018)

5. Tang, Y., Wang, X., Harrison, A.P., Lu, L., Xiao, J., Summers, R.M.: Attention-
guided curriculum learning for weakly supervised classification and localization of
thoracic diseases on chest radiographs. In: MLMI@MICCALI (2018)



10.

11.

12.

13.

14.

Medical-based Deep Curriculum Learning for Improved Classification 9

Kellam, J.F., Meinberg, E.G., Agel, J., Karam, M.D., Roberts, C.S.: Introduction.
Journal of Orthopaedic Trauma 32, S1-S10 (jan 2018)

Moran, C.G., Wenn, R.T., Sikand, M., Taylor, A.M.: Early mortality after hip
fracture: is delay before surgery important? JBJS 87(3), 483-489 (2005)

van Embden, D.; Rhemrev, S., Meylaerts, S., Roukema, G.: The comparison of
two classifications for trochanteric femur fractures: The AO/ASIF classification
and the jensen classification. Injury 41(4), 377-381 (apr 2010)

Kazi, A., Albarqouni, S., Sanchez, A.J., Kirchhoff, S., Biberthaler, P., Navab, N.,
Mateus, D.: Automatic classification of proximal femur fractures based on attention
models. In: Wang, Q., Shi, Y., Suk, H.I., Suzuki, K. (eds.) Machine Learning in
Medical Imaging. pp. 70-78. Springer International Publishing, Cham (2017)
Jesson, A., Guizard, N., Ghalehjegh, S.H., Goblot, D., Soudan, F., Chapados,
N.: CASED: curriculum adaptive sampling for extreme data imbalance. CoRR
abs/1807.10819 (2018)

Wang, W., Lu, Y., Wu, B., Chen, T., Chen, D.Z., Wu, J.: Deep active self-paced
learning foraccurate pulmonary nodule segmentation. In: Frangi, A.F., Schnabel,
J.A., Davatzikos, C., Alberola-Lépez, C., Fichtinger, G. (eds.) Medical Image Com-
puting and Computer Assisted Intervention — MICCAI 2018. pp. 723-731. Springer
International Publishing, Cham (2018)

Ren, Z., Dong, D., Li, H., Chen, C.: Self-paced prioritized curriculum learning with
coverage penalty in deep reinforcement learning. IEEE Transactions on Neural
Networks and Learning Systems 29, 2216-2226 (2018)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp.
770-778 (2016)

Wang, Y., Gan, W., Wu, W., Yan, J.: Dynamic curriculum learning for imbalanced
data classification. CoRR abs/1901.06783 (2019)



	Lecture Notes in Computer Science
	Introduction
	Related Work
	Methods
	Experimental Validation
	Results

	Conclusions


