
HAL Id: hal-02457971
https://hal.science/hal-02457971v2

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CONCERNING THE PATHOLOGICAL SET IN THE
CONTEXT OF PROBABILISTIC WELL-POSEDNESS

Nikolay Tzvetkov, Chenmin Sun

To cite this version:
Nikolay Tzvetkov, Chenmin Sun. CONCERNING THE PATHOLOGICAL SET IN THE CONTEXT
OF PROBABILISTIC WELL-POSEDNESS. Comptes Rendus. Mathématique, 2020, Volume 358
(9-10), pp.989-999. �10.5802/crmath.102�. �hal-02457971v2�

https://hal.science/hal-02457971v2
https://hal.archives-ouvertes.fr


ar
X

iv
:2

00
1.

10
29

3v
4 

 [
m

at
h.

A
P]

  2
3 

Se
p 

20
21

CONCERNING THE PATHOLOGICAL SET IN THE CONTEXT OF

PROBABILISTIC WELL-POSEDNESS

CHENMIN SUN AND NIKOLAY TZVETKOV

Abstract. We prove a complementary result to the probabilistic well-posedness for the nonlinear wave

equation. More precisely, we show that there is a dense set S of the Sobolev space of super-critical

regularity such that (in sharp contrast with the probabilistic well-posedness results) the family of global

smooth solutions, generated by the convolution with some approximate identity of the elements of S,

does not converge in the space of super-critical Sobolev regularity.

Résumé. On démontre un résultat complémentaire à ceux manifestant le caractère bien posé

probabiliste de l’équation des ondes avec des données initiales de régularité de Sobolev super critique

par rapport au changement d’échelle laissant invariant l’équation.

1. Introduction

In this work, we are interested in the three dimensional nonlinear wave equation
{

∂2t u−∆u+ |u|2σu = 0, (t, x) ∈ R× T
3,

(u, ∂tu)|t=0 = (f, g) ∈ Hs(T3),
(1.1)

where u is a real-valued function and

Hs(T3) := Hs(T3)×Hs−1(T3).

The nonlinear wave equation (1.1) is a Hamiltonian system with conserved energy

H[u] :=
1

2

∫

T3

|∇u|2dx+
1

2σ + 2

∫

T3

|u|2σ+2dx.

It was shown (see [Gr90, SSt94]) that when σ ≤ 2, the problem (1.1) possesses a global strong solution

in the energy space H1(T3). By replacing T
3 to R

3, the scaling

u 7→ uλ(t, x) := λ
1
σ u(λt, λx)

keeps the equation (1.1) invariant. This leads to the critical regularity index sc = 3
2 − 1

σ ≤ 1.

Intuitively, for s < sc if the initial data is concentrated at the frequency scale ≫ 1 and is of size 1

measured by the Hs norm, then the nonlinear part in the dynamics of (1.1) is dominant and it causes

instability of the Hs norm of the solution. This is called a norm inflation and it was extensively

studied, see [CCT03],[Le01],[Le05] in the context of nonlinear wave equations. For instance, it was

shown in [CCT03] that there exists a sequence of smooth initial data whose Hs norms converge to

zero, while the Hs norms of the obtained sequence of solutions amplifies at very short time. We also

refer to [Li93] where a different concentration phenomenon, related to the Lorentz invariance of the

wave equation, is observed.
1
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In [BTz08] and [BTz14], by using probabilistic tools, N. Burq and the second author showed that

problem (1.1) with cubic nonlinearity still possesses global strong solutions for a ”large class” of

functions of super-critical regularity. The result was further extended to 1 ≤ σ ≤ 2 in [OPo16] and

[SXia16]. More precisely, the following statement follows from [BTz14],[OPo16],[SXia16].

Theorem 1. Let 1 ≤ σ ≤ 2 and 1 − 1
σ < s < sc = 3

2 − 1
σ . Then there is a dense set Σ ⊂ Hs(T3)

satisfying Σ ∩ Hs′(T3) = ∅ for every s′ > s such that the following holds true. For every (f, g) ∈ Σ,

let (fn, gn) be the sequence in C∞(T3)× C∞(T3) defined by the regularization by convolution, i.e.

fn = ρn ∗ f, gn = ρn ∗ g,

where (ρn)n∈N is an approximate identity. Denote by (un(t), ∂tun(t)) the smooth solutions of (1.1)

with the smooth initial data (fn, gn). Then there exists a limit object u(t) such that for any T > 0,

lim
n→∞

∥∥(un(t), ∂tun(t))− (u(t), ∂tu(t))
∥∥
L∞([−T,T ];Hs(T3))

= 0.

Moreover u(t) solves (1.1) in the distributional sense.

When 1 ≤ σ < 2, the above theorem can be extended to s = 1 − 1
σ , thanks to [BTz14] (the case

σ = 1) and a recent result [La18](the case 1 < σ < 2).

In Theorem 1 the set Σ is a full measure set with respect to a suitable non degenerate probability

measure µ on the Sobolev space Hs(T3) such that µ(Hs′(T3)) = 0 for every s′ > s . One proves more

than Theorem 1 in [BTz14],[OPo16],[SXia16] but the statement of Theorem 1 is the suitable one for

our purpose here.

Theorem 1 is inspired by the seminal contribution of Bourgain [Bo96]. There are however several

new features with respect to [Bo96]. The first one is that more general randomisations compared to

[Bo96] are allowed. This led to results similar to Theorem 1 in the context of a non compact spatial

domains (see e.g. [BOP15], [LM14]). Next, the argument allowing to pass from local to global solutions

in Theorem 1 is very different from [Bo96]. It is based on a probabilistic energy estimate introduced in

[BTz14] (see also [CO12]) while the argument giving the globalisation of the local solutions in [Bo96] is

restricted to a very particular distribution of the initial data. Finally, Theorem 1 deals with functions

of positive Sobolev regularity which avoids a renormalization of the equation, making the results more

natural from a purely PDE perspective.

Strictly speaking, the result of Theorem 1 is not stated as such in [BTz14],[OPo16],[SXia16]. One

may however adapt the argument presented in [Tz] which proves Theorem 1 for σ = 1 to the case of

σ ∈ [1, 2].

The regularization by convolution used in Theorem 1 is essential. We refer to [Tz, Xia] for results

showing that other regularizations of (f, g) ∈ Σ may give divergent sequences of smooth solutions.

The main result of this paper is that even if we naturally regularize the data by convolution, there

is a dense set of (pathological) initial data giving not converging smooth solutions. This is in some

sense a complementary to Theorem 1 result.

In order to state our result, we fix a bump function ρ ∈ C∞
c (R3) such that

0 ≤ ρ(x) ≤ 1, ρ||x|> 1
100

≡ 0,

∫

R3

ρ(x)dx = 1.
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For any ǫ > 0, we define ρǫ(x) := ǫ−3ρ(x/ǫ). With this notation, we have the following statement.

Theorem 2. Let 1
2 ≤ σ ≤ 2 and max{0, 32 − 2

2σ−1} < s < sc = 3
2 − 1

σ . There exists a dense set

S ⊂ Hs(T3), such that for every (f, g) ∈ S, the family of global smooth solutions (uǫ)t>0 of (1.1) with

initial data (ρǫ ∗ f, ρǫ ∗ g) does not converge. More precisely,

lim sup
ǫ→0

‖uǫ(t)‖L∞([0,1];Hs(T3)) = +∞. (1.2)

Remark 1.1. Furthermore, when σ ≥ 1 (including the cubic nonlinearity), we are able to show that

lim
ǫ→0

‖uǫ(t)‖L∞([0,1];Hs)(T3) = +∞. (1.3)

See Remark 2.3.

It turns out that as a consequence of Theorem 2, the pathological set

P := {(f, g) ∈ Hs(T3) : the solution uǫ(t) of (1.1) with initial data ρǫ ∗ (f, g),
satisfies the property lim sup

ǫ→0
‖uǫ(t)‖L∞([0,1];Hs(T3)) = +∞ }

contains a dense Gδ set:

Corollary 1.2. Under the same condition as Theorem 2, the pathological data set P of (1.1) such

that (1.2) holds contains a dense Gδ subset of Hs(T3).

Consequently, by the Baire category theorem, the good data set Σ in Theorem 1 cannot be Gδ . On

the other hand, the pathological set is negligible with respect to the measures used in the probabilistic

well-posedness of (1.1). This shows that the topological and the measure theoretic notions of genericity

are very different. For examples of Gδ dense sets giving solutions of Hamiltonian PDE’s with growing

Sobolev norms for large times, we refer to [GeG1],[GeG2],[Ha], while in Corollary 1.2, the Sobolev

norms are growing in very short times, depending on the frequency localization of the initial data.

The main ingredient of the proof of Theorem 2 is a refined version of the ill-posedness construction

in [BTz08] (see also [STz19]) which uses an idea of Lebeau [Le01] exploiting the property of the finite

propagation speed of the wave equation. It is an interesting problem to extend the result of Theorem 2

to the case of the nonlinear Schrödinger equation. Such a result would be a significant extension of

[AC09].

The results of Theorem 1 and Theorem 2 show that for data of supercritical regularity two opposite

behaviours coexiste. Both behaviours are manifested on dense sets which makes that it would be

probably interesting to try to observe these behaviours by numerical simulations.

Acknowledgement. The authors are supported by the ANR grant ODA (ANR-18-CE40-0020-01).

The authors wish to thank Nicolas Burq and Patrick Gérard for pointing out that our construction in

the previous version of this article implies that the pathological data set contains a dense Gδ set.

2. Unstable profile

2.1. Explicit estimates for the ODE profile. Let V (t) be the unique solution of the following

ODE:

V ′′ + |V |2σV = 0, V (0) = 1, V ′(0) = 0. (2.1)
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It can be shown that V (t) is periodic (see Lemma 6.2 of [STz19]). We choose the following parameters:

κn = (log n)−δ1 , ǫn =
1

100n
, tn =

(
(log n)δ2n−

(
3
2
−s
))σ

, λn = (κnn
3
2
−s)σ , (2.2)

where 0 < δ1 < δ2 < 1 and their precise values are to be chosen according to different context.

Take ϕ ∈ C∞
c (|x| ≤ 1), radial, 0 ≤ ϕ ≤ 1, and ∇ϕ 6= 0 on 0 < |x| < 1. Let

vn(0, x) := κnn
3
2
−sϕ(nx), vǫn(0) := ρǫ ∗ vn(0). (2.3)

Define

vǫn(t, x) = vǫn(0, x)V (t(vǫn(0, x))
σ). (2.4)

Then one verifies that vǫn solves

∂2t v
ǫ
n + |vǫn|2σvǫn = 0, (vǫn, ∂tv

ǫ
n)|t=0 = (vǫn(0), 0). (2.5)

Lemma 2.1. Let 0 ≤ s < sc, then for parameters defined in (2.2),

(1) ‖vǫnn (tn)‖Hs(T3) & κn(λntn)
s.

(2) ‖vǫnn (t)‖Hk(T3) . κn(λntn)
knk−s, for k = 0, 1, 2, 3, · · · and t ∈ [0, tn].

(3) ‖vǫnn (t)‖L∞(T3) . λ
1
σ
n .

(4) ‖∂αvǫnn (t)‖L∞(T3) . λ
1
σ
n n|α|(1 + λnt), for α ∈ N

3, |α| = 1 and t ∈ [0, tn].

Proof. The proof follows from a direct calculation as in [BTz08], with an additional attention to the

convolution. We denote by Tλ, the scaling operator Tλ(f) := f(λ·). Without loss of generality, we will

do all the computation in R
3 instead of T3, since all the functions involved are compactly supported

near the origin.

By definition, for α ∈ N
3, |α| = k,

vǫnn (0, x) = λ
1
σ
n

∫

R3

ϕ(n(x− y))
1

ǫ3n
ρ
( y
ǫn

)
dy, ∂αvǫnn (0, x) = λ

1
σ
n n

k

∫

Rd

Tn(∂
αϕ)(x− y)

1

ǫ3n
ρ
( y
ǫn

)
dy.

Using Young’s convolution inequality, we have from (2.4) that

‖∂αvǫnn (0)‖L∞ . λ
1
σ
n n

|α|, ‖∂αvǫnn (0)‖L2 . κnn
|α|−s, ‖vǫnn (t)‖L∞ . λ

1
σ
n ,

and

‖vǫnn (t)‖L2 ≤ ‖V ‖L∞‖vǫnn (0)‖L2 . κnn
−s.

This proves (2) and (3) for the case k = 0. From direct calculation using (2.4),

∇vǫnn (t, x) =σt(vǫnn (0, x))σ∇vǫnn (0, x)V ′
(
t(vǫnn (0, x))σ

)
+∇vǫnn (0, x)V

(
t(vǫnn (0, x))σ

)
. (2.6)

Thus ‖∇vǫnn (t)‖L∞ . (λnt + 1)λ
1
σ
n n. Note that λntn = (log n)σ(δ2−δ1) ≫ 1, the dominant part in

∂αvǫnn (t, x) comes from (
(vǫnn (0))σ−1∇vǫnn (0)

)|α|
t|α|vǫnn (0)V (|α|)(·),

if we estimate t by tn, hence ‖vǫnn (t)‖Hk . κn(λntn)
knk−s, for all k = 0, 1, 2, · · · . This proves (2).

The only non-trivial part is (1). Since 0 < s < 1, from the interpolation

‖vǫnn (t)‖H1 . ‖vǫnn (t)‖
1

2−s

Hs ‖vǫnn (t)‖
1−s
2−s

H2
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and the upper bound of ‖vǫnn (t)‖H2 that we have proved, it suffices to show that

‖vǫnn (tn)‖H1 & κn(λntn)n
1−s. (2.7)

It is reduced to get a lower bound for the dominant part
∥∥σtn

(
vǫnn (0, x)

)σ∇vǫnn (0, x)V ′
(
tn(v

ǫn
n (0, x))σ

)∥∥
L2

=σtnnλ
1+ 1

σ
n

∥∥[(Tn(∇ϕ)) ∗ ρǫn
][
(Tn(ϕ)) ∗ ρǫn

]σ
V ′

(
λntn((Tnϕ) ∗ ρǫn)σ

)∥∥
L2

(2.8)

Note that (Tnf) ∗ ρǫn(x) =
∫
f(nx− nǫny)ρ(y)dy, hence

(RHS. of (2.8)) ∼ tnn
1− 3

2λ
1+ 1

σ
n

∥∥∇(ϕ ∗ ρ̃) · (ϕ ∗ ρ̃)σV ′
(
λntn(nǫn)

−3σ(ϕ ∗ ρ̃)σ(x)
)∥∥

L2 ,

where ρ̃ = T 1
nǫn

ρ = T100ρ and we used nǫn = 1
100 . Note that tnn

1− 3
2λ

1+ 1
σ

n = λntnn
1−s, hence (2.7)

follows from the following lemma:

Lemma 2.2. Assume that ψ ∈ C∞
c (Rd) and ψ(x) > 0 for all |x| < 1. Assume that there exist two

constants 0 < a < b < 1, such that dψ 6= 0 on {x : a ≤ |x| ≤ b}. Let W be a non-trivial periodic

function (i.e. W 6= 0). Then there exist c0 > 0, λ0 > 0, such that for all λ ≥ λ0,
∥∥∇ψ(x)|ψ(x)|σW (λψ(x))

∥∥
L2(Rd)

≥ c0 > 0.

Proof. We follow the geometric argument in [STz19]. Denote by Ca,b := {x : a ≤ |x| ≤ b}. By

shrinking a, b if necessary, we may assume that ψ(Ca,b) is foliated by Σs := {x : ψ(x) = s}. From the

hypothesis on ψ, there exist 0 < c1 < C1 < ∞, such that c1 ≤ |∇ψ| ≤ C1 on Ca,b. Let B = maxCa,b ψ

and A = minCa,b ψ, then we have for F (s) = |s|2σ|W (λs)|2 that

‖∇ψ(F ◦ ψ)1/2‖2L2 ≥ c21

∫

Ca,b

F (ψ(x))dx.

By the co-area formula,
∫

Ca,b

F (ψ(x))dx =

∫ B

A
F (s)ds

∫

Σs

dσΣs

|∇ψ| ≥ c′
∫ B

A
|s|2σ|W (λs)|2ds,

thanks to the fact that the mapping s 7→ Md−1(Σs) is continuous, where Md−1 is the surface measure

on Σs. By changing variables, we obtain that
∫ B

A
|s|2σ |W (λs)|2ds = 1

λ2σ+1

∫ λB

λA
|s|2σ|W (s)|2ds ≥ CA,B

1

λ(B −A)

∫ λB

λA
|W (s)|2ds ≥ C ′

A,B,

where the last constant does not depend on λ, if λ is large enough. This completes the proof of

Lemma 2.2. �

The proof of Lemma 2.1 is now complete. �

Remark 2.3. When σ ≥ 1, the statements of Lemma 2.1 hold for all ǫ ≤ ǫ2n. Indeed, all the

inequalities hold automatically for ǫ ≤ ǫ2n, except for (1), the lower bound of ‖vǫn(tn)‖Hs(T3). To get

(1), it suffices to prove (2.7) when replacing ǫn by ǫ ≤ ǫ2n. It is then reduced to show that

‖(Tn∇ϕ)(Tnϕ)σV ′(λntn(Tnϕ)
σ)− (Tn∇ϕ) ∗ ρǫ · (Tnϕ ∗ ρǫ)σV ′(λntn(Tnϕ ∗ ρǫ)σ)‖L2

≤o(n− 3
2 ), (2.9)
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as n→ ∞. Note that

‖Tn∇ ∗ ρǫ‖L∞ + ‖Tnϕ ∗ ρǫ‖L∞ . 1, ‖V (k)(λntn(Tnϕ ∗ ϕǫ))‖L∞ . 1,

for k = 1, 2, with constants independent of ǫ. By taking the Fourier transform, for any Schwartz

function F , uniformly in ǫ ≤ ǫ2n, we have

‖TnF − TnF ∗ ρǫ‖L2 ≤ n−
3
2‖(ρ̂(nǫξ)− ρ̂(0))F̂ (ξ)‖L2 = o(n−

3
2 ), n→ ∞,

thanks to the dominated convergence theorem. Together with the fact σ ≥ 1 and the mean value

theorem, we obtain (2.9). The above argument, combed with slight modifications of the analysis

below, allows us to prove (1.3).

2.2. Perturbative analysis. Fix (u0, u1) ∈ C∞(T3)× C∞(T3), denote by uǫnn the solution of

∂2t u
ǫn
n −∆uǫnn + |uǫnn |2σuǫnn = 0

with the initial data (uǫnn (0), ∂tu
ǫn
n (0)) = ρǫn ∗

(
(u0, u1)+ (vn(0), 0)

)
, where vn(0) is given by (2.3). We

denote by

S(t)(f, g) := cos(t
√
−∆)f +

sin
√
−∆√

−∆
g

the propagator of the linear wave equation.

Proposition 2.4. Assume that max
{
3
2− 2

2σ−1 , 0
}
≤ s < sc =

3
2− 1

σ , then for any 0 < θ < σ
2

(
3
2−s

)
− 1

2

and (u0, u1) ∈ C∞(T3)× C∞(T3), there exist C > 0, δ2 > 0, such that for any δ1 ∈ (0, δ2), we have

sup
t∈[0,tn]

‖uǫnn (t)− ρǫn ∗ S(t)(u0, u1)− vǫnn (t)‖Hν (T3) ≤ Cn(ν−s)−θ,∀ν = 0, 1, 2,

where the function vǫnn (t) is defined in (2.4) with parameters as in (2.2), and the constant C only

depends on the smooth data (u0, u1) and θ > 0. Consequently, we have

sup
t∈[0,tn]

‖uǫnn (t)− ρǫn ∗ S(t)(u0, u1)− vǫnn (t)‖Hs(T3) ≤ Cn−θ.

In particular, for δ1 sufficiently small,

‖uǫnn (tn)‖Hs(T3) & (log n)sσ(δ2−δ1)−δ1 → ∞, as n→ ∞.

Proof. Denote by uǫnL (t) = ρǫn ∗ S(t)(u0, u1) the linear solution with regularized data ρǫn ∗ (u0, u1)1.
Then for k = 0, 1, 2, 3,

‖∇kuǫnL (t)‖L∞(T3) . 1, (2.10)

uniformly in n, where the implicit constant depends only on finitely many norms of the smooth linear

solution S(t)(u0, u1).

Denote by f(v) = |v|2σv. Consider the difference wn = uǫnn − uǫnL − vǫnn , it satisfies the equation

∂2twn −∆wn = ∆vǫnn −
(
f(vǫnn + uǫnL + wn)− f(vǫnn )

)
, (wn, ∂twn)|t=0 = 0.

1Since we work on T
3, the convolution ρǫ commutes with free propagators cos(t

√
−∆) and sin(t

√
−∆)√

−∆
. For the wave

equation on general manifolds, one should take the linear solution as S(t)(ρǫn ∗ (u0, u1)).



CONCERNING THE PATHOLOGICAL SET IN PROBABILISTIC WELL-POSEDNESS 7

Define the semi-classical energy for wn as in [BTz08]

En(t) :=
1

n2(1−s)

(
‖∂twn(t)‖2L2(T3) + ‖∇wn(t)‖2L2(T3)

)

+
1

n2(2−s)

(
‖∂twn(t)‖2H1(T3) + ‖∇wn(t)‖2H1(T3)

)
.

(2.11)

Here the second line in (2.11) is needed since we need to use it to control the L∞ norm of wn.

Let Fn(t) = −∆vǫnn + f(vǫnn + uL +wn)− f(vǫnn ). From the energy estimate for the inhomogeneous

linear wave equation, we have

1

2

d

dt
En(t) ≤Cn−(1−s)‖n−(1−s)∂twn(t)‖L2(T3)‖Fn(t)‖L2(T3)

+Cn−(2−s)‖n−(2−s)∂twn(t)‖H1(T3)‖Fn(t)‖H1(T3),

and this implies that

d

dt
(En(t))

1/2 ≤ C
(
n−(1−s)‖Fn(t)‖L2(T3) + n−(2−s)‖Fn(t)‖H1(T3)

)
. (2.12)

To simplify the notation, we denote by

en(t) := sup
0≤τ≤t

(
En(t)

) 1
2 .

Our goal is to show that supt∈[0,tn] en(t) . n−θ. Write

Gn(t) := f(vǫnn + uǫnL + wn)− f(vǫnn ),

from Lemma 2.1, we have, for t ∈ [0, tn] that

‖Fn(t)‖L2(T3) . κn(λntn)
2n2−s + ‖Gn(t)‖L2(T3). (2.13)

By the Taylor expansion,

|Gn| . (|uǫnL |+ |wn|)(|vǫnn |2σ + |uǫnL |2σ + |wn|2σ),
hence

‖Gn(t)‖L2(T3) . ‖wn(t)‖L2(T3)

(
1 + ‖vǫnn (t)‖2σL∞(T3) + ‖wn(t)‖2σL∞(T3)

)
+ ‖vǫnn (t)‖L2(T3)‖vǫnn (t)‖2σ−1

L∞(T3)
,

where we used (2.10). By writing wn(t, x) =
∫ t
0 ∂twn(τ, x)dτ (since wn(0, ·) = 0), we obtain that

‖Gn(t)‖L2(T3) .

∫ t

0
‖∂twn(τ)‖L2(T3)dτ ·

(
1 + ‖vǫnn (t)‖2σL∞(T3) + ‖wn(t)‖2σL∞(T3)

)

+‖vǫnn (t)‖L2(T3)‖vǫnn (t)‖2σ−1
L∞(T3)

+ 1

.tn1−sen(t)(λ
2
n + ‖wn(t)‖2σL∞(T3)) + κnλ

2− 1
σ

n n−s, (2.14)

where we have used Lemma 2.1 to control ‖vǫnn (t)‖L∞ . Similarly, for t ∈ [0, tn], we have

‖∇Fn(t)‖L2(T3) . κn(λntn)
3n3−s + ‖∇Gn(t)‖L2(T3). (2.15)

We need to estimate ‖wn(t)‖L∞(T3). From the Gagliardo-Nirenberg inequality,

‖wn(t)‖L∞(T3) . ‖wn(t)‖
3
4

H2(T3)
‖wn(t)‖

1
4

L2(T3)
. (n2−sen(t))

3
4 (ten(t)n

1−s)
1
4 = t

1
4n

7
4
−sen(t), (2.16)
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where we used wn(t) =
∫ t
0 ∂twn(τ, ·)dτ again. Since t ≤ tn = (log n)σδ2n−

(
3
2
−s
)
σ and σ

(
3
2 − s

)
> 1, we

have

‖wn(t)‖L∞(T3) . n
3
2
−sen(t). (2.17)

Therefore,

n−(1−s)‖Fn(t)‖L2(T3) .κn(λntn)
2n+ κn(κnn

3
2
−s)2σ−1n−1 + tnen(t)

(
(κnn

3
2
−s)2σ + (n

3
2
−sen(t))

2σ
)

.(log n)2σ(δ2−δ1)−δ1n+ (log n)−2σδ1n(2σ−1)
(

3
2
−s
)
−1

+n

(
3
2
−s
)
σen(t)

[
(log n)σ(δ2−2δ1) + (log n)σδ2(en(t))

2σ
]
.

Since s > 3
2 − 2

2σ−1 , we have (2σ − 1)
(
3
2 − s

)
− 1 < 1, thus

n−(1−s)‖Fn(t)‖L2(T3) . (log n)σ(2δ2−3δ1)n+ (log n)σδ2n

(
3
2
−s
)
σen(t)(1 + (en(t))

2σ). (2.18)

Next we estimate |∇Gn| as
|∇Gn| .|∇vǫnn |

(
1 + |vǫnn |2σ−1 + |wn|2σ−1

)(
1 + |wn|

)

+
(
1 + |vǫnn |2σ + |wn|2σ

)(
1 + |∇wn|

)
,

where the implicit constants are independent of n, thanks to (2.10). To estimate the L2 norm of ∇Gn,

we organize the terms as

‖∇vǫnn (1 + |vǫnn |2σ−1 + |wn|2σ−1)wn‖L2 ≤ ‖wn‖L2‖∇vǫnn ‖L∞
(
1 + ‖vǫnn ‖2σ−1

L∞ + ‖wn‖2σ−1
L∞

)
,

‖(1 + |vǫnn |2σ + |wn|2σ)∇wn‖L2 ≤ ‖∇wn‖L2

(
1 + ‖vǫnn ‖2σL∞ + ‖wn‖2σL∞

)
,

‖∇vǫnn (1 + |vǫnn |2σ−1 + |wn|2σ−1)‖L2 ≤ ‖∇vǫnn ‖L2

(
1 + ‖vǫnn ‖2σ−1

L∞ + ‖wn‖2σ−1
L∞

)
,

‖(1 + |vǫnn |2σ + |wn|2σ)‖L2 ≤
(
1 + ‖vǫnn ‖2σ−1

L∞ ‖vǫnn ‖L2 + ‖wn‖2σ−1
L∞ ‖wn‖L2

)
.

Putting them together and using

‖wn(t)‖Hk(T3) =
∥∥∥
∫ t

0
∂twn(τ)dτ

∥∥∥
Hk(T3)

≤ n1+k−sten(t), k = 0, 1, (2.19)

we have

n−(2−s)‖∇Gn(t)‖L2(T3) .(log n)σδ2n

(
3
2
−s
)
σen(t)

(
1 + (en(t))

2σ
)

+(log n)σ(δ2−δ1)n(2σ−1)
(

3
2
−s
)
−1(1 + (en(t))

2σ−1
)

.(log n)σδ2n

(
3
2
−s
)
σen(t)

(
1 + (en(t))

2σ
)
+ (log n)σδ2n(1 + en(t)

2σ−1).

(2.20)

We observe that
den
dt

≤
∣∣∣ d
dt
(En(t))

1/2
∣∣∣.

Therefore,

den
dt

≤ (log n)3σδ2n+ (log n)σδ2nσ
(

3
2
−s
)
en(t)

(
1 + (en(t))

2σ
)
. (2.21)

By the Grownwall type argument, we obtain

en(t) ≤ n1−σ
(

3
2
−s
)
(log n)3σδ2e(logn)

2σδ2
, ∀t ∈ [0, tn].
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Since 1 < σ
(
3
2 − s

)
, for any 0 < θ < σ

2

(
3
2 − s

)
− 1

2 , we can choose δ2 > 0 sufficiently small, such that

the right hand side is smaller than n−θ. Consequently, from (2.19),

‖wn(t)‖L2(T3) ≤ n1−sen(t)t . n1−s−
(

3
2
−s
)
σ(log n)δ2σn−θ . n−s−θ, ∀t ≤ tn.

Finally, the bound for the Hs norm of wn(t) follows from the interpolation. This completes the proof

of Proposition 2.4. �

3. Proof of the main theorem

First we recall the following property of finite propagation speed for the wave equation.

Lemma 3.1. Let w1, w2 be two C∞ solutions of the nonlinear wave equation

∂2t w −∆w + |w|2σw = 0.

If the initial data (w1(0), ∂tw1(0)), (w2(0), ∂tw2(0)) coincide on the ball B(x0, r0) ⊂ R
d, then for

0 ≤ t < r0, (w1(t), ∂tw1(t)) = (w2(t), ∂tw2(t)) on B(x0, r0 − t).

Proof. Without loss of generality, we may assume that x0 = 0. Take the difference u = w1 −w2, then

∂2t u−∆u+ u = V (t, x)u,

where

V (t, x) = (2σ + 1)

∫ 1

0
|(1− λ)w1(t, x) + λw2(t, x)|2σdλ+ 1 ∈ L∞

loc.

For 0 ≤ t1 < t2 < r0, denote by Ct1,t2(r0) := {(t, x) : t1 ≤ t ≤ t2, |x| ≤ r0 − t}. Define the local energy

density

e(t, x) :=
1

2
(|∇u(t, x)|2 + |∂tu(t, x)|2 + |u(t, x)|2).

Then a direct calculation yields
∫

C0,t0 (r0)
∂tu(∂

2
t −∆+ 1)udxdt =

∫ t0

0

∫

|x|≤r0−t

d

dt
e(t, x)dxdt −

∫ t0

0

∫

|x|=r0−t
∂tu∂rudσ(x)dt,

where ∂ru = x
|x| · ∇u and r = |x|. Notice that d

dt1|x|≤r0−t = −δ|x|=r0−t, we have

∫

C0,t0 (r0)
∂tu(∂

2
t −∆+ 1)udxdt =

[ ∫

|x|≤r0−t
e(t, x)dx

]t=t0

t=0
+

∫ t0

0

∫

|x|=r0−t

1

2

[
|∂tu− ∂ru|2 + |u|2

]
dσ(x)dt

≥
[ ∫

|x|≤r0−t
e(t, x)dx

]t=t0

t=0
.

Using the equation ∂2t u−∆u+ u = V u, we have

E(t0) ≤ E(0) +
∣∣∣
∫

C0,t0 (r0)
V u · ∂tudxdt

∣∣∣ ≤ E(0) + ‖V ‖L∞([0,r0]×B(0;r0))

∫ t0

0
E(t)dt,

for all 0 ≤ t0 < r0, where E(t) =
∫
|x|≤r0−t e(t, x)dx is the local energy. Since E(0) = 0, from Gronwall’s

inequality, we deduce that E(t) ≡ 0 for all 0 ≤ t < r0. This completes the proof of Lemma 3.1. �
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To prove Theorem 2, we need to do some preparations. We use the coordinate system x = (x1, x
′)

near the origin. Let zk = (zk1 , 0) with z
k
1 = 1

k . Let nk = ee
k
, and define

v0,k(x) := (log nk)
−δ1n

3
2
−s

k ϕ(nk(x1 − zk1 ), nkx
′) = vnk

(0, · − zk),

where vn(0) is the initial data of the ill-posed profile defined in (2.3). Note that there exists k0, such

that for all k ≥ k0, the supports of v0,k are pairwise disjoint. Moreover, for k0 ≤ k1 < k2,

dist
(
supp(v0,k1), supp(v0,k2)

)
∼ 1

k1
− 1

k2
.

Denote by Bk = B(zk, rk), where rk = 1
k3
. With sufficiently large k0, the balls Bk, k ≥ k0 are mutually

disjoint. Moreover, supp(ρǫnk
∗ v0,k) ⊂ Bk (recall that ǫnk

= 1
100nk

). Another simple observation is

that

dist
(
supp(ρǫnk

∗ (v0 − v0,k)), Bk

)
&

1

k2
,

where

v0 =
∑

k≥k0

v0,k ∈ Hs(T3).

In particular, for any (f, g) ∈ C∞×C∞, ρǫnk
∗ ((f, g) + (v0, 0)) coincides with ρǫnk

∗ ((f, g) + (v0,k, 0))

on Bk. Let B̃k = B(zk, rk/3) be a slightly smaller ball. We observe that for k large enough,

supp(ρǫnk
∗ v0,k) ⊂ B̃k.

Now we are able to prove Theorem 2.

Proof of Theorem 2. Define

S = C∞(T3)× C∞(T3) +
{( ∞∑

k=k1

v0,k, 0
)
: k1 ≥ k0

}
.

Using
∥∥∥

∞∑

k=k1

v0,k

∥∥∥
Hs(T3)

≤
∞∑

k=k1

‖v0,k‖Hs(T3) ≤
∞∑

k=k1

e−kδ1 → 0 as k1 → ∞,

we deduce S is dense inHs(T3). Now fix (f, g) ∈ S. Then by definition, there exists (u0, u1) ∈ C∞×C∞

and k1 ≥ k0, such that

(f, g) = (u0, u1) +
( ∞∑

k=k1

v0,k, 0
)
.

Our goal is to show that, for any N > 0 and any δ > 0, there exist τN ∈ [0, 1] and 0 < ǫ < δ, such

that the solution uǫ to (1.1) with initial data ρǫ ∗ (f, g) satisfies
‖uǫ(τN )‖Hs(T3) > N. (3.1)

First we choose k ≥ k1, large enough, such that

κnk
(λnk

tnk
)s > N, ǫk =

1

100nk
< δ.

This can be achieved by choosing δ1 < δ2 such that sσ(δ2 − δ1) > δ1. Recall that the parameters

κnk
= e−kδ1 , λnk

tnk
= e(δ2−δ1)kσ are given by (2.2). Let ũk be the solution of (1.1) with the initial

data ρǫnk
∗ (u0, u1) + ρǫnk

∗ (v0,k, 0). Let ṽk be the solution of ∂2t ṽk + |ṽk|2σ ṽk = 0 with the initial
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data ρǫnk
∗ (v0,k, 0). We remark that ṽk, ũk are just v

ǫnk
nk
, u

ǫnk
nk

in Proposition 2.4 up to translation. In

particular,

‖ũk(tnk
)‖Hs(T3) & (log nk)

sσ(δ2−δ1)−δ1 , (3.2)

and

‖ũk(tnk
)− ρǫnk

∗ S(tnk
)(u0, u1)− ṽk(tnk

)‖Hs(T3) . n−θ
k . (3.3)

We have that supp(ṽk(t)) ⊂ B̃k for all t ∈ [0, tnk
]. Now we apply Lemma 3.1 to ũk and uǫnk . Since

at t = 0, (uǫnk (0), ∂tu
ǫnk (0))|Bk

= (ũk(0), ∂tũk(0))|Bk
, we deduce that

(uǫnk (t), ∂tu
ǫnk (t))|B(zk ,rk−t) = (ũk(t), ∂tũk(t))|B(zk ,rk−t), ∀0 ≤ t < rk.

In particular, for large k,

(uǫnk (t), ∂tu
ǫnk (t))|B(zk ,rk/2)

= (ũk(t), ∂tũk(t))|B(zk ,rk/2)
, ∀t ∈ [0, tnk

]. (3.4)

Lemma 3.2. Assume that s1 ≥ 0. Let u ∈ Hs1(T3) and χ ∈ C∞
c (T3). Then there exists A > 0,

depending only on the function χ and s1, such that for any R ≥ 1

‖(1− χ(Rx))u‖Hs1 (T3) + ‖χ(Rx)u‖Hs1 (T3) ≤ ARs1‖u‖Hs1 (T3).

Proof. First for s1 ∈ N, the proof follows from the direct calculation. For general s1 ≥ 0, the conclusion

follows from the interpolation. �

Take χ ∈ C∞
c (R3), such that χ(x) ≡ 1 if |x| < 1

3 and χ ≡ 0 if |x| ≥ 1
2 . Define χk(x) := χ((x−zk)/rk),

hence χk|B̃k
≡ 1 and χk|(B(zk ,rk/2))c

≡ 0. Then (3.4) is translated to

χk(x)(u
ǫnk (t), ∂tu

ǫnk (t)) = χk(x)(ũk(t), ∂tũk(t)), ∀t ∈ [0, tnk
].

From Lemma 3.2,

‖uǫnk (tnk
)‖Hs(T3) & rsk‖χku

ǫnk (tnk
)‖Hs(T3) ∼ (log log nk)

−3s‖χk(x)ũk(tnk
)‖Hs(T3).

Therefore,

‖χk(x)ũk(tnk
)‖Hs(T3) ≥‖ũk(tnk

)‖Hs(T3) − ‖(1 − χk)ũk(tnk
)‖Hs(T3)

=‖ũk(tnk
)‖Hs(T3) − ‖(1 − χk)(ũk(tnk

)− ṽk(tnk
))‖Hs(T3),

where in the last equality, we use the fact that (1−χk)ṽk(tnk
) = 0, thanks to the support property of

ṽk. Therefore, we have

‖uǫnk (tnk
)‖Hs(T3) &(log log nk)

−3s‖ũk(tnk
)‖Hs(T3) − (log log nk)

−3s‖(1− χk)ρǫnk
∗ S(tnk

)(u0, u1)‖Hs(T3)

−(log log nk)
−3s‖(1 − χk)

(
ũk(tnk

)− ρǫnk
∗ S(tnk

)(u0, u1)− ṽk(tnk
)
)
‖Hs(T3).

(3.5)

Applying Lemma 3.2 again, we have

‖uǫnk (tnk
)‖Hs(T3) & (log log nk)

−3s(log nk)
sσ(δ2−δ1)−δ1 − ‖ρǫnk

∗ S(tnk
)(u0, u1)‖Hs(T3) − n−θ

k . (3.6)

Since

‖ρǫnk
∗ S(tnk

)(u0, u1)‖Hs(T3) . 1,

uniformly in ǫnk
, by choosing δ1 > 0 small such that sσ(δ2 − δ1) − δ1 > 0, the left hand side of (3.6)

tends to +∞ as k → ∞. This completes the proof of Theorem 2. �
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Finally, we prove Corollary 1.2: Recall the definition of the pathological set:

P := {(f, g) ∈ Hs(T3) : the solution uǫ(t) of (1.1) with initial data ρǫ ∗ (f, g),
satisfies the property lim sup

ǫ→0
‖uǫ(t)‖L∞([0,1];Hs(T3)) = +∞ }.

For simplicity, below we will denote uǫ(t) = Φ(t)(ρǫ ∗ (f, g)) the solution of (1.1) with initial data

ρǫ ∗ (f, g). Obviously, the set

O := {(f, g) ∈ Hs(T3) : lim sup
k→∞

‖Φ(t)(ρǫnk
∗ (f, g))‖L∞([0,1];Hs(T3)) = ∞}

is contained in P. From the proof of Theorem 2 in the last paragraph, S ⊂ O, hence O is dense. It

remains to show that O is a Gδ set, that is, a countable intersection of open sets. Note that

O =

∞⋂

N=1

ON ,

where

ON := {(f, g) ∈ Hs(T3) : lim sup
k→∞

‖Φ(t)(ρǫnk
∗ (f, g))‖L∞([0,1];Hs(T3)) > N}.

By definition,

ON =

∞⋂

k0=1

⋃

k=k0

ON,k,

where

ON,k := {(f, g) ∈ Hs(T3) : ‖Φ(t)(ρǫnk
∗ (f, g))‖L∞([0,1];Hs(T3)) > N}.

It suffices to show that, for fixed N, k, ON,k is an open set. Indeed, pick (f0, g0) ∈ ON,k, denote by

r0 := ‖Φ(t)(ρǫnk
∗ (f0, g0))‖L∞([0,1];Hs(T3)) −N > 0.

From the inequality

‖ρǫnk
∗ (f, g)‖H2(T3) ≤ Cǫ−(2−s)

nk
‖(f, g)‖Hs(T3),

the Sobolev embedding H2(T3) →֒ L∞(T3), and the global well-posedness theory in H2(T3),we deduce

that there exists a uniform constant C0 > 0, such that

sup
t∈[0,1]

‖Φ(t)(ρǫnk
∗ (f0, g0))− Φ(t)(ρǫnk

∗ (f, g))‖H1(T3) (3.7)

≤C0ǫ
−(2−s)(2σ+1)
nk

(‖(f0, g0)‖2σHs(T3) + ‖(f, g)‖2σHs(T3))‖(f − f0, g − g0)‖Hs(T3). (3.8)

Choosing

δ <
r0ǫ

(2−s)(2σ+1)
nk

2C0
· (1 + ‖(f0, g0)‖2σHs(T3) + ‖(f, g)‖2σHs(T3))

−1,

then if ‖(f, g) − (f0, g0)‖Hs(T3) < δ, by (3.7) we deduce that

‖Φ(t)(ρǫnk
∗ (f, g))‖Hs(T3) > N.

This shows that ON,k is open. The proof of Corollary 1.2 is now complete.
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Chauvin 95302 Cergy-Pontoise Cedex, France

Email address: nikolay.tzvetkov@u-cergy.fr


	1. Introduction
	Acknowledgement

	2. Unstable profile
	2.1. Explicit estimates for the ODE profile
	2.2. Perturbative analysis

	3. Proof of the main theorem
	References

