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Abstract—Estimation of dominant melody in polyphonic music
remains a difficult task, even though promising breakthroughs
have been done recently with the introduction of the Harmonic
CQT and the use of fully convolutional networks. In this paper,
we build upon this idea and describe how U-Net – a neural
network originally designed for medical image segmentation –
can be used to estimate the dominant melody in polyphonic
audio. We propose in particular the use of an original layer-
by-layer sequential training method, and show that this method
used along with careful training data conditioning improve the
results compared to plain convolutional networks.

Index Terms—dominant melody estimation, pitch estimation,
HCQT, U-Net

I. INTRODUCTION

Dominant melody or multi-pitches estimation in polyphonic
music has long been seen as a difficult problem in Music
Information Retrieval (MIR), both because of the inherent
harmonic complexity of real-life music and because of the
lack of annotated data available for training and evaluating.

Most of the successful approaches proposed so far for
this task start by deriving a pitch salience from a spectral
representation, and then apply some heuristics to it to esti-
mate the dominant melody and/or the multiple pitches. Such
heuristics are as varied as harmonic partials summation [1],
pitch contour tracking [2], spectral smoothness enforcement
[3], [4] or source-filter modeling [5], [6].

Recently, deep neural networks have been proposed to
compute this pitch salience representation, using Recurrent
Neural Networks (RNN) in [7], Convolutional Neural Net-
works (CNN) in [8], or a combination of both in [9]. The audio
representation usually provided as input to the network is the
Short Time Fourier Transform (STFT), but some authors have
also used the raw waveform [10] or the Harmonic Constant-Q
Transform (HCQT) [8].

In this paper, we propose the use of a U-Net architecture
to estimate the dominant melody in polyphonic music. We
propose a sequential method to train the U-Net using ground
truth data at increasing resolutions, and show that this method
improves performances compared to the usual training. We
also compare the performances of the U-Net to those of
the full CNN proposed in [8], and show that the U-Net
architecture brings slight improvements over this previously
proposed approach.

II. RELATED WORK

In this work, we build upon three main existing concepts:
the HCQT data representation, the U-Net architecture and the
curriculum learning paradigm.

A. Harmonic Constant-Q Transform (HCQT)

The HCQT, introduced in [8], is an elegant and astute repre-
sentation of the audio signal in 3 dimensions (time, frequency,
harmonic). It stacks along the third dimension several standard
CQTs sharing the same frequency resolution and frequency
range, but starting at different minimal frequency h.fmin,
where fmin is the minimal frequency of interest and h is the
harmonic index of each CQT. The harmonic components of
the audio signal will thus be represented along the third axis of
the HCQT and localized in the time-frequency domain across
its first and second dimensions.

The alignment of harmonic series along the third dimension
makes this representation particularly suitable for melody
tracking, as it is can be directly processed by convolutional
networks, whose 3-D filters can be trained to localize in the
time and frequency plan the harmonic components in the
melody of the input signal.

B. U-Net

U-Net was originally introduced in the context of image
segmentation [11] for identifying and localizing high resolu-
tion details in medical images. It can be seen as a downsam-
pling/upsampling model, where the downsampling part (the
descending branch of the U) is learning representations of the
input image at coarser resolutions by means of convolution
and pooling layers, while the upsampling part (the ascending
branch of the U) is learning to recreate representations at finer
resolutions by means of convolution and transposed convo-
lution layers [12]. The main difference with a convolutional
Auto-Encoder is the introduction of skip-connections from the
encoding levels to their counterpart decoding levels. These
skip connections can be seen as a manner of providing an
information context to the next reconstruction level, and have
proven to help localization of features of interest.

The U-Net model has already been used in the context
of MIR for sources separation [13]. We apply it here for
dominant melody estimation, as we think that an analogy can
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Fig. 1. U-Net model for dominant melody estimation.

be drawn between this problem and the image segmentation
problem. Indeed, considering the HCQT as an image with h
channels, contrasting and extracting the melody line from the
background noise can be seen as a task similar to contrasting
and extracting objects boundaries out of the rest of a natural
image.

C. Curriculum learning

Curriculum learning was introduced as a continuation
method, i.e. a strategy to minimize non-convex criteria [14],
based on the intuition that a model – similarly to humans
– could learn more efficiently if trained with successive
training objectives of increasing difficulty, starting first with
smooth objectives and gradually increasing the level of their
complexity. This can be seen also as a sort of pre-training,
which has proven to be beneficial [15].

The nature of the dominant melody estimation problem and
the architecture of the U-Net are well suited for a curriculum
learning approach: instead of training the model to deal with
high resolution information directly, it is possible to prune
parts of the network and train it repeatedly level by level.
Successive trainings will start with coarse resolution informa-
tion at the lowest level of the U, and continue with increasing
resolutions while adding higher levels to the upsampling
branch. This will be described more in details in section III.

III. METHOD

A. Model

The U-Net model used here is directly inspired by the
seminal U-Net of [11], and is depicted in Fig. 1 with four
levels.

On the down-sampling branch, each level consists of a batch
normalization layer followed by two convolution layers with
3× 3 kernels. Contrary to the original U-Net, padding is ap-
plied before convolutions (’same’ convolution type), so that the

time and frequency dimensions are maintained. Convolution
layers are then followed by a max-pooling layer with a kernel
of shape 2× 2 and a stride of 2. The first level starts with 64
kernels, and the number of kernels is doubled at each level
(i.e. the deeper level handles 512-depth tensors).

On the up-sampling branch, each level consists of a batch
normalization layer followed by a transposed convolution layer
with 2 × 2 kernels and a stride of 2 also, followed by two
convolutional layers of 3 × 3 kernels also. The number of
kernels is divided by 2 at each level.

At each resolution level, the output of the down-sampling
branch is concatenated with the output of the up-sampling
branch. For uneven dimensions on the down-sampling branch,
the up-sampling will produce an even dimension. In this case,
the supernumerary row or column is simply removed, so that
data in each of the two branches has same shape and can be
concatenated via the corresponding skip connection.

Finally, the output tensor is processed with a 1 × 1 kernel
layer with sigmoid activation such that each time/frequency
bin models a probability. The model is then trained to mini-
mize the cross-entropy between the output probability and the
the target ground truth normalized activations.

B. Data chunking
In order to process the full duration of songs and their

corresponding dominant melody ground truth annotations, the
data is split into chunks. Different durations of chunks have
been tried, and preliminary experiments showed that a duration
of 3 seconds is a good trade-off.

As padded convolutions are used, extra data might be added
to the borders of the chunks on the frequency and the time axis.
Additionally, removing supernumerary rows or columns at the
borders when up-sampling might remove relevant information
propagated from one layer to another.

We considered that zero padding on the frequency axis is
acceptable, as lowest and highest frequencies of the HCQT are



very unlikely to be part of the melody. However, sides effects
on time axis might not be negligible. To mitigate these effects,
we have overlapped the beginning and the end of each chunk.
The full duration melody estimation is reconstructed trimming
each chunk’s overlapping part and concatenating the remaining
parts along the time axis. In practice, an overlap of 0.3 seconds
at the beginning and at the end of each chunk appears adequate
for 3 seconds chunks.

C. Curriculum training

We have investigated two different training methods: a clas-
sical end-to-end method, and a level-by-level method inspired
by the curriculum learning paradigm.

In the level-by-level method, the up-sampling branch of the
U-Net is initially pruned, except its lowest level. The ground
truth target is downsampled with three pooling layers (that
have no trainable parameters) to match the dimensionality of
the lowest resolution level, as illustrated in Fig. 2. Only the
down-sampling branch and the lowest level are then trained to
minimize the cross entropy loss between the network output
and the ground truth target at this coarsest resolution.
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Fig. 2. Training of the lowest level of our Dominant Melody U-Net model

The next level layers and skip connections are then added to
the partially trained network. The resulting network is trained
to minimize the loss re-defined as the cross entropy between
the new level output and the ground truth downsampled to the
corresponding dimensionality.

Each next level is then subsequently added and the entire
resulting network is trained reusing the weights of the lower
levels. These successive partial trainings are repeated until the
highest and finest resolution level is trained.

The main goal behind this strategy is to provide information
about the ground truth target to the up-sampling branch as
early as possible. Our assumption is that providing ground
truth information at coarse resolution should help reconstruc-
tion at higher resolution levels.

IV. DOMINANT MELODY EXTRACTION EXPERIMENT

A. Dataset

To train our networks, we have used the first release of
the MedleyDB dataset [16]1, which provides the dominant

1A newer and more accurate version has recently been released [17], but
was not yet available during our experiments.

melody and multi-pitch annotations for 108 songs of varied
musical styles. We used the ”melody2” annotations (see [17]
for details) as dominant melody target for our networks.

Train/validation/test sets. Preliminary experiments have
shown that different randomized train/validation/test sets splits
could lead to very different results from one split to another. In
order to obtain more robust results, we conducted a 10-folds
cross-validation experiment. The 108 songs were divided into
10 folds containing 10 to 11 songs, using artist filtering (songs
of the same artist must belong to the same fold). Each of the
ten folds was used in turn as the test set. Another fold was
randomly picked among the nine remaining ones to be used as
the evaluation set, while the remaining eight folds were used
together as the train set.

Baseline comparison. Because of this approach, we cannot
directly compare our results to the ones published in [8].
In the following, we therefore consider as the baseline our
own re-implementation of [8] applied to each of the 10-folds
train/validation/test sets.

B. Configuration

For all experiments, we compute the HCQT as described
in [8] with fmin = 32.7 Hz and 6 harmonics – h ∈
{0.5, 1, 2, 3, 4, 5}. Each CQT spans 6 octaves with a resolution
of 60 bins per octave (5 bins per semi-tone), and has a frame
duration of ≈ 11 ms. The implementation of the CQT was
done with the Librosa library [18].

Training parameters. For training, we shuffled the chunks
of the training set and then used a batch size of 16 chunks.
We optimized the parameters using Adam [19] with a learning
rate starting at 10−4 with a decaying factor of 0.94 per epoch.
We applied early stopping if the loss on the validation set had
not decreased after 1000 training steps.

From pitch saliency to dominant melody. The output of
the networks (either the full CNN or U-Net) is a pitch salience
representation. As in [8], we obtain the dominant melody
simply keeping at each time frame the frequency with the
maximum salience value. For the voicing/unvoicing decision
at each time frame, we use a threshold whose value is chosen
to optimize the Overall Accuracy score on the validation set.
This threshold is then fixed and used on the test set before
scores described below are computed.

C. Performance measures

To measure the performances of our system, we computed
the melody Overall Accuracy (OA) along with the Raw
Chroma Accuracy (RCA), Raw Pitch Accuracy (RPA) as well
as the Voicing Recall (VR) and the Voicing False Alarm (VFA)
scores as provided by the mir_eval toolbox [20].

V. RESULTS

We compare here the three different systems: 1) our re-
implementation of the fully convolutional baseline proposed
in [8], 2) the U-Net trained end-to-end using chunks with tem-
poral overlap, 3) the U-Net trained using curriculum training
and chunks with temporal overlap.



We show in Fig. 3 the distributions of the mean of metrics
obtained by the three models for each of the 10 folds.

Fig. 3. 10-folds mean scores distributions obtained with mir_eval
(OA=Overall Accuracy, RPA=Raw pitch accuracy, RCA=Row Chroma Ac-
curacy, VR=Voicing Recall, VFA=Voicing False Alarm)

We see on Fig. 3 that the proposed U-Net provides some
improvement for all scores compared to the baseline CNN.

Level-by-level training improvements. Now comparing
the types of training used for U-Net, it appears that our
proposed level-by-level training also provides further improve-
ments on all scores, except for the Voicing False Alarm metric.
Interestingly, the variance for these scores across the ten folds
seems to be lower compared to the other models. This suggests
that U-Net’s generalization ability benefits from curriculum
training, and that isolating and training lower levels first with
coarse resolution data helps training of higher levels dealing
with finer resolution data. The effect seems however less
obvious on the Voicing False Alarm.

Voicing False Alarm. Despite the improved accuracies of
U-Net, the Voicing False Alarm remains fairly high (around
20%). This is illustrated for a specific song in Fig. 4 where
false voicing/unvoicing decisions are indeed often made: high
values of pitch salience are present where no dominant melody
is annotated. These voicing errors could be related to a discrep-
ancy between the validation set (for which the voicing decision
threshold has been optimized) and the test set. However, a
visualization of the network outputs corresponding to empty
chunks (i.e. chunks where no dominant melody is present)
indicates that U-Net generally produces a non-empty output
even when it should not. This suggests that conditioning the
output with an extra voicing/unvoicing information could be
beneficial, for instance with a dual loss [21].

Post hoc statistical significance analysis. All in all, the
improvements of the mean scores observed in Fig. 3 between
the different models remain fairly small. We have therefore
conducted a Tukey’s Honestly Significant Difference test
(HSD) between each pair of models to assess the statistical
significance of the observed improvements.

Fig. 4. [Top] Pitch salience output of U-Net trained level-by-level on
overlapping chunks for the song of the test set ”Don’t Hear A Thing”
by Brandon Webster. [Bottom] Corresponding MedleyDB’s ground truth
annotation.

The HSD test shows that the small differences between the
mean scores of each fold are not large enough to reject the
Null hypothesis, i.e. that the improvements observed on this
dataset do not appear to be statistically significant enough to
draw a definitive conclusion.

VI. CONCLUSION

In this paper, we have proposed to use the U-Net model
for dominant melody estimation, and compared it with one
of the current state-of-the-art models for this task, a fully
convolutional network.

We have proposed to improve the performances of the U-
Net model in two ways. Firstly, by overlapping training data
to mitigate side-effects errors introduced by the padding and
un-padding of its convolutions and de-convolutions layers.
Secondly, by training U-Net with a curriculum training ap-
proach, starting with lower levels in isolation with coarse res-
olution data, and successively training higher levels with finer
resolution data. We have shown that under these conditions,
the U-Net provides a slight improvement over the full CNN.
This improvement does however not appear to be statistically
significant.

We however believe that the trend observed could be
significant given larger amount of training examples. To
improve performances of the proposed model, we therefore
plan to use larger annotated datasets, such as Dali [22] or
Lakh [23] datasets. We also plan to condition the network
with a voicing/unvoicing information using a dual loss.
Finally, we also want to continue exploring the idea that
U-Net’s higher levels can benefit from the knowledge of
lower levels, and plan to introduce an attention mechanism
between low and high resolution layers.



REFERENCES

[1] A. Klapuri, “Multiple fundamental frequency estimation by summing
harmonic amplitudes.” in ISMIR, 2006, pp. 216–221.
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