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a b s t r a c t

Different experimental approaches have been performed in order to extract damage at sev-
eral scales. In this paper two experimental methods are treated. Neutron diffraction cou-
pled with tensile test has been performed to study damage at mesoscopic scale. At
macroscopic scale, classical tensile test has been used to extract damage effects, from
material hardening evolution. Optical measurements and particular data treatment have
been used in order to correct data for the necking phenomenon at large deformation, for
each experimental method. Damage process in duplex steels has then been analysed at
both macroscopic and mesoscopic scales using scale transition models. Eventually, inves-
tigations at those scales have been compared to understand correlation between meso-
scopic and macroscopic behaviour of our material.

1. Introduction

Nowadays, it is possible to develop numerical simula-
tion for manufacturing processes in finite transformation.
In order to improve the predictivity of finite elements anal-
ysis (FEA), it is necessary to provide accurate constitutive
models for mechanical behaviour. Such a methodology is
now classical. The aim of the present work is to develop
experimental techniques and data treatments to study
damage mechanisms for metallic materials. Indeed, it is
now well known that the coupling between damage and
plasticity leads to an accurate description of ductile dam-
age in metal forming (Saanouni et al., 2000; Saanouni
and Hammi, 2000; Lemaitre and Chaboche, 2001;
Chaboche et al., 2006). In this paper, we have studied the

opportunity to measure the mechanical consequences of
damage in duplex steels, at different scales. Therefore,
two scales have been considered and a particular experi-
mental approach has been performed. Neutron diffraction
coupled with in situ tensile test has been used to study
damage at mesoscopic scale. Classical tensile tests have
also been used to obtain damage at macroscopic scale,
from hardening evolution.

Firstly, diffraction methods for lattice strain measure-
ments can provide useful information concerning the nat-
ure of grains behaviour during elastoplastic deformation.
The advantage of diffraction methods is that measure-
ments are performed selectively only for the crystallites
contributing to the measured diffraction peak, i.e. for the
grains having lattice orientations for which the Bragg con-
dition is fulfilled (Greenough, 1949; Gloaguen et al., 2002a,
2002b). When several phases are present within a speci-
men, the measurements of separate diffraction peaks allow
the investigation of each phase independently (Amos et al.,
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1994; Fitzpatrick et al., 1997; Fréour et al., 2002, 2003,
2005; Quinta Da Fonseca et al., 2006; Dakhlaoui et al.,
2006). Moreover, comparison of diffraction data with
self-consistent model is very convenient to study elasto-
plastic properties at mesoscopic and macroscopic scales.
Analysis of experimental data using model predictions
helps us to understand the physical phenomena which
occur during sample deformation (Wierzbanowski et al.,
1992; Fitzpatrick et al., 1997; Baczmanski et al., 2008).
Besides, mesoscopic and macroscopic parameters of
elastoplastic deformation can be then experimentally
identified (Baczmański et al., 1999; Clausen et al., 1999).

Secondly, classical tensile loading is used to provide
damage evolution at macroscopic scale (Cabezas and
Celentano, 2004). Indeed, damage has been measured here
from elastoplastic hardening evolution (Lemaitre and
Chaboche, 2001; Hfaiedh, 2009). To extract damage occur-
ring at macroscopic scale, it is necessary to take into
account the necking phenomenon (Celentano and Chab-
oche, 2007). This has been done using simultaneously opti-
cal measurements for the cross-section and for the local
strain within the necking area. Macroscopic models have
been then used to compare with experimental results. Con-
sequently, an inverse method has been applied to identify
model parameters. Errors have been taken into account to
analyse results from different macroscopic models. Even-
tually, we have obtained different damage curves depend-
ing from the data treatment considered and corresponding
to different spatial parts of the sample.

In this paper, we present the experimental results from
both techniques, and compare them in order to character-
ize damage evolution of duplex stainless steels (DSS)
which is of obvious interest for industrial applications in
highly corrosive process, such as chemical, petrochemical,
off-shore, nuclear or paper industries and are yet fre-
quently studied (Chehab et al., 2010; Hedström et al.,
2010).

Further data treatments and calculations are based on
approximations and corrections, listed below and detailed
in the later parts of the text.

(1) Whatever the scale, the experimental data are fitted
with elastoplastic models without taking account
damage. Damage is so extracted from fitting/com-
parison process and is treated within the continuous
damage mechanics (CDM).

(2) In calculations, the elastoplastic models take into
account non-linear isotropic hardening and texture
evolution. However, stress concentration and triaxi-
ality of stains and stresses are neglected as discussed
further.

(3) Necking effect has been corrected through optical
measurements of sample cross-section. Grids are
also used to measure local strain and a particular
calibration was especially applied for diffraction
results.

2. Material

The studied material is an austeno-ferritic stainless
steel, containing approximately 50% austenite and 50%

ferrite. It was obtained by continuous casting, and then
hot rolled down to 15 mm sheet thickness. The sample
was prepared from UR45 N steels which chemical compo-
sition is given in Table 1. The characteristic microstructure
of this steel consists of austenitic islands elongated along
the rolling direction and embedded in a ferritic matrix.
EBSD method has shown that all crystallites of ferritic
phase have almost the same orientation, while austenitic
islands are divided into smaller grains with different orien-
tations of the lattice (Baczmański and Braham, 2004;
Dakhlaoui et al., 2006; Baczmański et al., 2008). The sam-
ple (designated as UR45 N) was annealed during 1000 h
at a temperature of 400 �C and next cooled in ambient
air. It is well known (Lacombe et al., 1990; Mateo et al.,
1997; Park and Kwon, 2002) that, at this temperature of
ageing (lower than 475 �C), the decomposition of ferrite
by the mechanism of spinodal decomposition occurs.
Transformations in ferrite are mainly decomposition ofea=ea0 (into Cr-poor ea and Cr-rich ea0 domains) and precipi-
tation of an intermetallic phase rich in Ni, Si and Mo (the
G phase). The role of ea0 and the G phases in hardening
and embrittlement of ferrite is widely discussed in the lit-
erature and the majority of authors (Marcinkowski et al.,
1964; Lagneborg, 1967) agree that hardening is attributed
essentially to the ea0 phase. Indeed, the coherence shift be-
tween the lattice parameters of ea and ea0 phases introduces
internal stresses reducing the dislocations mobility. The G
particles have very small size (between 1 and 10 nm gen-
erally and up to 50 nm occasionally) and they precipitate,
more or less uniformly, in the ferritic grains depending
on the chemical composition of steels. The largest particles
are formed preferentially in defects: the others are formed
in the ea=ea0 and austenite/ferrite interfaces. Some micro-
structural transformations may be present in the austenitic
phase but they do not change mechanical properties of the
material.

3. Experimental methods at mesoscopic scale

3.1. Measurements by neutron diffraction

The ENGIN-X diffractometer (Santisteban et al., 2006)
was used to measure interplanar spacings hdi{hkl} using
time-of-fly (TOF) neutron diffraction method at the ISIS
spallation neutron source. The experimental setup consists
of two detector banks which are centred on horizontal
scattering angles of 2 = ±90� (Fig. 1). The detectors measure
time-resolved spectra, each Bragg peak being produced by
reflections from a different family of {hkl} planes.

The sample shown in Fig. 1 with an initial diameter of 8
mm, having axis aligned along rolling direction (RD) was
machined from UR45 N steels. The lattice strains were
‘‘in situ” measured during uniaxial tensile loading. The load
axis was aligned horizontally at +45� to the incident beam,

Table 1
Chemical composition of duplex stainless steel: mass-percent.

C Mn Cr Ni Mo Cu S N

UR45 N 0.015 1.6 22.4 5.4 2.9 0.12 0.001 0.17



allowing simultaneous measurements of lattice strains in
both directions: parallel and perpendicular to the applied
load (Fig. 1). A slit of dimensions 8 mm high, 4 mm wide
was used to define the incident beam. Radial collimators
in front of each detector bank defined an exit aperture of
approximately 4 mm (Fig. 1). The measurements were
made at a series of applied strains after stabilisation of
the load subjected to the sample. The strains (monitored
for small deformation by an extensometer) were held con-
stant during the measurement intervals. The experiments
were performed using the TOF diffraction method and
the peak positions for several {hkl} reflections were deter-
mined independently for both phases using a least square
fitting procedure based on theoretical pseudo-Voigt func-
tion (François et al., 2000; Courant et al., 2000; Hutchings
et al., 2005; Pecharsky et al., 2008). The interplanar spac-
ings hdRDi{hkl} were then determined. The relative elastic
lattice strains h�RDi{hkl} with respect to the initial interpla-
nar spacings were calculated for different {hkl} reflections
of the scattering vector:

eelastic
RD

� �
fhklg ¼ ln

dR
RD

D E
fhklg

d0
RD

D E
fhklg

0B@
1CA; ð1Þ

where hdR
RDifhklg and hd0

RDifhklg are the interplanar spacings
measured for a sample with and without external load;
while the h i{hkl} brackets denote the average over the vol-
ume of diffracting grains for which the scattering vector is
perpendicular to the {hkl} planes. The subscript RD indi-
cates the direction of interplanar spacings and strain mea-
surements, i.e. the direction of scattering vectors.

3.2. Necking correction for the stresses

A stress correction has been performed by an original
calibration in order to take into account the necking effect,
shown in Fig. 2 (Le Joncour et al., 2010). To perform this
calibration in the neutron gauge, it is assumed that the real
macroscopic stress

P
RD (average over the neutron gauge)

is proportional to the mean elastic strain eelastic
RD

� �
mean (arith-

metic average on measured lattice strain eelastic
RD

� �
fhklg), not

only in the elastic stage but also for large plastic deforma-
tion and is assumed correct even when some damage phe-
nomena occur. In this approximation, the influence of
interphase or intergranular stresses on the mean strain
value eelastic

RD

� �
mean is neglected (Fréour et al., 2003). This

is because eelastic
RD

� �
mean is calculated over the volume

Fig. 1. Experimental setup for measurements of initial phase stresses and orientation of the scattering vector, with respect to the sample frame during
measurements. The neutron gauge volume is: 4 � 4 � 8 mm, where 8 mm is the beam size in perpendicular direction.

Fig. 2. Aged UR45 N sample broken in tensile test (orientation and position of the neutron gauge volume with respect to the neck is shown). Note the strong
strain anisotropy between TD and ND.



containing a large number of grains belonging to both
phases and having different orientations. In such volume
the intergranular stresses integrated over both phases
sum approximately to zero value. To support our previous
assumption the evolution of the theoretical strain
heelastic

RD imean during elastoplastic deformation was calculated
using elastoplastic self-consistent model (Baczmanski and
Braham, 2004). The results shown in Fig. 3 confirm that a
linear relation exists between the theoretical macroscopic
stress and the mean strain heelastic

RD imean for whole range of
elastoplastic deformation, whatever the inclusion
geometry.

To calibrate the experimental results, the relation be-
tween the mean strain heelastic

RD imean and the macroscopic
stress must be established. It was done using the linear
elastic range of the function

Papl
RD vs:heelastic

RD imean (up toPapl
RD ¼ 200 MPa) and next the linear function was extrapo-

lated for all values of heelastic
RD imean. Using this calibration

curve (Fig. 3), the values for macroscopic stress in the neu-
tron gauge (i.e.,

Pcor
RD corrected) can be then easily calcu-

lated from the mean strain heRDimean for all experimental
points. It should be stated that the experimental calibra-
tion curve (

Pcor
RD vs. heRDimean) is very close to the theoretical

relation obtained by the self-consistent model (Fig. 3).
In the presented above calibration method, it was as-

sumed that the elastic properties of grains and of the poly-
crystalline aggregates are constant during elastoplastic
deformation and also during damage stage. However, it
has been shown (Lemaitre and Chaboche, 2001) that
damage can influence the value of effective elastic modu-
lus. Consequently, this calibration has to be performed
carefully until the end of tensile tests, when macroscopic
damage becomes more significant, in order to minimize
errors.

Comparisons with numerical modelling have also been
performed. The interpretation of neutron diffraction re-
sults is based on an elastoplastic self-consistent model
developed by Lipinski and Berveiller (1989) and applied
for neutron measurements on duplex steel by Baczmański
et al. (2003, 2004) The calculations are performed on two

different scales: the macroscopic scale, where the average
quantities (R, E) are defined, and the (mesoscopic) grain
scale, on which the behaviour of each crystallite under
mesoscopic stress r is described (Le Joncour et al., 2010).
This allows comparing directly the measured elastic lattice
strain with the theoretical values. Results of comparison
are presented in Fig. 4, where a good correlation between
the self-consistent model and the experimental points
until damage process is shown. The agreement of model
and experimental data also justifies the previous calibra-
tion of the macroscopic stress values. As mentioned in
introduction part, damage process is not taken into
account in these self-consistent calculations.

3.3. Treatment of experimental data and mesoscopic damage
calculations

As stated above, the triaxiality of strains and stresses in
the neutron gauge volume (placed in the neck) is ne-
glected. To prove that this assumption is reasonable, full
macroscopic stress tensor has been estimated using FEA
method. It was found that the triaxiality is actually negligi-
ble in the gauge volume measured by diffraction, i.e. the
maximum stresses in TD and ND do not exceed 6.5% of
the uniaxial stress applied in the rolling direction. This
value is overestimated because the shape of the neck was
taken just before fracture, when stress heterogeneity and
triaxiality is maximal. Such argument is confirmed by mea-
surements done using neutron diffraction in transverse
direction with second detector bank (not presented here).
Finally, in order to interpret experimental results, self-
consistent modelling was performed assuming uniaxial
tensile stress in the neutron gauge volume. The theoretical
results can be then compared with the experimental stres-
ses and strains averaged over the studied volume.

As shown in Fig. 4, the elastic lattice strains measured
using different {hkl} reflection are correctly predicted by
elastoplastic self-consistent model, up to large strain.
Nevertheless, the only disagreement between elastoplastic
model and experiment (i.e. decreasing of lattice strains for

Fig. 3. Measured stress, calibrated stress and model stress versus the average of elastic lattice strains parallel heRDimax to the load direction (RD). In the
calibration process, at each measured stress value corresponds a calibrated stress value on the linear corrected curve. Note that simulations performed for
spherical and ellipsoidal inclusions in the self-consistent model lead to very similar results.



{211} reflection in ferrite grains in Fig. 5) could be ex-
plained by mesoscopic damage process leading to relaxa-
tion of stresses for grains having specific orientations
with respect to the specimen loading. Indeed, the SEM pic-
tures on UR45 N steel show different mechanisms of such
damage initiation, i.e. decohesion occurring along slip sys-
tems in ferritic phase or along interphase boundary due to
stress concentration on inclusions present in the sample
(Fig. 6). The first mechanism (decohesion on slip systems)
could be responsible for relaxation of stresses for grains se-
lected by the {2 1 1} reflection in ferritic phase. It should be
stated that damage occurring from defects along slip sys-
tems in ferrite was already reported by Christian (1970),
Vitek et al. (1970), Mahajan (1975), Louchet (1979), and

recently by Bugat (2000), where aged duplex steels were
also studied using SEM method.

The fast decrease of lattice strains measured close to the
sample fracture (see Fig. 4(a)) indicates that damage pro-
cess seems occurring firstly in ferritic phase. When it
relaxes significantly in ferrite, the applied load is trans-
ferred into austenite leading to an increase of measured
lattice strains in the latter phase (as seen in Fig. 4(b)). To
extract damage from our results, experiments can be com-
pared with model predictions. As mentioned above, the
theoretical data correspond to undamaged material
because the calculations were performed with a purely
elastoplastic model. On the other hand, the experimental
results correspond to the real damaged material. The
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Fig. 4. Elastic lattice strains parallel heRDi{hkl} to the load direction (RD) versus corrected macroscopic stress
Pcor

RD for aged UR45 N samples deformed in
tensile tests. Strains measured ‘‘in situ” for several {hkl} reflections in both phases (points) are compared with elastoplastic self-consistent model
predictions (lines). Stages A, B, C, D corresponds respectively to elastic behaviour of both materials (A), elastic part for ferrite and linear plasticity for
austenite (B), linear plasticity for both materials (C), other behaviors including damage (D). Self-consistent model is based on previous works (Baczmanski
et al., 2003; Baczmanski and Braham, 2004). Calculations have been performed with a strain step of 0.1% and a number of 20000 grains.
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applied strain is the same for both experiment and simula-
tion. In our analysis we assume that the damaged state can
be related to the undamaged state. Thus using an energy
equivalence principle, it can be demonstrated that (Saano-
uni, 1996; Lemaitre and Chaboche, 2001; Chaboche et al.,
2006):

r ¼ er � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dmeso

p
; ð2Þ

where er is the effective stress corresponding to the
undamaged material, i.e. the stress calculated with the
self-consistent undamaged model; while r is the real
stress occurring in the damaged material and dmeso is the
mesoscopic damage, taken as a scalar parameter.

Assuming linear relation between stress and strain for
elastic deformation, a similar equation can be written for
the elastic lattice strain determined by neutron diffraction:

eelastic
RD

� �
fhklgexp ¼ eelastic

RD

� �
fhklgmod �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dfhklgmeso

q
() dfhklgmeso ¼ 1�

eelastic
RD

� �
fhklgexp

eelastic
RD

� �
fhklgmod

 !2 ð3Þ

where heelastic
RD ifhklgexp is the real elastic lattice strain deter-

mined by diffraction in damaged samples, heelastic
RD ifhklgmod

is an effective elastic strain in undamaged materials (calcu-
lated with the self-consistent model) and dfhklgmeso is the
damage defined at mesoscopic scale, i.e. for the group of
grains contributing to diffraction peak for {hkl} reflection.

Applying the above formula to the results obtained with
{2 1 1} reflection (presented in Fig. 5), we can determine the
evolution of damage versus macroscopic stress. The calcu-
lated points are presented in Fig. 7. It should be noted that
for macroscopic stresses smaller than 1100 MPa, the values
of dfhklgmeso obtained are randomly distributed around zero.
Nonzero values of d{hkl}meso in this range come from discrep-
ancies between experiment and model prediction (stages A,
B and C in Fig. 5) and cannot be attributed to damage. Thus
we can assume d{hkl}meso = 0 for macroscopic stresses lower
than 1100 MPa. However, significant increase of damage
can be observed in Fig. 7, when the macroscopic stress value
goes beyond this threshold value of 1100 MPa. The origin of
such increase is the systematic deviation between mea-
sured and calculated stresses within the fourth stage D in
Fig. 5.

Fig. 6. Damage process caused by inclusions (a) and occurring on slip plane or at grain boundary (b) are shown in SEM pictures (ferritic phase is lighter than
austenite one). The source of the contrast observed between the two phases corresponds to etching.
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It can be concluded that the mesoscopic damage behav-
iour of studied duplex steel presents a threshold of stress
at about 1100 MPa. A critical damage value can be identi-
fied at about 0.53 for a final macroscopic stress of about
1430 MPa. This latter corresponds to the macroscopic frac-
ture of the specimen, probably due to micro cracks coales-
cence in ferrite. As previously stated, decohesion on
crystallographic planes is one possible mechanisms initiat-
ing damage in ferritic phase. This phenomenon may occur
only for specific orientations of slip systems with respect
to the applied load. As shown in our analysis, the grains
selected by the {2 1 1} reflection are the most sensitive to
damage among all the observed reflections. Thus the meth-
odology proposed in this work shows the possibility to
extract selective damage at mesoscopic scale, thanks to
neutron diffraction measurements.

4. Experimental methods at macroscopic scale

4.1. Geometrical correction of the stresses

Measurements at macroscopic scale have been also
performed during mechanical tensile tests. The tensile
machine is an Instron� 4484. Forces are measured by load
cell with an accuracy of 1% of reading values. Strains are
measured using an extensometer (accuracy of 0.15%). The
principle of such a methodology is well known and it en-
ables to obtain damage from hardening curves (Lemaitre
and Chaboche, 2001). However in practical case, it is not
possible to extract directly the macroscopic damage in a
specimen. Indeed, for tensile tests with metallic materials,
damage usually occurs at the same time as triaxial stress
state due to necking phenomenon (plastic instability)
causing a decrease in the cross-section area and thus an
apparent softening. This particular problem can be solved
by imaging the cross-section evolution during experiment.
In the present study, pictures of the sample were taken
with a rate of three pictures per second by double cameras
system shown in Fig. 8. Examples of pictures taken by each

camera and at different times are shown in Fig. 9. Using
Matlab� software for images treatment, it is possible to
measure the dimensions of the sample in each direction.
Assuming that the cross-section is elliptical with axes
along TD and ND, its area can then be calculated from
the formula: S = pR1R2, where R1 and R2 are the measured
ellipse radii. The procedure has been done following previ-
ous studies (Cabezas and Celentano, 2004; Ostsemin,
2009). Experiment has been repeated twice on two differ-
ent specimens, in order to check the repeatability. The final
uncertainty of radii is between 0.05 and 0.15 mm and de-
pends strongly on the camera resolution and the magnify-
ing factor. The evolution of each radius is presented in
Fig. 10. We can point out that the final radius value is very
different for each camera, due to a very strong anisotropy
of our studied duplex steel caused by crystallographic tex-
ture. Cross-section evolution with time is presented in
Fig. 11. Three stages can be observed (Fig. 10 and 11). Stage
a corresponds to quasi-constant cross-section during elas-
tic behaviour of the material. Then a linear evolution stage,
denoted by b, represents elastoplastic behaviour. Finally
during stage c a non-linear evolution of the cross-section
has been observed. Such behaviour is expected when the
material reaches the ultimate stress, then necking phe-
nomenon occurs. Now, we can assume a model for section
evolution and compare it with experimental results. In
this paper, according to several authors (Lemaitre and
Chaboche, 2001; Jaoul et al., 2008), we consider that the
cross-section evolution can be described by the following
equation:

SE ¼ S0 � expð�EcorÞ ð4Þ

where SE is the cross-section for a given strain state and S0

is the cross-section at the initial state. If triaxiality and
stress concentration are neglected, this formula allows
direct correction of the macroscopic stress and it can be
derived assuming incompressibility (constant volume) of
the material during plastic deformation, until necking
starts. Ecor is the corrected experimental macroscopic
strain obtained using:

Fig. 8. Camera system description for imaging the cross-section and local strain during tensile tests.



Ecor ¼ ln 1þ Dl
l0

� �
¼ lnð1þ EexpÞ; ð5Þ

where Eexp is the direct experimental macroscopic strain
obtained from displacements Dl (measured with grips
and/or extensometer). The comparison between experi-

mental and model cross-sections is shown in Fig. 11. For
stages a and b, there is a perfect agreement between both
curves. For large deformation corresponding to the stage c,
the model does not follow experimental result due to local-
isation of the strain, that has been not considered in theo-
retical calculation (Eq. (4)).

Fig. 9. Pictures from both cameras (a) and (b) for camera 1 and (c) and (d) for camera 2. Pictures (a) and (c) correspond to the beginning of the necking
effect. Pictures (b) and (d) correspond to the end of the loading, close to the fracture time. ‘‘Pixels” on the pictures are due to speckle pattern treatment used
for DIC calculations.

Fig. 10. Radius evolution in each direction perpendicular to the tensile loading versus the time. Three stages can be seen on these curves, denoted a, b, c
corresponding respectively to elastic, elastoplastic and elastoplastic with necking behaviour.



4.2. Local deformation measurements

In order to extract damage from stress versus strain
evolution, we have taken into account the cross-section
evolution occurring for large deformation within the cen-
tre of our samples, and modifying the local stress. There-
fore it is also necessary to obtain the correct strain
values. In our experiments, the strain was measured using
extensometer until 5.4%. Then, the extensometer was re-
moved and the strain was calculated from the grips dis-
placement of the tensile machine. However, for very
large deformation, the strain is no longer uniform and
the cross-section evolution versus the corrected experi-
mental strain (Ecor) has no direct local meaning. In order
to solve this problem, it can be possible to measure the
local strain with ESPI (Guelorget et al., 2006, 2009) or by
using digital image correlation (DIC) technique (Lu et al.,
1997; Xu et al., 2008; Bornert et al., 2009). This latter has
been used in the present paper. The DIC algorithm is based
on image processing. Firstly, a speckle pattern was created
on the specimen. As stated before, sample pictures were
registered during tensile test by cameras, and the results
were analysed using an open-source algorithm working
in Matlab� (Eberl, 2006). Results are presented in Fig. 12
and compared with the global strain obtained from exten-
someter and grips displacement. Comparison shows that
no difference is observed at small deformation, between
axial strains (parallel to load direction) measured using
both techniques. At about 25% and 77% of DIC strain, two
thresholds of strain can be observed. This enables to distin-
guish again several stages in the studied curve, quoted by
a, b, c and d. The first three correspond directly to those
previously defined (Figs. 10 and 11), describing different
behaviour of the material. Within the fourth stage d, strain
is increasing significantly. This stage occurs when the neck
is already created and could be then linked to an apparent
damage process. Differences between axial strains

measured by camera 1 and camera 2 remain small and
seem to correspond to errors on reference lengths used
for DIC strain calculations. Correlation parameters are pre-
sented in Table 2. The final result is an average of these two
values presented in Fig. 12. It can be outlined that local
strain increases until 250%.

4.3. Elastoplastic modelling and parameters optimization

Knowing the local experimental strain evolution (Eloc)
and the cross-section evolution within the necking area,
it is now possible to plot the dependence of macroscopic
stress as a function of macroscopic strain in the narrowest
part of the neck. The results are presented in Fig. 13. In this
graph is also reported the uncorrected stress versus global
strain (cross points) and the corresponding results
obtained during neutron diffraction at ISIS (square points).
It shows a good agreement between both experiments. The
dashed line, shown in Fig. 13, corresponds to the stress cor-
rected only for evolution of the local cross-section versus
global experimental strain (Ecor). As said before, this curve
has no physical meaning because this strain is not cor-
rected for localisation effects. Next curve (i.e. the dotted
line) corresponds to the corrected stress versus the local
strain determined using the DIC technique (Eloc), with an
average of cameras 1 and 2. Comparison with the uncor-
rected curves indicates that local stress and local strain
are the highest at the centre of the specimen. Indeed, the
global measurements are still meaningful at large defor-
mation: except the softening, they correspond to mechan-
ical behaviour far from the necking zone, whereas the local
curves correspond to real mechanical behaviour inside the
necking zone.

Fig. 11. Cross-section evolution during the tensile loading versus the
time. Three stages can be seen on these curves, denoted a, b, c
corresponding respectively to elastic, elastoplastic and elastoplastic with
necking behaviour. Full line corresponds to experimental measurements.
Dash line corresponds to theoretical evolution of the cross-section.

Fig. 12. Strain evolution during the tensile loading versus the time, using
extensometer and grips displacement (global strain) or DIC technique
(local strain) with average of camera 1 and 2 for both directions. Four
stages can be seen on these curves, denoted a, b, c and d corresponding
respectively to elastic, elastoplastic, elastoplastic with necking and strain
quickening probably mixing damage processes and necking effect. The
global strain corresponds to the machine strain. The local strain is a
statistical average over several closer couples of points used to calculate
the strain.



In order to obtain damage evolution, it is necessary to
compare experimental damage results with numerical
undamaged modelling. This has been performed consider-
ing several macroscopic elastoplastic behaviour. Models
have been chosen to take into account same phenomena
as in the previous self-consistent modelling. Model 1 is a
model using only isotropic hardening. This isotropic hard-
ening is the Prandtl–Reuss non-linear model. It can be
constructed on the following thermodynamics potentials
(Lemaitre and Chaboche, 2001; Hfaiedh, 2009):

q0w ¼
1
2

Eel : C : Eel þ MY

MY þ 1
Q � r

1
MY þ 1

U ¼
X

:
dEpl

dt
� R

dr
dt

P 0

f ¼ JII

X
D

� �
� R� rY

P ¼ �Uþ _k� f ;

ð6Þ

where w is the Helmholtz specific free energy, q0 is the
initial density, Eel is the elastic part of the macroscopic

Table 2
Correlation parameters.

Parameters Correlation surface (pixels2) Correlation surface (mm2) Distance between points used for local strain (mm)

Camera 1 20 � 20 0.62 � 0.62 0.23
Camera 2 20 � 20 0.66 � 0.66 0.25

Fig. 13. Stress versus strain: (a) whole curves, (b) magnifying part. Points correspond to uncorrected data from both experiences. The dash line corresponds
to the corrected stress including evolution of the local cross-section versus global strain. The full line corresponds to the corrected stress versus the
corrected local strain (from DIC technique).



strain tensor, Epl is the plastic part of the macroscopic
strain tensor,

P
is the macroscopic stress tensor, C is the

four rank macroscopic elastic stiffness tensor, MY is the
hardening exponent, Q is the hardening parameter, r is
the isotropic hardening variable, R is the thermodynamics
dual variable linked to r, U is the intrinsic dissipation, f is
the yield function, JII is the second invariant of the devia-
toric stress tensor

PD, Y is the initial yield stress,
Q

is
the whole dissipation potential and _k is the plastic
multiplier.

Model 2 is a model using isotropic hardening with a
hardening exponent MY = 1, but considering an additional
non-linear saturation term. It is based on the following
thermodynamics potentials, studied in (Lemaitre and
Chaboche, 2001; Hfaiedh, 2009):

q0w ¼
1
2

Eel : C : Eel þ 1
2

Q � r2

U ¼
X

:
dEpl

dt
� R

dr
dt
� 0

f ¼ JII

X
D

� �
� R� rY

P ¼ �Uþ _k� f þ H rð Þ

H rð Þ ¼ brR
2
¼ bQr2

2
¼ bR2

2Q
:

ð7Þ

The intrinsic dissipation U and the yield function f do
not change. The Helmholtz specific free energy wðEel; rÞ is
now a quadratic form. H(r) is a secondary potential corre-
sponding to a secondary yielding surface and describing
the hardening saturation, where b is the saturation
parameter.

The previous models have been computed in Matlab�,
for uniaxial loading. An inverse method has been per-
formed to identify the modelling parameters with exper-
imental data. The experimental curve corresponding to
global behaviour has been optimized with such a meth-
odology. Parameters for each model are summarized in
Table 3. We can point out that both models give a differ-
ence for the parameters and especially for the yield
stress. The results are presented in Fig. 14. Model 1 gives
a better fitting at the beginning of plasticity because of
the hardening exponent (1), whereas model 2 is better
at the end because of the saturation parameter. The
same approach has been done for the experimental curve
corresponding to the local behaviour within the necking
area. Because of the particular shape of this curve, only
the second model can be used to obtain a convergent
limit for the optimization. Parameters with model 2 are
summarized in Table 3. The results are presented in
Fig. 15. The model gives a good fitting up to large strains,
which will allow us to extract different damage curves.
Fig. 16 shows an example of an optimization error func-
tion obtained.

4.4. Macroscopic damage calculations and sensibility to
elastoplastic modelling

As in the case of mesoscopic scale the damage process
at macroscopic scale can be analysed comparing model
calculations with experimental results. On one hand, the
modelling results correspond to undamaged material

Table 3
Identification results for experimental curves.

Parameters Young modulus (GPa) MY Q (MPa) rY (MPa) b

Model 1 with global stress-strain data 200 2.888 9.449E + 02 418.7 0
Model 2 with global stress-strain data 200 1 3.201E + 03 610.3 6.766
Model 2 with local stress-strain data 200 1 1.426E + 03 671.8 1.839

Fig. 14. Stress versus strain. Global experimental data compared with several modelling for macroscopic elastoplastic behaviour.



because they were computed with a purely elastoplastic
model. On the other hand, the experimental data corre-
spond to the real damaged material. The applied macro-
scopic strain is the same for both cases. Moreover,
damaged state can be transformed theoretically to equiva-
lent undamaged state. Once more, with an energy equiva-
lence principle, the following equation can be used
(Saanouni, 1996; Lemaitre and Chaboche, 2001; Chaboche
et al., 2006):X
exp

¼gXmod �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dmacro

p
; ð8Þ

where fP
mod is the effective macroscopic stress for the

undamaged material, corresponding to the model stress,P
exp is the macroscopic stress in the damaged material,

corresponding to the measured stress. And Dmacro is the
macroscopic damage, taken as a scalar. This leads directly
to the following useful formula:

Dmacro ¼ 1�
P

expfP
mod

 !2

: ð9Þ

Applying this relation to the macroscopic results, the mac-
roscopic damage evolution versus macroscopic quantity
can be found. The calculated points for global strain data
are presented in Fig. 17(a). Mesoscopic results from ISIS
experiment are superimposed. Whatever the models, the
macroscopic damage has a very similar trend. Experimen-
tal uncertainties, calculated from the following formula,
have been also reported in Fig. 17(b).

DDmacro ¼ 2� 1�min Dmacroð Þj j �
D
P

exp

min
P

exp

� �			 			 � 0:02;

ð10Þ

where D means for the errors values. We can conclude that
the macroscopic damage curve seems to be not very

Fig. 15. Stress versus strain. Local experimental data compared with model 2, taking into account hardening saturation.

Fig. 16. Parameters optimisation for model 2, a global minimum has been found.



sensitive to chosen models, i.e. it corresponds to a real
physical damage behaviour.

Within the neck area, it is also possible to use the same
procedure of damage determination. This calculus corre-
sponds to local strain data and has been reported in
Fig. 18. The local macroscopic damage behaviour of the
studied duplex stainless steel presents a fuzzy threshold
of strain within the necking area. However, a critical dam-
age parameter can be identified at about 0.7 for a final
strain of 247%. The threshold values corresponding to
effective damage are quite different from stages obtained
above from geometrical observations (Fig. 12). This can
be explained through the quite complex necking effect
which masks physical damage. During tensile experiment,
several authors mention two stages of neck evolution: a
diffuse necking and a localised necking (Considère, 1885).
Stages c and d from Fig. 12 could correspond respectively
to these two stages. Optical observations and DIC
technique are only able to reveal a whole geometrical

contribution to the smoothing of the mechanical behav-
iour. Damage seems to be mainly effective within the stage
d.

5. Comparison between scales and discussion

Comparison between mesoscopic and macroscopic
scales can also be done. To link Sections 3 and 4 more eas-
ily, different stages were marked and named as showed in
Figs. 4, 5, 7, 11 and 12. At mesoscopic scale the evolution of
measured elastic strains (heRDihkl) during tensile loading of
the aged UR45 N sample can be divided into A, B, C and D
ranges as shown in Figs. 4 and 5 (more details on the
applied analysis are described in (Baczmański and Braham,
2004; Dakhlaoui et al., 2006). At the beginning (range A),
both phases are below the yield point and linear elastic
deformation occurs. Next, in the range B, a deviation from
linearity appears in the axial strain data for both phases,
approximately at the same stress level for all reflections,

Fig. 17. Damage versus global macroscopic strain: (a) damage at mesoscopic scale (from ISIS experiments) and at macroscopic scale using both models, (b)
magnifying part including errors.



indicating the beginning of plastic deformation in the
austenitic phase. The elastic strains of austenite reflections
increase more slowly than the elastic strains of ferrite
reflections. Second important ranges (marked by C and
D) are observed at a later stage of deformation, when all
curves undergo again a significant gradient change indicat-
ing plastic deformation in the ferritic phase. Within the
range C the dependence of heRDihkl vs. applied stress

P
RD

is approximately linear and confirmed by model predic-
tion, while in D region disagreement between model and
experiment occurs for the {2 1 1} reflection. Thus the range
D is defined for the deformation in which the effects of
damage are seen.

The a, b, c, d ranges marked in Figs. 10–12, 14 and 15
deal with macroscopic scale whose physical meanings
have been explain above in this article. The a, b, c parts
correspond respectively to the same stages as A, B, C.
However, the stage d is not similar to the stage D, because

of difficulties to separate necking and damage at macro-
scopic scale. In order to make quantitative comparisons,
two calibrations were made to avoid the necking influence
on the macroscopic stress; it can be seen in Fig. 3 and
Fig. 15 that maximal calibrated or corrected stresses are al-
most the same (1430 MPa) for both calibrations at the end
of each tensile test. As stated above, some assumptions
have been done. For example we consider no significant
heterogeneity inside the neck meaning that stress concen-
tration or triaxiality does not play a significant role. An-
other assumption deals with the choice of elastoplastic
self-consistent model which has been used mostly to inter-
pret results of diffraction experiments performed for small
deformation.

In Fig. 17(a), the macroscopic damage behaviour
extracted from curves uncorrected from necking phenom-
enon presents a threshold of strain at about 25.1%. More-
over a critical damage parameter can be identified at

Fig. 18. Damage versus local macroscopic strain: (a) extrapolated damage at mesoscopic scale from ISIS measurements and effective damage at
macroscopic scale occurring within the necking area, (b) magnifying part presenting only macroscopic damage.



about 0.9 for a final global strain of 41.5%. Whereas the
mesoscopic damage behaviour of this duplex steel presents
a threshold of strain at about 20.4%. Moreover a critical
damage parameter can be identified at about 0.53 for a fi-
nal strain of 35.9%. We see that span and shape of the both
curves are quite the same, but the difference takes place
with the threshold value. This could be explained by statis-
tical difference between specimens used in different exper-
iments (see Fig. 13(b) at macroscopic scale). The strain
interval within the damage occurs is quite the same for
both scales (DE = 15.5% at mesoscopic scale, DE = 16.4%
at macroscopic scale). At grain scale, the damage in the
{2 1 1} reflection of the ferrite phase occurs quite early.
At macroscopic scale, the damage and the necking eventu-
ally seems to occur at the same time, certainly initiated by
the mesoscopic {2 1 1} damage mechanism but resulting
from an averaged damage in the underneath scale. So,
comparison between mesoscopic and macroscopic scales
show good agreements: mesoscopic damage seems to be-
gin at the plan {2 1 1} just before first observation of effects
at the macroscopic scale. As said before, because of the
necking effect, the global strain does not lead directly to
effective damage. It means that previous analysis is only
qualitative. A quantitative measure of damage is shown
in Fig. 18 (where dmeso and Dmacro are defined in Eqs. (3)
and (9), respectively). According to the quite same behav-
iour between neutron (ISIS) and laboratory measurements
at macroscopic scale (Fig. 13(b)), we assume the same
behaviour at mesoscopic scale for each specimen used.
This allows also plotting a corrected dependence of dmeso

(at mesoscopic scale) vs. local macroscopic strain within
the neck, i.e. at large deformation (Fig. 18(a)). The most
interesting result concerns the threshold value. Whatever
the statistical difference between samples, we can con-
clude that mesoscopic damage along {2 1 1} slip system
seem to take place earlier than macroscopic damage and
does not contribute significantly to macroscopic behaviour
of the sample, at the beginning. The cumulated damage
from others slip systems occurs then only at the very end
of the tensile test, what is confirmed by neutron diffraction
(Fig. 4). The latter phenomenon is certainly responsible for
the macroscopic failure of the sample.

6. Conclusion

In the present work, we have seen that it is possible to
determine micromechanical effects of damage using neu-
tron diffraction measurements. Methodology is quite effi-
cient and easy due to the phase selectivity of the
diffraction technique. Moreover, a comparison with macro-
scopic measurements has been done. Nevertheless, it is
necessary to choose an elastoplastic model to interpret
the obtained results. Two elastoplastic models have been
performed with non-linear isotropic hardening. Compari-
son with the experimental data enables to identify param-
eters for each model, but not deciding the best one. This
has been done for several experimental stresses versus
strain curves (local and global). Errors have been also taken
into account to analyse results from the different macro-
scopic models. Macroscopic damage evolution can then
be calculated and compared with mesoscopic damage

obtained from neutron diffraction, especially for {2 1 1}
reflection in DSS. Doing more accurate measurements at
large deformation, it would be possible to determine dam-
age effects to others reflections in ferrite, but probably also
for austenitic phase. Then it could be possible to validate
some micromechanical model including damage scales
transition. The process used in the present paper is far from
being perfect because some assumptions can be discussed.
However, to our knowledge, it is the first attempt to ex-
tract damage from diffraction data and the first attempt
to extract damage simultaneously at macroscopic and
mesoscopic (grain) scales, in austeno-ferritic steels.
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