J. Laird, The law of parsimony, Monist, vol.29, issue.3, pp.321-344, 1919.

T. D. Bontly, Modified Occam's razor: Parsimony, pragmatics, and the acquisition of word meaning, Mind Lang, vol.20, issue.3, pp.288-312, 2005.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Mühlig, Handbook of Mathematics, 2007.

F. Albiac and N. J. Kalton, Topics in Banach Space Theory, 2006.

B. D. Rao and K. Kreutz-delgado, An affine scaling methodology for best basis selection, IEEE Trans. Signal Process, vol.47, issue.1, pp.187-200, 1999.

B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Comput, vol.24, issue.2, pp.227-234, 1995.

L. Fortnow, The status of the P versus NP problem, Commun. ACM, vol.52, issue.9, p.78, 2009.

E. J. Candès, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math, vol.59, issue.8, pp.1207-1223, 2006.

C. Ramirez, V. Kreinovich, and M. Argaez, Why 1 is a good approximation to 0 : A geometric explanation, J. Uncertain Syst, vol.7, issue.3, pp.203-207, 2013.

R. Mhenni, S. Bourguignon, and J. Ninin, Global optimization for sparse solution of least squares problems, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02066368

A. N. Tikhonov, On the solution of ill-posed problems and the method of regularization, Dokl. Akad. Nauk SSSR, vol.151, pp.501-504, 1963.

L. Jacques, L. Duval, C. Chaux, and G. Peyré, A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity, Signal Process, vol.91, issue.12, pp.2699-2730, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00588381

A. E. Hoerl and R. W. Kennard, Ridge regression: Applications to nonorthogonal problems, Technometrics, vol.12, issue.1, pp.69-82, 1970.

S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput, vol.20, issue.1, pp.33-61, 1998.

R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol, vol.58, issue.1, pp.267-288, 1996.

H. Fu, M. K. Ng, M. Nikolova, and J. L. Barlow, Efficient minimization methods of mixed 2 -1 and 1 -1 norms for image restoration, SIAM J. Sci. Comput, vol.27, issue.6, pp.1881-1902, 2006.

X. Ning, I. W. Selesnick, and L. Duval, Chromatogram baseline estimation and denoising using sparsity (BEADS), Chemometr. Intell. Lab. Syst, vol.139, pp.156-167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01330608

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol, vol.67, issue.2, pp.301-320, 2005.

C. De-mol, E. D. Vito, and L. Rosasco, Elastic-net regularization in learning theory, Complexity, vol.25, issue.2, pp.201-230, 2009.

W. J. Fu, Penalized regressions: the bridge versus the lasso, J. Comput. Graph. Stat, vol.7, issue.3, pp.397-416, 1998.

S. Foucart and M. Lai, Sparsest solutions of underdetermined linear systems via q -minimization for 0 < q ? 1, Appl. Comput. Harmon. Analysis, vol.26, issue.3, pp.395-407, 2009.

X. Chen, D. Ge, Z. Wang, and Y. Ye, Complexity of unconstrained L 2 -Lp minimization, Math. Programm, vol.143, issue.1-2, pp.371-383, 2012.

E. Moreau and J. Pesquet, Generalized contrasts for multichannel blind deconvolution of linear systems, IEEE Signal Process. Lett, vol.4, issue.6, pp.182-183, 1997.

A. Repetti, M. Q. Pham, L. Duval, E. Chouzenoux, and J. Pesquet, Euclid in a taxicab: Sparse blind deconvolution with smoothed 1 / 2 regularization, IEEE Signal Process. Lett, vol.22, issue.5, pp.539-543, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01328398

E. F. Beckenbach, An inequality of Jensen, Amer. Math. Monthly, vol.53, issue.9, pp.501-505, 1946.

R. R. Coifman and M. V. Wickerhauser, Entropy-based algorithms for best-basis selection, IEEE Trans. Inform. Theory, vol.38, issue.2, pp.713-718, 1992.

H. ?iki? and M. V. Wickerhauser, Information cost functions, Appl. Comput. Harmon. Analysis, vol.11, issue.2, pp.147-166, 2001.

J. Aczél and Z. Daróczy, On Measures of Information and their Characterizations, 1975.

A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, vol.143, 1979.

D. Leporini, J. Pesquet, and H. Krim, Best basis representations based on prior statistical models," in Bayesian Inference in wavelet based models, ser, Lect. Notes Comput. Sci, vol.141, pp.155-172, 1999.

P. Hoyer, Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res, vol.5, pp.1457-1469, 2004.

N. Hurley and S. Rickard, Comparing measures of sparsity, IEEE Trans. Inform. Theory, vol.55, issue.10, pp.4723-4741, 2009.

B. Ricaud and B. Torrésani, A survey of uncertainty principles and some signal processing applications, Adv. Comput. Math, vol.40, issue.3, pp.629-650, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00757450

A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi, Sparse ICA for blind separation of transmitted and reflected images, Int. J. Imag. Syst. Tech, vol.15, issue.1, pp.84-91, 2005.

R. A. Fisher, Moments and product moments of sampling distributions, Proc. Lond. Math. Soc, vol.2, issue.1, pp.199-238, 1930.

D. J. Field, What is the goal of sensory coding?, Neural Comput, vol.6, issue.4, pp.559-601, 1994.

O. Tanrikulu and A. G. Constantinides, Least-mean kurtosis: a novel higher-order statistics based adaptive filtering algorithm, Elec. Letters, vol.30, issue.3, pp.189-190, 1994.

D. Krishnan, T. Tay, and R. Fergus, Blind deconvolution using a normalized sparsity measure, Proc. IEEE Conf. Comput. Vis. Pattern Recogn, pp.233-240, 2011.

K. Nose-filho, C. Jutten, and J. M. Romano, Sparse blind deconvolution based on scale invariant smoothed 0 -norm, Proc. Eur. Sig. Image Proc. Conf, pp.461-465, 2014.

Y. Li, K. Lee, and Y. Bresler, Identifiability in blind deconvolution with subspace or sparsity constraints, IEEE Trans. Inform. Theory, vol.62, issue.7, pp.4266-4275, 2016.

X. Bresson, T. Laurent, and J. Von-brecht, Enhanced Lasso recovery on graph, Proc. Eur. Sig. Image Proc. Conf, 2015.

R. A. Wiggins, Minimum entropy deconvolution, Geoexploration, vol.16, pp.21-35, 1978.

G. A. Ferguson, The concept of parsimony in factor analysis, Psychometrika, vol.19, issue.4, pp.281-290, 1954.

J. F. Claerbout and F. Muir, Robust modeling with erratic data, Geophysics, vol.38, issue.5, pp.826-844, 1973.

D. Donoho, On minimum entropy deconvolution, Applied Time Series Analysis II, pp.565-608, 1981.

W. C. Gray, Stanford Exploration Project, 1978.

M. Castella, A. Chevreuil, and J. Pesquet, Convolutive mixtures, Handbook of Blind Source Separation. Independent Component Analysis and Applications, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00621959

L. Demanet and P. Hand, Scaling law for recovering the sparsest element in a subspace, Inf. Inference, vol.3, issue.4, pp.295-309, 2014.

X. Chang, Y. Wang, R. Li, and Z. Xu, Sparse k-means with ?/ 0 penalty for high-dimensional data clustering, Stat. Sin, vol.28, pp.1265-1284, 2018.

M. E. Lopes, Unknown sparsity in compressed sensing: Denoising and inference, IEEE Trans. Inform. Theory, vol.62, issue.9, pp.5145-5166, 2016.

Z. Zhou and J. Yu, Sparse recovery based on q-ratio constrained minimal singular values, vol.155, pp.247-258, 2019.

M. E. Lopes, Estimating unknown sparsity in compressed sensing, Proc. Int. Conf. Mach. Learn, 2013.

Y. Yu, N. Peng, and J. Gan, Concave-convex norm ratio prior based double model and fast algorithm for blind deconvolution, Neurocomputing, vol.171, issue.1, pp.781-787, 2016.

X. Jia, M. Zhao, Y. Di, P. Li, and J. Lee, Sparse filtering with the generalized lp/lq norm and its applications to the condition monitoring of rotating machinery, Mech. Syst. Signal Process, vol.102, pp.198-213, 2018.

X. Jia, M. Zhao, M. Buzza, Y. Di, and J. Lee, A geometrical investigation on the generalized lp/lq norm for blind deconvolution, 2017.

E. Chouzenoux, J. Pesquet, and A. Repetti, Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function, J. Optim. Theory Appl, vol.162, issue.1, pp.107-132, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00789970

R. Mazumder, J. H. Friedman, and T. Hastie, SparseNet: Coordinate descent with nonconvex penalties, J. Am. Stat. Assoc, vol.106, issue.495, pp.1125-1138, 2011.

I. W. Selesnick and . Bayram, Sparse signal estimation by maximally sparse convex optimization, IEEE Trans. Signal Process, vol.62, issue.5, pp.1078-1092, 2014.

S. Becker and M. J. Fadili, A quasi-Newton proximal splitting method, Proc. Ann. Conf. Neur. Inform. Proc. Syst, vol.2, pp.2618-2626, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00710900

P. L. Combettes and B. C. V?, Variable metric forward-backward splitting with applications to monotone inclusions in duality, Optimization, vol.63, issue.9, pp.1289-1318, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01158997

A. Repetti and Y. Wiaux, Variable metric forward-backward algorithm for composite minimization problems, 2019.

H. Attouch, J. Bolte, and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Programm, issue.137, pp.91-129, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00790042

L. Van-den-dries, Tame topology and o-minimal structures, 1998.

K. E. Tan, B. C. Ellis, R. Lee, P. D. Stamper, S. X. Zhang et al., Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness, J. Clin. Microbiol, vol.50, issue.10, pp.3301-3308, 2012.

R. Aebersold and M. Mann, Mass spectrometry-based proteomics, Nature, vol.422, issue.6928, pp.198-207, 2003.

A. Scalbert, L. Brennan, O. Fiehn, T. Hankemeier, B. S. Kristal et al., Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research, Metabolomics, vol.5, issue.4, pp.435-458, 2009.

N. Mano and J. Goto, Biomedical and biological mass spectrometry, Anal. Sci, vol.19, issue.1, pp.3-14, 2003.

P. Schmitt-kopplin and M. Frommberger, Capillary electrophoresismass spectrometry: 15 years of developments and applications, Electrophoresis, vol.24, issue.2223, pp.3837-3867, 2003.

S. A. Schwartz, R. J. Weil, M. D. Johnson, S. A. Toms, and R. M. Caprioli, Protein profiling in brain tumors using mass spectrometry, Clin. Cancer Res, vol.10, issue.3, pp.981-987, 2004.

A. Panchaud, M. Affolter, and M. Kussmann, Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects, Proteomics, vol.75, issue.12, pp.3546-3559, 2012.

M. W. Senko, J. P. Speir, and F. W. Mclafferty, Collisional activation of large multiply charged ions using Fourier transform mass spectrometry, Anal. Chem, vol.66, issue.18, pp.2801-2808, 1994.

M. W. Senko, S. C. Beu, and F. W. Mclafferty, Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions, J. Am. Soc. Mass Spectrom, vol.6, issue.4, pp.229-233, 1995.

A. Cherni, E. Chouzenoux, and M. Delsuc, Fast dictionary-based approach for mass spectrometry data analysis, Proc. Int. Conf. Acoust. Speech Signal Process, pp.816-820, 2018.

W. J. Rey, Introduction to Robust and Quasi-Robust Statistical Methods, 1983.

E. Chouzenoux, A. Jezierska, J. Pesquet, and H. Talbot, A majorize-minimize subspace approach for 2 -0 image regularization, SIAM J. Imaging Sci, vol.6, issue.1, pp.563-591, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00789962

E. Soubies, L. Blanc-féraud, and G. Aubert, A continuous exact 0 penalty (CEL0) for least squares regularized problem, SIAM J. Imaging Sci, vol.8, issue.3, pp.1607-1639, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01102492

E. Soubies, L. Blanc-féraud, and G. Aubert, New insights on the optimality conditions of the 2 -0 minimization problem, J. Math. Imaging Vision, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02144528

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, vol.40, issue.1, pp.120-145, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00490826

N. Komodakis and J. Pesquet, Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems, IEEE Signal Process. Mag, vol.32, issue.6, pp.31-54, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01010437

N. Pustelnik, C. Chaux, and J. Pesquet, Parallel proximal algorithm for image restoration using hybrid regularization, IEEE Trans. Image Process, vol.20, issue.9, pp.2450-2462, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00826121

D. R. Hunter and K. Lange, A tutorial on MM algorithms, Am. Stat, vol.58, issue.1, pp.30-37, 2004.