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Abstract 

 

Dynamin 2 (DNM2) is involved in endocytosis and intracellular membrane trafficking 

through its function in vesicle formation from distinct membrane compartments. During the 

last decade, several studies pointed out an important role of DNM2-dependent trafficking in 

turnover of focal adhesions which represent a physical link between the extracellular matrix 

and the intracellular actin cytoskeleton, and a platform for several signaling pathways. Here, 

we review the involvement of DNM2 in structural and functional aspects of the focal 

adhesion sites. Mutations in the DNM2 gene cause two hereditary neuromuscular disorders; 

dominant centronuclear myopathy and Charcot-Marie-Tooth peripheral neuropathy. Potential 

impairment of focal adhesions as a pathophysiological hypothesis in DNM2-related human 

diseases is discussed.  
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Dynamin 2 (DNM2) is a ubiquitously expressed large GTPase, involved in various 

membrane trafficking events. At the plasma membrane, DNM2 is involved in the formation 

and release of vesicles for the clathrin-mediated [1] and clathrin-independent endocytosis [2, 

3]. DNM2 also participates in the formation of transport vesicles from the endosomal system 

and the Golgi apparatus [4, 5]. Moreover, several studies have demonstrated that DNM2 

directly interacts with the microtubule [1, 6] and actin cytoskeleton [7, 8]. DNM2 is a 98 kDa 

protein composed of a N-terminal catalytic GTPase domain, a middle domain involved in 

DNM2 self-assembly, a pleckstrin homology domain (PH) which interacts with membrane 

phosphatidylinositol 4,5-bisphosphate (PI4,5P2) and therefore is involved in the targeting of 

dynamin to membranes [9], a GTPase effector domain regulating the GTPase activity, and a 

C-terminal proline rich domain (PRD) containing multiple Src homology 3 (SH3) binding 

motifs engaged in protein-protein interactions [10]. Heterozygous mutations in the DNM2 

gene cause rare forms of the Charcot-Marie-Tooth peripheral neuropathy (CMT) [11] and 

autosomal dominant centronuclear myopathy (CNM) [12]. There is no treatment for DNM2-

related diseases and the pathophysiological mechanisms are still largely unknown. 

The focal adhesions (FAs) represent the major site of cell attachment to the extracellular 

matrix (ECM) where a structural and functional link between the ECM and the intracellular 

actin cytoskeleton occurs. FAs are macromolecular complexes composed of transmembrane 

receptors including integrins, structural proteins including vinculin, talin, and -actinin, and 

signalling proteins such as Focal adhesion kinase (FAK) [13]. FAs act in cell adhesion and 

migration and dynamics of FA assembly-disassembly is a crucial process to achieve these 

functions. The molecular mechanisms leading to FA assembly have been well characterized. 

In contrast, FA disassembly mechanisms are not fully understood. During the last decade, a 

role of DNM2 in FAs disassembly emerged. The purpose of this review is to summarize the 
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studies showing the role of DNM2 as a regulator of FAs dynamics. In addition, we discuss the 

hypothesis of FA dysfunction in the DNM2-related human diseases. 

 

DNM2-mediated endocytosis at FAs 

 

The first link between dynamin and components of the FA was reported in 1995 in human 

monocyte primary cultures stimulated by the macrophage colony-stimulating factor (M-CSF) 

[14]. Ligand-activated M-CSF receptor recruits a protein complex including dynamin, FAK 

and the adaptor protein Grb2 (growth factor receptor-bound protein-2). Interestingly, dynamin 

is phosphorylated and co-immunoprecipitated with activated FAK in M-CSF-treated 

monocytes suggesting a regulation of dynamin function by FAK that may contribute to 

receptor internalization. FAK is a non receptor tyrosine kinase involved in the signaling 

pathway of several agonist-activated membrane receptors including integrins and is mainly 

expressed at the FA. In addition, FAK is a key element of the regulation of FA disassembly 

[15] and actin polymerization by phosphorylation of downstream targets [16]. This first 

demonstration of DNM2 association with FAK had strongly suggested a role for DNM2 at the 

adhesion sites. 

In cultured cells, microtubule depolymerisation by nocodazole results in FA disassembly. 

After washing the drug, microtubules grow, contact the FAs and lead to FA disassembly [17]. 

Using this microtubule-induced FA disassembly assay, Ezratty and collaborators showed that 

disassembly is independent of Rho- and Rac-GTPase activities but dependent on FAK-

induced recruitment of DNM2 at the FA via its PRD domain [18]. Before FA disassembly, 

DNM2 colocalizes with FA and co-immunoprecipitation studies suggest that DNM2 interacts 

with the phosphorylated, i.e. activated, form of FAK (p-FAK). By the development of a 

phospho-antibody against DNM2’s tyrosine 231, Wang and collaborators further defined the 
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DNM2 regulation occurring during FA turnover [19]. The authors showed that activation of 

Src is responsible for the phosphorylation of DNM2 at the FA where the phosphorylated 

DNM2 (pDNM2) interacts directly with FAK. Consequently, the formation of a pDNM2-

FAK-Src complex promotes 1-integrin endocytosis and FA disassembly [19]. Such Src-

mediated phosphorylation of DNM2 was already shown to induce endocytosis [20]. Inhibition 

of the DNM2 activity, using dominant negative DNM2-K44E mutant and DNM2-siRNA, 

inhibits FA disassembly [18] and impairs cell migration [18, 21-23] confirming the central 

role of DNM2-dependent processes in FA disassembly. 

Additional data strongly suggested that clathrin-mediated endocytosis is the main route 

involved in the DNM2-dependent endocytosis of FA components leading to FA disassembly. 

A rapid accumulation of clathrin occurs in a microtubule-dependent manner as FAs disappear 

[21] and clathrin depletion impairs microtubule-induced FA disassembly [21, 22] and cell 

migration [18, 21-23] as shown for DNM2. Clathrin- and DNM2-mediated endocytosis 

targets specifically 1-integrin engaged in extracellular matrix interaction towards the 

endosomal recycling pathway [21-23]. Among the clathrin adaptors responsible for clathrin 

recruitment to endocytic pits, endocytosis of 1-integrin at the FA involves either Dab2 

(disabled 2) and ARH (autosomal recessive hypercholesterolemia protein) in NIH-3T3 cells 

[21] or AP2 (adaptor-related protein complex 2) and Dab2 in the HT1080 cell line [22]. These 

apparent differences suggest a cell-specific combination of clathrin adaptors for integrin 

endocytosis and FA disassembly. Even if clathrin-mediated endocytosis seems to be the major 

route for integrin endocytosis leading to FA disassembly, involvement of DNM2- and 

caveolin-dependent endocytosis was reported [24, 25] suggesting that caveolin-mediated 

endocytosis may also participate in the FA disassembly. Further studies will be necessary to 

better define if clathrin- or caveolae-dependent endocytosis pathways could be exploited in a 

cell-specific manner or if they both coexist in a single cell. 
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DNM2 targeting to FAs 

 

In addition to its interaction with FAK, DNM2 may be targeted to the FA by interacting 

with syndecan 4 mediated by the PH domain of DNM2 [26]. Syndecan 4 is a heparan sulphate 

proteoglycan involved in the formation of FAs and actin stress fibres [27, 28]. It regulates 

FAK activity by increasing FAK phosphorylation in a Rho-dependent manner [29], and 

participates in integrin internalization [25]. In NIH-3T3 cells treated with lisophosphatidic 

acid to induce FA formation, DNM2 and syndecan 4 are both recruited and interact at FAs 

[26]. This study shows that DNM2 is recruited at the FA as soon as FAs are formed and 

engaged via ECM interaction. Even if syndecan 4 do target DNM2 to FAs, syndecan 4 

endocytosis itself occurs via a clathrin- and DNM2-independent process [30] showing a 

tightly regulated sorting of FA components targeted to the clathrin- and DNM2-associated 

endocytic vesicles.  

DNM2 may also be targeted at FAs by interaction via its PH domain with the PI4,5P2 

enriched at the FA. In fact, local production of this phosphoinositide which also interacts with 

syndecan 4 [31], may increase recruitment and activation of DNM2 and the endocytic 

machinery leading to vesicle formation [32]. Interestingly, it was shown that FA disassembly 

is dependent on the type 1 phosphatidylinositol phosphate kinase beta (PIPK) located at the 

FA before disassembly which locally produces the PI4,5P2 allowing recruitment of clathrin, 

clathrin adaptors (Dab2 and AP2) and DNM2 and formation of the FAK-DNM2 complex 

[23]. Concerning clathrin and adaptors, the cytoplasmic domain of -integrins contains NPXY 

motif [33] necessary for their recruitment. However, an interesting possibility is that clathrin 

could be targeted to the FA by interacting with other components of FAs. Indeed, -actinin 
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and vinculin, two components of the integrin-based adhesion sites [13], have been shown to 

interact directly with clathrin heavy chain [34, 35]. 

 

DNM2-dependent mechanisms in FA regulation 

 

Processes involved in the turnover of FA components include the microtubule-mediated 

regulation of FA dynamics [17, 36] leading to DNM2-dependent integrins endocytosis as 

discussed earlier. FA turnover also includes proteolysis by calpains [37, 38] and protein 

dephosphorylation by phosphatases [39]. The importance of calpain 2, a calcium-dependant 

protease, was shown for the proteolysis of talin and the subsequent disassembly of the 

macromolecular complexes also including paxilin and vinculin [37]. More recently, calpain 2-

mediated proteolysis of FAK was also shown to contribute to the regulation of FA turnover 

[38]. FAK is composed of a N-terminal FERM domain (F for 4.1 protein, E for ezrin, R for 

radixin and M for moesin), which interacts with DNM2 [19], the catalytic kinase domain 

containing the binding site for Src and a FAT (focal adhesion targeting) domain involved in 

the recruitment of FAK to the FA [40]. The cleavage site of FAK by calpain 2 was mapped at 

the serine residue in position 745 located between the kinase and FAT domains [38]. The 

consequences of calpain-mediated proteolysis on the FAK-Src-DNM2 complex and on the 

DNM2-dependent FA disassembly were not investigated until now. It is tempting to speculate 

that the proteolysis contributes to the activation of the clathrin and DNM2-mediated 

endocytosis maybe by allowing an increased polymer formation and GTPase activity of 

DNM2. 

Another mechanism of DNM2-dependent regulation of FA emerged from studies 

performed on podosomes, a transient adhesion site specific to motile cells [41]. In osteoclasts, 

DNM2 is recruited at podosomes by the activated phosphorylated form of Pyk2; i.e. a focal 
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adhesion kinase highly homologous to FAK, which in turn induces a negative feedback loop 

leading to the dephosphorylation and inactivation of Pyk2 [42]. The DNM2-dependent 

dephosphorylation of FAK was also reported [42]. Recently, the mechanism of the DNM2-

dependent Pyk2 dephosphorylation was demonstrated to be mediated by the tyrosine 

phosphatase PTP-PEST leading to the arrest of Pyk2 downstream signaling [43]. PTP-PEST 

is known to dephosphorylate several components of FAs [44, 45]. Eleniste and collaborators 

showed that dynamin’s GTPase activity is required for the formation of the DNM-Pyk2-PTP 

complex [43]. The recruitment of the PTP-PEST phosphatase by DNM2 when its GTPase 

activity increases may be a more general mechanism at the FAs resulting to the 

dephosphorylation of FA components, inactivation of signaling cascades, disengagement of 

integrins and finally FA disassembly. Further studies will be necessary to better define the 

temporal regulation and coordination of these different processes. For example, it was already 

demonstrated that calpain is required for microtubule-mediated FA disassembly [46] showing 

that FA disassembly is an intricately regulated process. 

In addition to its role in endocytosis, DNM2 is a well known regulator of the actin network 

dynamics [47-49]. One can hypothesize a wider function of DNM2 at the FA besides its role 

in endocytosis of FA components. In particular, interactions of DNM2 with several other 

proteins need to be further characterized at the FA. DNM2 interacts with Cbl (Casitas B-

lineage Lymphoma) in podosomes of osteoclasts [50] and with CAP (Cbl-associated protein) 

[51] involved in remodeling of the actin cytoskeleton at adhesion sites [52, 53] suggesting that 

DNM2 may also participate in actin network dynamics at the FA before disassembly. It was 

also shown that the CAP-DNM2 complex negatively regulates receptor-mediated endocytosis 

[51]. A similar complex may occur at FAs and inhibit DNM2 activity before disassembly 

signaling occurs. 
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Figure 1 summarizes the known interactions of DNM2 with FA components including 

FAK, PTP-PEST phosphatase and syndecan 4. The available data demonstrate that DNM2 is 

per se a component of FA and that the endocytic machinery including clathrin adaptors, 

clathrin, and DNM2 probably start being recruited at the FA during their formation and 

maturation by interaction with specific FA components. The subsequent clathrin- and DNM2-

mediated endocytosis of FA components, which recycle back to the plasma membrane [54], 

allows turnover of FA. 

 

Relevance in DNM2-related human diseases 

 

Mutations in the DNM2 gene cause rare forms of Charcot-Marie-Tooth peripheral 

neuropathy (CMT) [11]. Among the hypotheses proposed to explain the CMT pathogenesis, 

impaired intracellular transport is of particular interest due to the number of CMT genes 

involved in intracellular trafficking [55]. Given that CMT-related DNM2 mutations impaired 

clathrin-mediated or clathrin-independent endocytosis [6, 11, 56, 57], a defect in integrin 

internalization and FA turnover may participate in the pathomechanisms of the disease. In 

agreement with this hypothesis, CMT-related DNM2 mutants inhibit clathrin-mediated 

endocytosis in motor neuronal cells and Schwann cells and strongly impaired myelination 

[58]. In this study, over-expression of the K562E CMT-mutant in rat primary Schwann cells 

increases the plasma membrane content of 1-integrin probably by endocytosis impairment. 

On the other hand, integrin-based adhesion sites play important roles in the regulation of cell 

surface receptor, neurotransmitter receptors, and calcium signaling in neurons [59]; several 

processes potentially impaired by DNM2 mutation. 

Mutations in the DNM2 gene also cause autosomal dominant centronuclear myopathy 

(CNM) [12], a slowly progressive congenital myopathy. The mature skeletal muscle fibres 
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have two distinct FA types: the integrin- and the -dystroglycan (-DG)-mediated adhesions 

[60]. The -DG is an integral membrane protein included in the dystrophin-associated 

glycoprotein complex (DGC) which links extracellular laminin and ECM proteins to the 

intracellular actin cytoskeleton. The two types of FA are concentrated at two specialized 

adhesives structures of muscle fibres; i.e. the muscle-tendon attachment at myotendinous 

junctions and the muscle-ECM attachment at costameres along the fibres. Due to muscle 

intrinsic functional properties, these two adhesives structures have a crucial protective role 

against contractile damages during contraction and relaxation cycles and are essential for 

maintaining integrity of sarcomeres; i.e. the contractile unit of the muscle fibres. Several 

muscular dystrophies are linked to mutations in components of the two FA types [61]. In 

muscle, integrin-mediated adhesion sites are dynamic structures, crucial for structural 

integrity [62], which require clathrin-mediated endocytosis for turnover [63]. The first link 

between CNM and adhesion sites was recently demonstrated in drosophila [64]. MTM1, a 

phosphoinositide phosphatase mutated in the X-linked recessive form of CNM [65] 

participates in maintenance of muscle attachment sites through a role in integrin trafficking at 

myotendinous junctions and FAs [64]. Given that CNM-related DNM2 mutations may impair 

clathrin-mediated and clathrin-independent endocytosis [56, 57, 66], future studies will be 

necessary in order to determine if similar impact may be due to DNM2 mutations. 

One important question is to understand the tissue-specific impact of DNM2 mutations on 

skeletal muscle or peripheral nervous system. In cultured neurons, DNM2 interacts with 

ArgBP2 (Arg and Abl Binding Protein 2) and its brain-specific isoform nArgBP2; two 

proteins involved in the regulation of actin cytoskeleton at the cell adhesion sites [67]. 

Interaction of DNM2 with cell type-specific FA components may participate to the tissue-

specific impact of DNM2 mutations. Alternatively, one may hypothesize a cell-type specific 

effect of distinct DNM2 mutants. Indeed, CMT-mutants but not CNM-mutants impair 
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endocytosis in peripheral nerve model [58]. Similar comparative studies on FA disassembly 

using skeletal muscle and peripheral nerve models will be necessary for deciphering the 

tissue-specific impact of DNM2 mutations. 

 

Conclusions 

 

Consistent data now exist to show the importance of DNM2 at the cell-matrix adhesion 

sites. By interacting with syndecan 4 and FAK, DNM2 is per se a component of the focal 

adhesion sites. DNM2 is probably recruited early during the FA formation process and may 

regulate actin dynamics. In addition, DNM2 plays a central role in FA disassembly through 

the link with four disassembly signaling: i) DNM2 is a regulator of the microtubule 

cytoskeleton, ii) Disassembly is dependent on the activity of the PIPK which locally 

produces PI4,5P2 which binds DNM2, iii) Calpain-dependent proteolysis acts on FAK which 

interacts with DNM2, and iv) DNM2 interacts with PTP-PEST, a phosphatase involved in FA 

disassembly. These data highlight a new promising pathophysiological hypothesis that should 

be further studied in DNM2-related human diseases. 
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Legends 

 

Figure 1. Summary of the DNM2 interactions with FA components. 

A. Several processes may participate to the recruitment of DNM2 to FA: i) interaction with 

FAK in a DNM2-FAK-Src complex, ii) interaction with Syndecan 4, iii) interaction with the 

PTP-PEST phosphatase, and iv) interaction with PI4,5P2 enriched at the FA. Clathrin 

adaptors and clathrin heavy chain may be also targeted to the mature FA by interacting with 

integrin heterodimers, vinculin and -actinin. Under disassembly signaling, the calcium-

dependent proteolysis by calpain cleaves FAK and other FA components. In addition, the 

production of PI4,5P2 by PIPK may increase DNM2 membrane recruitment. On the other 

hand, the dephosphorylation of FA components by phosphatases involves the PTP-PEST 

phosphatase which interacts with DNM2. B. The combination of the four disassembly stimuli 

(pink boxes in A) activates the clathrin- and DNM2-mediated endocytosis and recycling of 

FA components. The figure is focused on DNM2-related processes and consequently, 

additional interactions between FA components have been omitted. 
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