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DYNAMICAL SYSTEMS OF PROBABILISTIC ORIGIN:

GAUSSIAN AND POISSON SYSTEMS

ÉLISE JANVRESSE, EMMANUEL ROY AND THIERRY DE LA RUE

Outline

Glossary 1
1. Definition of the subject 3
2. Introduction 4
3. From probabilistic objects to dynamical systems 4
3.1. Gaussian systems 4
3.2. Poisson suspensions 5
4. Spectral theory 6
4.1. Basics of spectral theory 6
4.2. Fock space 7
4.3. Operators on a Fock space 7
4.4. Application to Gaussian and Poisson chaos 7
5. Basic ergodic properties 8
5.1. Ergodicity and mixing 8
5.2. Entropy, Bernoulli properties 9
6. Joinings, factors and centralizer 10
6.1. Gaussian factors and centralizer 10
6.2. Poisson factors and centralizer 12
6.3. Gaussian and Poisson self-joinings 13
7. GAGs and PAPs 15
7.1. From Foias-Stratila to GAGs 15
7.2. Poissonian analog of Foias-Stratila Theorem and PAPs 16
7.3. Properties of GAGs and PAPs 17
8. Future Directions 17
References 18

Glossary

Centralizer. The centralizer of an invertible measure-preserving transformation T
is the set C(T ) of all invertible measure-preserving transformations on the same
measure space which commute with T .

(Simple) Counting measure. A counting measure on a measurable space (X,A ) is
a measure of the form

∑
i∈I δxi

where (xi)i∈I is a countable family of elements of
X . The counting measure is said to be simple if xi 6= xj whenever i 6= j.
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Gaussian process, Gaussian space. A Gaussian process is a family of real-valued
random variables defined on a probability space (Ω,P), such that any linear combi-
nation of finitely many of these random variables is either 0 or normally distributed.

A real linear subspace of L2(P) is a Gaussian space if any nonzero random
variable it contains is normally distributed. The closure of the linear real subspace
spanned by a Gaussian process is a Gaussian space.

Infinite divisibility. Let (G,G,+) be a measurable Abelian semigroup, i.e. the ad-
dition

(G×G,G ⊗ G) → (G,G)

(g1, g2) 7→ g1 + g2

is commutative and measurable. The convolution ν ∗ ρ of probability measures ν
and ρ on (G,G) is well defined as the image of ν ⊗ ρ by the addition.

A probability measure ν on (G,G) is infinitely divisible if for any k ≥ 1, there
exists a probability measure νk on (G,G) such that

ν = (νk)
∗k.

Kronecker subset of the unidimendional torus. A subset K of the unidimendional
torus T = R/Z is a Kronecker set if any continuous function f : K → S1 is a
uniform limit of characters: there exists a sequence (kn) ⊂ Z such that

max
t∈K

∣∣f(t)− ei2πknt
∣∣ −−−−→
n→∞

0.

Any finite set of rationally independent elements of T is a Kronecker set, but there
exist also perfect Kronecker subsets of T (see for example [2, Appendix 4]).

Point process. A point process N on (X,A ) is a random variable taking values in
the space X∗ of counting measures on (X,A ). It is said to be simple if N is almost
surely a simple counting measure.

The measure A 7→ E [N (A)] on (X,A) is called the intensity of N .
A point process of intensity µ is said to have moment of order k ≥ 1 if, for all

A ∈ A with 0 < µ(A) <∞,

E

[
N (A)k

]
<∞.

Poisson point process. Let (X,A , µ) be a sigma-finite measure space. A Poisson
point process of intensity µ on X is a point process N on X , such that

• For any set A ∈ A with 0 < µ(A) <∞, N(A) is a Poisson random variable
of parameter µ (A).
• For any k ≥ 1, for any collection (A1, . . . , Ak) in A , the random variables
N(Ai), 1 ≤ i ≤ k, are independent.

A Poisson process is simple if and only if its intensity is a continuous measure.

Self-joining and associated Markov operator. A self-joining of the probability-preserving
dynamical system (X,A , µ, T ) is a probability measure ν on the Cartesian square
(X ×X,A ⊗A ) such that

• both marginals of ν are equal to µ,
• ν is T × T -invariant.
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When ν is such a self-joining, it gives rise to a bigger probability-preserving dy-
namical system (X×X,A ⊗A , ν, T ×T ) in which we see two copies of the original
system as factors (via the projections on the two coordinates).

To a self-joining ν there corresponds a unique Markov operator Φν (i.e. Φν is
a positive operator on L2 (µ) with Φν1 = 1) that commutes with the Koopman
operator UT (i.e. the unitary operator defined on L2 (µ) by UTh := h ◦ T ), and
which is characterized by the following relation: for any A and B in A :

ν (A×B) = 〈1A,Φν1B〉L2(µ) .

Stationary process. A stationary process is a sequence (ξn)n∈Z of random variables
taking values in a set V , such that for each k ∈ Z and any i1 < · · · < id ∈ Z, the
distribution of (ξi1+k, . . . , ξid+k) is the same as the distribution of (ξi1 , . . . , ξid). In
other words, the process is stationary if its distribution is shift-invariant on V Z.

Spectral measure. Let U be a unitary operator on a Hilbert space H . For any
h ∈ H , there exists a finite positive measure σh on the unidimendional torus, called
the spectral measure of h, satisfying for all k ∈ Z

(1) σ̂h(k) :=

∫

T

e−i2πkt dσh(t) = 〈h, U
kh〉.

When T is an invertible measure-preserving transformation on a measure space
(X,A , µ), this applies in particular to the associated Koopman operator UT . In
the case of a square integrable stationary process (ξn)n∈Z (see definition below),

its distribution being shift-invariant, the covariances E[ξ0ξk] of the process can
be interpreted as scalar products 〈h, Ukh〉, where h is the projection on the 0-
coordinate of the process, and U is the Koopman operator associated to the shift.
Thus the spectral measure σ of the process satisfies, for all k ∈ Z,

(2) σ̂(k) = E[ξ0ξk].

In the case of a real-valued stationary process, the covariances are real and this
measure σ must be symmetric (invariant by t 7→ −t).

1. Definition of the subject

Measure-theoretic dynamical systems are systems of the form (X,A , µ, T ) where
(X,A ) is a standard Borel space, µ is a sigma-finite measure on (X,A ) and T :
X → X is an invertible measurable transformation preserving µ. In many cases,
µ is a probability measure, and the theory of probability-preserving dynamical
systems has considerably developped since the mid 20-th century. In the immense
zoo of examples that have caught the interest of mathematicians, very interesting
and fundamental families are directly issued from probability theory. The purpose
of this article is to present two of them: systems arising from Gaussian processes,
and systems constructed from Poisson point processes. Although these two families
are of different nature, and each one has to be addressed with specific techniques, a
good reason to present them in parallel is that they share striking common features.
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2. Introduction

As we all know, Gaussian distribution plays a prominent role in probability
theory and in mathematics in general. It comes with a very rich structure, interest-
ing objects and results, that fueled intensive studies by countless mathematicians.
Therefore, it comes as no surprise that Gaussian distribution had its declination
in ergodic theory, in the form of stationary Gaussian processes, and received much
attention over the years. Their basic ergodic properties started to be studied in the
middle of the 20-th century, especially by Ito [14], Maruyama [31] and Fomin [8].
As we can completely control their spectral structure with a relatively simple ob-
ject which is the spectral measure of the generating process, Gaussian systems have
proved to be a very rich source of examples of measure-theoretic dynamical systems
with specific properties (see e.g. the examples given by Girsanov [11], Totoki [52]
and Newton [36]).

The Poisson point process has a long history. It was first considered on the line
to represent the occurrences of independent events over time. The idea of letting
the random points move to model the behaviour of a large number of particles [6, 5]
led to study the Poisson point process on more general spaces. The first formaliza-
tion of Poisson suspensions, due to Goldstein, Lebowitz and Aizenman in 1975 [12],
was also motivated by questions of statistical physics. Simultaneously and inde-
pendently, Vershik, Gel’fand and Graev [53] considered the action of a group of
transformations on configurations of random points. This initiated the system-
atic study of ergodic properties of these systems, in particular by Marchat [30],
Grabinsky [13] and Kalikow [22].

It is worth mentionning Maruyama [33] again who used both Poisson processes
and Gaussian stationary processes as a tool to represent any infinitely divisible sta-
tionary processes and obtained results on ergodicity and mixing for those processes.

3. From probabilistic objects to dynamical systems

3.1. Gaussian systems.

Stationary Gaussian process. We only consider here Gaussian processes (ξn)n∈Z
which are centered : E[ξn] = 0 for each n. A fundamental property of Gaussian
processes is the fact that their distribution law is completely determined by the
covariances E[ξiξj ]. In particular, such a process is stationary if and only if the
covariances satisfy, for all i, j ∈ Z, E[ξiξj ] = E[ξi−jξ0].

In the stationary case, the law of the Gaussian process is therefore completely
determined by its spectral measure, which is a symmetric positive finite measure σ
on T whose Fourier coefficients are given by (2).

Standard Gaussian systems. Conversely, given a symmetric positive finite measure
σ on T, there exists a unique (up to equality in distribution) centered stationary
Gaussian process whose covariances are given by (2)1. The distribution µσ of this
stationary Gaussian process is shift-invariant, thus we can consider the probability-
preserving dynamical system

Xσ :=
(
R

Z,B(RZ), µσ, S
)

where S denotes the shift map: (xn)n∈Z 7→ (xn+1)n∈Z.

1In some sense, this ability of realizing any spectral measure characterizes Gaussian processes
(see Section 7.1).
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A standard Gaussian system is a probability-preserving dynamical system (X,B, µ, T )
isomorphic to Xσ for some symmetric positive finite measure σ on T. In other
words, (X,B, µ, T ) is a standard Gaussian system if the sigma-algebra B is gen-
erated by some Gaussian process (ξn)n∈Z with ξn = ξ0 ◦ T

n for each n ∈ Z.
(Multiplying if necessary the process (ξn) by a constant, we can always assume
that E[ξ20 ] = 1, and in this case the spectral measure σ is a probability measure.)

The classical theory of Gaussian systems studies the above-mentioned standard
Gaussian systems. But following [25], it is useful to introduce also the generalized
Gaussian systems as probability-preserving dynamical systems (X,B, µ, T ) satis-
fying the following more general property: there exists a closed real subspace H of
L2(µ) such that

• H is a Gaussian space;
• H is invariant by UT (in particular, the stationary process (ξ ◦ T n)n∈Z is
Gaussian);
• the sigma-algebra generated by H is B.

Geometric interpretation. A geometric model for a standard Gaussian dynamical
system is proposed in [45] as a transformation of a complex Brownian motion path.
More precisely, let B = (Bt)0≤t≤1 be a complex Brownian motion with B0 = 0.
For any given probability measure γ on T (identified here with [0, 1[), let us define,
for 0 ≤ s < 1

θ(s) := inf{x ∈ [0, 1[: γ([0, x]) ≥ s}.

Now we consider a new process B̃ = (B̃t)0≤t≤1 given by

(3) B̃t :=

∫ t

0

ei2πθ(s) dBs.

Then B̃ is also a complex Brownian motion with the same law as B, and this enables

us to define a transformation Tγ : B 7→ B̃ of the canonical space C0([0, 1],C) of
the Brownian motion, preserving the Wiener measure µW . This transformation is
invertible (its inverse being given by a similar formula, where we replace ei2πθ(s) by
e−i2πθ(s)). Then we define the real valued stationary process (ξp)p∈Z by

ξp := ℜe(B1 ◦ T
p
γ ).

It turns out that (ξp)p∈Z is a stationary Gaussian process, whose spectral measure
σ is the symmetrized of γ, defined for each measurable subset A of T by

σ(A) =
γ(A) + γ(−A)

2
.

Moreover, if σ is continuous, (ξp)p∈Z generates the same sigma-algebra as (Bt)0≤t≤1,
and the measure-preserving system

(
C0([0, 1],C), µW , Tγ

)
is a Gaussian dynamical

system isomorphic to Xσ.

3.2. Poisson suspensions.

Poisson point process. Let (X,A ) be a standard Borel space, and let (X∗,A ∗) be
the canonical space of point processes on (X,A ), where

• X∗ is the set of counting measures on X ,
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• A ∗ is the sigma-algebra generated by the maps (NA)A∈A , where

NA :

{
X∗ → N ∪ {+∞}

ω 7→ ω (A) .

When µ is a sigma-finite measure on (X,A ), a Poisson point process of intensity
µ on X always exists. We denote by µ∗ its distribution, which is a probability
measure on (X∗,A ∗).

Poisson suspensions. The distribution µ∗ of a Poisson point process of intensity µ
has many nice functorial features. One of the most important is the following.

Let µ and ν be two sigma-finite measures on the standard Borel spaces (X,A )
and (Y,B) respectively, and consider a measurable map ϕ : X → Y such that
µ ◦ ϕ−1 = ν. Then the map ϕ∗ X

∗ → Y ∗ acting by

ϕ∗

(∑

i∈I

δxi

)
:=
∑

i∈I

δϕ(xi)

satisfies µ∗ ◦ ϕ−1
∗ = ν∗.

In particular, if T is a measure-preserving transformation on (X,A , µ), then T∗ is
a probability-preserving transformation of (X∗,A ∗, µ∗). The system (X∗,A ∗, µ∗, T∗)
is called the Poisson suspension over the base (X,A , µ, T ).

Of course the properties of the Poisson suspensions depend on those of the
base system, and this allows to make strong connections between infinite-measure-
preserving systems and probability-preserving systems.

4. Spectral theory

4.1. Basics of spectral theory. Let us recall some basic notions of spectral theory
(see e.g. [27]).

Let U be a unitary operator acting on a separable Hilbert space H , and let
h ∈ H . We denote by σh the spectral measure of h (see (1)). Let C (h) be the
cyclic space of h under U , that is, the closure of the linear span of the vectors Unh,
n ∈ Z. The linear map between C (h) and L2 (σh) that maps Unh to ei2πn· extends
to an isometry and intertwins the operator U with the unitary operator

(4) V : f 7→ ei2π·f, f ∈ L2 (σh) .

The maximal spectral type of U is the equivalence class of σhmax
for some hmax

satisfying:

∀g ∈ H, σg ≪ σhmax
.

(Such an hmax always exists.)
We say that U has simple spectrum whenever H itself is a cyclic space C(h) for

some vector h.
Whenever (X,A , µ, T ) is a measure-preserving dynamical system with a sigma-

finite measure µ, we denote by UT : L2(µ) → L2(µ) the associated Koopman
operator defined by UTh := h ◦ T . It is a unitary operator on L2 (µ).
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4.2. Fock space. We describe here an algebraic construction that plays a crucial
role in the study of our objects.

Let once again H be a Hilbert space and denote H⊙n, the vector space of
symmetric elements of the n-th tensor product H⊗n. When H is L2(X,µ) for
some sigma-finite measure µ on X , then H⊙n can be identified with the subspace
L2
perm (Xn, µ⊗n) of L2 (Xn, µ⊗n) consisting of functions which are invariant by co-

ordinate permutations.
With the convention H⊙0 := C, we can consider the vector space

∑
n≥0H

⊙n

which is the formal direct sum whose elements are finite sums of vectors of H⊙n,
n ≥ 1. The space

∑
n≥0H

⊙n can be equipped with a scalar product by considering

the direct sum as orthogonal and by endowing each H⊙n with the scalar product
〈·, ·〉H⊗n . The (Boson) Fock space F (H) of H is the Hilbert space obtained as the
completion of

∑
n≥0H

⊙n with respect to the norm of the scalar product we just
set up.

4.3. Operators on a Fock space. Whenever Φ is an operator on H of norm less

than or equal to 1, it extends naturally to an operator Φ̃ on the Fock space F (H)
by acting on H⊙n as Φ⊙n, that is

∀v ∈ H, Φ̃ (v ⊗ · · · ⊗ v) := Φv ⊗ · · · ⊗ Φv.

This operator Φ̃ is called the second quantization of Φ (see [1] (chap. 8, p. 16)).

The following proposition considers the second quantization Ũ of a unitary op-
erator U .

Proposition 4.1. If U is unitary on H and σmax is in the equivalence class of its
maximal spectral type, then

• the second quantization Ũ of U is unitary on F (H).

• The maximal spectral type of Ũ is the equivalence class of
∑

n≥0 σ
∗n
max (where

σ∗0
max := δ0).

• Ũ has simple spectrum if and only if for all n, U⊙n has simple spectrum
and for all n 6= m, σ∗n

max ⊥ σ
∗m
max.

4.4. Application to Gaussian and Poisson chaos.

4.4.1. Fock space structure of L2 for Gaussian dynamical systems and Poisson sus-
pensions. In the case of the standard Gaussian dynamical system Xσ, generated
by the Gaussian process (ξn)n∈Z, we denote by Hr

1 the real Gaussian subspace of
L2(µσ) spanned by the random variables ξn, n ∈ Z, and H1 := Hr

1 + iHr
1 the

complex subspace spanned by the process. Then H1 is isometric to L2(T, σ), with
an isometry extending the correspondence ξn ←→ ei2πn· (n ∈ Z).

In the case of the Poisson suspension (X∗,A ∗, µ∗, T∗), we denote by H1 the
subspace of L2(µ∗) spanned by the random variables of the form NA−µ(A), A ∈ A ,
µ(A) < ∞. In this case H1 is isometric to L2(X,µ), with an isometry extending
the correspondence NA − µ(A)←→ 1A (A ∈ A , µ(A) <∞).

In both cases, H0 denotes the subspace of constant functions. Then for each n ≥
2, we define inductively the subspace Hn as the orthocomplement of

⊕
0≤j<nHj

in the space of all polynomials of degree at most n in variables in H1 (note that
elements of H1 always have moments of any order). In the classical probabilist
terminology, the subspace Hn is called the n-th chaos.
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It turns out that Hn is, in the Gaussian case, isometric to L2
perm (Tn, σ⊗n),

whereas in the Poisson case it is isometric to L2
perm (Xn, µ⊗n). We therefore get

the following description of L2 as a Fock space, which in the Gaussian case takes
the form

L2(µσ) =
⊕

n≥0

Hn ≃ F
(
L2(T, σ)

)
,

and in the Poisson case

L2(µ∗) =
⊕

n≥0

Hn ≃ F
(
L2(X,µ)

)
.

We refer to [2] for more details about the Fock space structure in the Gaussian
case, and to [24, 35] in the Poisson case.

4.4.2. Second quantization operators. Once the Fock space structure of L2 (µσ) (in
the Gaussian case) and L2 (µ∗) (in the Poisson suspension case) is established, it
is natural to look at the Koopman operator that is associated to the underlying
transformation. In both cases, this Koopman operator leaves each chaos Hn in-
variant, and is nothing but the second quantization of its restriction to H1. More
precisely, we can state the following.

In the case of the standard Gaussian system Xσ, the action of US on the first
chaos H1 corresponds to the multiplication by ei2π· in L2(T, σ). In general, the
action of US on the n-th chaosHn corresponds to the multiplication by the function
(t1, . . . , tn) 7→ ei2π(t1+···+tn) in L2

perm (Tn, σ⊗n).
In the case of the Poisson suspension (X∗,A ∗, µ∗, T∗), the action of UT∗

on H1

corresponds to the action of UT on L2(µ). In general, the action of UT∗
on the n-th

chaos Hn corresponds to the action of UT×n on L2
perm (Xn, µ⊗n).

5. Basic ergodic properties

5.1. Ergodicity and mixing.

Ergodic properties as spectral properties. We list some classical ergodic properties
that are spectral by nature. We start by the probability-preserving case where
it is customary to consider UT : f 7→ f ◦ T acting on L2

0 (µ) = L2 (µ) ⊖ C,
the orthocomplement of the constant functions as UT acts trivially on the lat-
ter: UT (α1X) = α1X . In that case, the reduced maximal spectral type denotes the
maximal spectral type of UT acting on L2

0 (µ).

Theorem 5.1. Let (X,A , µ, T ) be a dynamical system with µ (X) = 1, UT its
Koopman operator acting on L2

0 (µ) and ρ0
max

, a finite measure in the measure
class of the reduced maximal spectral type.

• (X,A , µ, T ) is ergodic if and only if ρ0
max

({0}) = 0.
• (X,A , µ, T ) is weakly mixing if and only if ρ0

max
is continuous.

• (X,A , µ, T ) is (strongly) mixing if and only if ρ0
max

is Rajchman, i.e.

ρ̂0
max

(k) −−−−→
|k|→∞

0.

When µ is not finite, nonzero constant functions are not in L2(µ) and that makes
a radical difference:
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Theorem 5.2. Let (X,A , µ, T ) be a dynamical system with µ sigma-finite, UT its
Koopman operator acting on L2 (µ) and ρmax a finite measure in the measure class
of the maximal spectral type.

• (X,A , µ, T ) has no T -invariant set of finite positive measure if and only if
ρmax is continuous.
• (X,A , µ, T ) is of zero type (i.e. µ (A ∩ T nB)→ 0 as n tends to infinity for
all finite µ-measure sets A and B in A ) if and only if ρmax is Rajchman.

In particular, these two properties can only happen if µ is infinite. Note also
that ergodicity is no longer a spectral property in the infinite measure case.

Ergodicity and mixing of Gaussian systems and Poisson suspensions. Ergodic and
mixing properties of Gaussian dynamical systems are easily characterized in terms
of the spectral measure σ of the generating stationary Gaussian process. Using the
spectral characterizations of ergodicity and mixing given in Theorem 5.1 and the
expression of the maximal spectral type of the second quantization of a unitary
operator in Proposition 4.1, we can obtain the following results which were first
proved by Maruyama [31] and Fomin [8]. Details can also be found in [2].

Theorem 5.3. The Gaussian dynamical system Xσ is ergodic if and only if the
spectral measure σ is continuous, that is σ({t}) = 0 for each t ∈ T. In this case it
is also weakly mixing.

The system Xσ is (strongly) mixing if and only if σ is Rajchman.

In particular, by the Riemann-Lebesgue Lemma, if σ is absolutely continuous
then the associated Gaussian system is mixing, which was originately proved by
Ito [14]. But there also exist singular spectral measures whose Fourier coefficients
vanish at infinity [34].

The same kind of arguments apply to Poisson suspensions: together with Theo-
rem 5.2, this yields to the following characterizations (proved by Marchat [30] and
Grabinsky [13]).

Theorem 5.4. The Poisson suspension (X∗,A ∗, µ∗, T∗) is ergodic if and only if
the base system (X,A , µ, T ) has no invariant set of finite positive measure. In this
case it is also weakly mixing.

The Poisson suspension (X∗,A ∗, µ∗, T∗) is (strongly) mixing if and only if the
base system (X,A , µ, T ) is of zero type.

Leonov [29] proved that, if a Gaussian system is mixing, then it is mixing of
all orders (see also [52] for a simple proof by Totoki). The same result holds for a
Poisson suspension (see [30, 13]).

5.2. Entropy, Bernoulli properties. The Kolmogorov-Sinai entropy of a Gauss-
ian system is given by the following result, already stated by Pinsker in 1960 [41]
(see also [37, 44, 26] for various proofs).

Theorem 5.5 (Entropy of a standard Gaussian system). Let σ be a symmetric
positive finite measure on T. If σ is singular with respect to the Lebesgue measure,
then h(Xσ) = 0. Otherwise, h(Xσ) =∞.

In the case where its spectral measure is the Lebesgue measure λ on T, the
stationary Gaussian process (ξn)n∈Z is composed of orthogonal, hence independent,
random variables. Thus Xλ is a Bernoulli shift of infinite entropy. Now if σ ≪ λ,
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we will see in Theorem 6.1 that Xσ is a factor of a Bernoulli shift. By Ornstein
theory [39], Xσ is itself isomorphic to a Bernoulli shift, and since it also has infinite
entropy by Theorem 5.5, it is in fact isomorphic to Xλ.

In the general case, decomposing the spectral measure as the sum of its singular
and absolutely continuous parts and assuming that both are nonzero, we get by
Theorem 6.1 below that Xσ is the direct product of a Bernoulli shift of infinite
entropy with a zero-entropy Gaussian system (corresponding to the singular part
of the spectral measure). In particular, any standard Gaussian system satisfies the
Pinsker property (it is a product of a zero-entropy system with a Bernoulli shift).

As far as Poisson suspensions are concerned, anything can happen with the en-
tropy which can be 0, positive finite or infinite. Together with the fact that, when
the base (X,A , µ, T ) is a probability space, the entropy of the Poisson suspen-
sion T∗ is just the same as the entropy of T , this leads to view the entropy of the
Poisson suspension T∗ as a possible way to define the entropy of T when T is an
infinite measure-preserving transformation, as proposed in [43]. Other ways to de-
fine the entropy of an infinite measure-preserving transformation, also generalizing
the finite-measure case, had been proposed by Krengel [23] and Parry [40], and it
is proved in [18] that these three notions of entropy coincide in many cases. How-
ever an example of a transformation with zero Krengel entropy, but whose Poisson
suspension has positive entropy, is presented in [17].

Assume that there exists in the base system (X,A , µ, T ) a wandering set A (i.e.
whose images T nA, n ∈ Z, are pairwise disjoint), and such that X =

⋃
n∈Z T

nA
(the system is called dissipative in this case). Then, obviously, the base is of zero
type and the Poisson suspension is mixing. But thanks to the independence prop-
erty of the Poisson process, the Poisson suspension is in fact Bernoulli. However
there also exist Bernoulli examples of Poisson suspensions where the base is con-
servative (i.e. there is no wandering set of positive measure). Such examples are
provided by Poisson suspensions over null-recurrent Markov chains: we consider a
countable set Σ, an irreducible null-recurrent stochastic matrix P = (pi,j)i,j∈Σ, and
let q = (qi)i∈Σ be a nonzero measure which is stationary with respect to P . We
can then form the associated Markov shift (X,A , µ, T ) where X = ΣZ, T is the
shift transformation, and µ is the shift invariant infinite measure given on cylinder
sets by the formula

µ([i0i1, . . . , ik]) := qi0pi0,i1 · · · pik−1,ik .

It has been proved by Kalikow [22] and Grabinsky [13] that the associated Poisson
suspension (X∗,A ∗, µ∗, T∗) is Bernoulli. Moreover, as shown in [18], its entropy
is given by the following formula generalizing the entropy for positive-recurrent
Markov chains:

h(T∗) = −
∑

i∈Σ

qi
∑

j∈Σ

pi,j log pi,j .

(Examples where the above entropy is finite are provided by Krengel [23].)
The general structure of a Poisson suspension is, in general, not known. We

can ask in particular whether there exists a Poisson suspension which is K but not
Bernoulli.

6. Joinings, factors and centralizer

6.1. Gaussian factors and centralizer.
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Gaussian factors of a Gaussian system. In the standard Gaussian system Xσ gen-
erated by the Gaussian process (ξn)n∈Z, let us take a nonzero element ζ ∈ Hr

1 ,
and set for each n ∈ Z, ζn := ζ ◦ Sn ∈ Hr

1 . Then (ζn)n∈Z is a stationary Gauss-
ian process, and generates a particular factor sigma-algebra of Xσ which we call
a Gaussian factor. This factor can be more precisely described by the following
analysis.

Spectral theory provides an isometry between the closed real subspace Hr
1 of

L2(µσ) generated by the Gaussian process (ξn) and the following real subspace of
L2(T, σ):

L2
sym(T, σ) := {φ ∈ L

2(T, σ) : φ(−t) = φ(t) for σ-almost every t}.

The element ζ of Hr
1 corresponds to some function φ ∈ L2

sym(T, σ), and the spectral
measure σ1 of the process (ζn)n∈Z is absolutely continuous with respect to σ, with

density dσ1

dσ = |φ|2.
Observe conversely that any symmetric positive finite measure σ1 ≪ σ can be

realized in this way, for example by taking the real-valued function φ :=
√

dσ1

dσ ∈

L2
sym(T, σ).
The Gaussian factor generated by (ζn)n∈Z only depends on the equivalence class

of σ1, so we can denote it by Fσ1
. The action of S on Fσ1

is isomorphic to Xσ1
.

If σ1 is equivalent to σ, then Fσ1
coincides with the Borel sigma-algebra of Xσ,

and Xσ1
is isomorphic to Xσ. On the other hand, if σ1 is not equivalent to σ, we

can find another symmetric positive finite measure σ2 on T such that

• σ2 is singular with respect to σ1,
• σ is equivalent to σ1 + σ2.

Using the fact that orthogonal subspaces of Hr
1 correspond to independent families

of Gaussian random variables, we then get another Gaussian factor Fσ2
which

is independent of Fσ1
, and such that Fσ1

and Fσ2
together generate the same

sigma-algebra as the original Gaussian process (ξn). This shows that any strict
Gaussian factor Fσ1

of Xσ admits an independent complement. In the case when
Xσ is ergodic, this independent complement is itself weakly mixing, therefore the
corresponding extension Xσ →Xσ1

is relatively weakly mixing.
We can summarize some of the above results through the following theorem.

Theorem 6.1. Let σ, σ1, σ2 be symmetric positive finite measures on T.

• If σ1 and σ2 are equivalent, then Xσ1
and Xσ2

are isomorphic.
• If σ1 ≪ σ, then Xσ1

is a factor of Xσ and corresponds to a Gaussian
factor Fσ1

of Xσ.
• If σ is equivalent to σ1 + σ2, where σ1 and σ2 are mutually singular, then
Xσ is isomorphic to the direct product Xσ1

×Xσ2
.

Gaussian centralizer. The geometric interpretation of a standard Gaussian dynam-
ical system as a transformation of the Brownian motion path given in Section 3.1
allows to show that the centralizer of a Gaussian system is always rich. First, if in
Formula (3) we replace ei2πθ(s) by ei2πuθ(s) for u ∈ R, we get a measure-preserving
R-action (T uγ )u∈R. Hence any standard Gaussian dynamical system can be embed-
ded in an R-action. Moreover each T uγ gives rise to a generalized Gaussian system
(as the Gaussian subspace Hr

1 is stable by T uγ ).
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Observe also that if we take two probability measures γ1 and γ2 on T, then
Tγ1 and Tγ2 always commute. Hence the centralizer of a Gaussian dynamical sys-
tem always contains transformations isomorphic to any other standard Gaussian
dynamical system.

The above examples all belong to the so-called Gaussian centralizer, whose ele-
ments are constructed as follows. We start by defining the multiplicative group

Gσ := {ψ ∈ L2
sym(T, σ) : |ψ| = 1 (σ-a.e.)}.

For each ψ in Gσ, the multiplication by ψ in L2
sym(T, σ) is a unitary operator, which

corresponds in Hr
1 to a unitary operator Uψ. Moreover, the process (Uψ(ξn))n∈Z

has the same distribution as the generating Gaussian process (ξn)n∈Z, hence Uψ
comes from a measure-preserving transformation, which we denote here by Tψ,
commuting with S on Xσ.

Note that Uψ can be naturally extended to a unitary operator on the complex
space H1. The Koopman operator associated to Tψ is then nothing but the second
quantization of Uψ.

The set of transformations

Cg(S) := {Tψ : ψ ∈ Gσ}

is a subgroup of the centralizer of S which is called the Gaussian centralizer.

Compact and classical factors of a Gaussian dynamical system. Newton and Parry [38]
(see also Maruyama [32]) introduced another type of factor of the Gaussian system
Xσ by considering the sigma-algebra of subsets of RZ which are invariant by the
transformation (xn)n∈Z 7→ (−xn)n∈Z (called the even factor). We can see that this
factor is not a Gaussian factor, as the corresponding extension is never relatively
weakly mixing.

This example belongs to another class of factors of Xσ, which are obtained in
the following way. Take any compact subgroup K of Gσ, which corresponds to
some compact subgroup CK of Cg(S), and consider

FK :=
{
A ⊂ RZ : TA = A for each T ∈ CK

}
.

Then FK is a factor sigma-algebra of Xσ which is called a Gaussian-compact
factor of Xσ. Note that Newton-Parry’s example corresponds to the subgroup K
generated by the function identically equal to −1 on T.

Finally, these two types of factors can be combined, and we call a classical factor
of Xσ any Gaussian-compact factor of a Gaussian factor of Xσ.

6.2. Poisson factors and centralizer. There are two main ways to get natural
factors of a Poisson suspension of base (X,A , µ, T ) which are themselves Poisson
suspensions. The first one is to consider a non-trivial T -invariant set Y ⊂ X and
the sigma-algebra generated by restriction of the Poisson process to Y :

A
∗
|Y := σ {NA, A ∈ A , A ⊂ Y } .

The associated factor map is ω 7−→ ω|Y and sends (X∗,A ∗, µ∗, T∗) to
(
Y ∗,

(
A|Y

)∗
,
(
µ|Y

)∗
,
(
T|Y
)∗)

.

As an immediate consequence of the independence properties of a Poisson pro-
cess, we get the following result.
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Proposition 6.2. Assume there exists a non trivial T -invariant set Y ⊂ X. Then
the Poisson suspension (X∗,A ∗, µ∗, T∗) is isomorphic to the direct product
(
Y ∗ × (X \ Y )∗ ,

(
A|Y

)∗
⊗
(
A|X\Y

)∗
,
(
µ|Y

)∗
⊗
(
µ|X\Y

)∗
,
(
T|Y
)∗
×
(
T|X\Y

)∗)
.

The other way to get a Poisson suspension as a factor of (X∗,A ∗, µ∗, T∗) is to
consider a sigma-finite factor of the base system C ⊂ A , that is, a T -invariant
sigma-algebra where µ is still sigma-finite. We then define

C
∗ := σ {NA, A ∈ C } .

We can check that the action of T∗ on C ∗ can be viewed as a Poisson suspension.
Indeed, we have the isomorphism

((
X/C

)∗
,
(
A/C

)∗
,
(
µ/C

)∗
,
(
T/C

)∗)
≃
(
X∗
/C∗ ,A ∗

/C∗ , µ∗
/C∗ , T∗/C∗

)
.

In general, we call Poisson factor of the suspension (X∗,A ∗, µ∗, T∗) any T∗-
invariant sub-sigma-algebra of the form (C |Y )

∗, where C is a sigma-finite factor of
the base system and Y a C -measurable T -invariant subset of X .

The centralizer of T∗ always contains other Poisson suspensions, namely all trans-
formations of the form S∗ when S ∈ C(T ). They form a subgroupg of C(T∗): the
Poisson centralizer.

6.3. Gaussian and Poisson self-joinings. This section is based on notions bor-
rowed from [25] (for Gaussian) and [42], [4] (for Poisson). The inherent probabilistic
nature of Gaussian and Poisson systems allows to define remarkable families of self-
joinings.

In the Gaussian setting, the definition is pretty straightforward.

Definition 6.3. Let ν be a self-joining of a standard Gaussian system Xσ. In the
probability-preserving dynamical system

(
R

Z × R
Z,B

(
R

Z
)
⊗B

(
R

Z
)
, ν, S × S

)
,

the two natural projections on RZ provide two copies

(ξ′n) = (ξ′0 ◦ (S × S)
n)n∈Z and (ξ′′n) = (ξ′′0 ◦ (S × S)

n)n∈Z

of the original Gaussian process. The self-joining ν is said to be a Gaussian self-
joining if the real subspace of L2(ν) spanned by the ξ′n and the ξ′′n, n ∈ Z, is a
Gaussian space.

Example 6.4. The product self-joining, and more generally the relatively indepen-
dent product over a Gaussian factor, are Gaussian self-joinings. The graph self-
joining associated to a transformation in the Gaussian centralizer is also a Gaussian
self-joining. The ergodic components of the relatively independent product over a
compact factor are Gaussian self-joinings.

For the Poisson counterpart, the aforementioned family of self-joinings is easier
to introduce by expliciting their structure.

Let (X∗,A ∗, µ∗, T∗) be a Poisson suspension. Start with a “sub-self-joining” of
the base, namely a system (X ×X,A ⊗A ,m, T × T ) where m is a T ×T -invariant
measure whose projections satisfy

m1 := m (· ×X) ≤ µ and m2 := m (X × ·) ≤ µ.
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We form the Poisson suspension
(
(X ×X)

∗
, (A ⊗A )

∗
,m∗, (T × T )∗

)
. Consider

the map κ 7→ (ω1, ω2) := (κ (· ×X) , κ (X × ·)), and denote by m the pushforward
measure of m∗ by this map. Then we get as a factor

(X∗ ×X∗,A ∗ ⊗A
∗,m, T∗ × T∗) ,

which is nothing else than a joining between (X∗,A ∗,m∗
1, T∗) and (X∗,A ∗,m∗

2, T∗).
The final step consists into “fixing the intensities” by considering the direct

product
(
X∗ × (X∗ ×X∗)×X∗,A ∗ ⊗ (A ∗ ⊗A

∗)⊗A
∗,

(µ−m1)
∗
⊗m⊗ (µ−m2)

∗
, T∗ × (T∗ × T∗)× T∗

)
.

On X∗×X∗, we define m̃ as the pushforward measure of (µ−m1)
∗⊗m⊗(µ−m2)

∗

by the factor map

(ω′, (ω1, ω2) , ω
′′) 7→ (ω′ + ω1, ω2 + ω′′) .

We get a self-joining (X∗ ×X∗,A ∗ ⊗A ∗, m̃, T∗ × T∗) of the original Poisson sus-
pension.

Definition 6.5. We call Poisson self-joining of a Poisson suspension any self-
joining which is obtained as explained above.

Example 6.6. The product self-joining corresponds to the case where m is the null
measure. If S is in the centralizer of T and m := ∆S is the corresponding graph
measure, then m̃ = ∆S∗

, i.e. the graph self-joining associated to S∗. If C ⊂ A is
a sigma-finite factor and m := µ⊗C µ is the relatively independent joining over C ,
then m̃ = µ∗⊗C∗ µ∗, i.e. the relatively independent joining over the Poisson factor
C ∗.

Despite the different nature of their structure, it is possible to give a unified
characterization of Poisson and Gaussian self-joinings (see [43]).

Proposition 6.7. A self-joining of a Gaussian system (resp. a Poisson suspension)
is Gaussian (resp. Poisson) if and only if its distribution is infinitely divisible.

In the Gaussian case, this follows immediately from the fact that a process with
Gaussian entries is Gaussian if and only if it is infinitely divisible.

Theorem 6.8. [25, 4] A self-joining of a Gaussian system Xσ is Gaussian if and
only if the associated Markov operator Φ acting on L2 (µσ) is the second quanti-
zation of an operator ϕ on L2 (σ) of norm less than or equal to one and which
commutes with V (see (4)).

Similarly, a self-joining of a Poisson suspension (X∗,A ∗, µ∗, T∗) is Poisson if
and only if the associated Markov operator Φ acting on L2 (µ∗) is the second quanti-
zation of an operator ϕ on L2 (µ) corresponding to a sub-self-joining of (X,A , µ, T )
(a sub-Markov operator commuting with T ).

The following property is central in this theory (see [25] for Gaussian, [43] and
[4] for Poisson).

Proposition 6.9. A Gaussian (resp. Poisson) self-joining of an ergodic Gaussian
system (resp. Poisson suspension) is ergodic.
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7. GAGs and PAPs

7.1. From Foias-Stratila to GAGs. Lemańczyk, Parreau and Thouvenot intro-
duced in [25] a class of Gaussian dynamical systems called GAGs (a French acronym
meaning “Gaussian systems with Gaussian self-joinings”), on which they have de-
veloped a beautiful theory. The proof of the existence of GAGs relies on a striking
rigidity result by Foias and Stratila [7], according to which there are some spec-
tral measures that, in ergodic systems, can only be realized by Gaussian processes
(this result improved a previous work of Sinai [49]). Foias-Stratila result can be
formulated in the following way (see also [2, p. 375]).

Theorem 7.1 (Foias-Stratila). Let (Ω,F ,P, T ) be an ergodic probability-preser-
ving dynamical sytem. Assume that for some nonzero real-valued ξ0 ∈ L2(P),
the spectral measure of the stationary process (ξ0 ◦ T

n)n∈Z is continuous and con-
centrated on K ∪ (−K), where K is a Kronecker subset of T. Then the process
(ξ0 ◦ T

n)n∈Z is Gaussian.

The above result is used in [25] through the following argument (which was al-
ready stated by Thouvenot [51, 50]). Let us consider a Gaussian-Kronecker system
Xσ (which means that the spectral measure σ satisfies the same assumptions as
in Theorem 7.1). Let ν be a self-joining of Xσ, and denote by ξ′ and ξ′′ the two
copies of the original Gaussian process with spectral measure σ in the probability-
preserving dynamical system

(
R

Z ×RZ,B(RZ ×RZ), ν, S × S
)
,

(as in Definition 6.3). In L2(ν), let H ′ and H ′′ be the real subspaces spanned
respectively by ξ′ and ξ′′, and H := H ′+H ′′. For any h ∈ H , the spectral measure
of the stationary process (h ◦ (S×S)n)n∈Z is absolutely continuous with respect to
σ. Hence, if we further assume that ν is ergodic, Theorem 7.1 implies that H is a
Gaussian subspace.

We formalize the above by the following definition and theorem.

Definition 7.2. The Gaussian system Xσ is said to be a GAG when any ergodic
self-joining of Xσ is a Gaussian self-joining.

Note that in this case, the system given by any ergodic self-joining is a generalized
Gaussian system.

Theorem 7.3. Any Gaussian-Kronecker system is a GAG.

Even if Foias-Stratila result is the keystone for the construction of GAGs, it is
shown in [25] that the class of GAGs extends far beyond the Gaussian-Kronecker
systems. Indeed, it is proved that any simple-spectrum Gaussian system is GAG,
and in particular there exist mixing GAGs.

Because of their special properties (see Section 7.3), GAGs can be used to pro-
duce very interesting examples of probability-preserving dynamical systems. But
beside the theory of GAGs, Foias-Stratila property can lead to other surprising
results. For example, it is used in [47] to show the existence of some spectral mea-
sures on the torus that can never be obtained in a transformation induced by an
irrational rotation of the circle.
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7.2. Poissonian analog of Foias-Stratila Theorem and PAPs. Roughly speak-
ing, an analog of Foias-Stratila Theorem in the context of Poisson suspensions
should identify a special class of infinite measure-preserving dynamical systems
(X,A , µ, T )–playing a role similar to the Kronecker measures–, such that any point
process invariant and ergodic under the dynamics of T would have a Poissonian
character.

This invariance requirement is encompassed in the following notion of T -point
process.

Definition 7.4. Let (X,A , µ, T ) be a sigma-finite measure-preserving system, and
let (Ω,F,P, S) be a probability-preserving system. A point process N : Ω → X∗ is
said to be a T -point process if

• for any A ∈ A : N (A) ◦ S = N
(
T−1A

)

• N (A) = 0 P-a.s. if µ (A) = 0.

The T -point process N is T -free if its distribution is concentrated on the set of
simple counting measures of the form

∑
i∈I δxi

such that for each i 6= j, xi and xj
are not in the same T -orbit.

We assume now that X is a complete and separable metric space, and that µ is
an infinite and boundedly finite measure on (X,A ), that is a measure giving finite
mass to any bounded measurable set. (This definition depends on the choice of the
metric, and our assumption implies in particular that the metric is unbounded.)

We consider the family (FS) of µ-preserving invertible transformations T of X
satisfying:

• for each n ≥ 1, (Xn,A ⊗n, µ⊗n, T×n) is ergodic (T is said to have infinite
ergodic index );
• for each n ≥ 1, if ν is a boundedly finite T×n-invariant measure on (Xn,A n)
whose marginals are absolutely continuous with respect to µ, then (Xn,A ⊗n, ν, T×n)
is conservative and any of its ergodic component m is of the form

m (A1 × · · · ×An) =
∏

P∈π

µ

(⋂

i∈P

T−kiAi

)
,

where π is a partition of {1, . . . , n} and {ki} are integers.

Observe that such an ergodic component gives rise to a system isomorphic to(
X#π,A ⊗#π, µ⊗#π, T×#π

)
.

This above property is reminiscent to the concept of minimal self-joinings in the
probability-preserving case. However we stress that, when the measure is infinite,
greater care is required when dealing with invariant measures on Cartesian products
(see [20] where this definition is discussed, and the construction of an example of
transformation in the family (FS) is given).

We can now state the Poissonian version of Theorem 7.1, proved in [21].

Theorem 7.5 (Poissonian analog of Foias-Stratila Theorem). Let N be a T -point
process with moments of all orders defined on the ergodic probability-preserving
dynamical sytem (Ω,F ,P, S). If T is in the family (FS) and if N is T -free, then
N is a Poisson point process of intensity αµ for some α > 0.

By analogy with GAG, we can formulate the following definition.

Definition 7.6. The Poisson suspension (X∗,A ∗, µ∗∗, T∗) is said to be a PAP
when all its ergodic self-joinings are Poisson self-joinings.
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The analog of Theorem 7.3 in the context of Poisson suspensions has been es-
tablished in [21].

Theorem 7.7. If T is in the family (FS), then (X∗,A ∗, µ∗, T∗) is a PAP.

7.3. Properties of GAGs and PAPs. GAGs and PAPs have the great advan-
tage that we can quite well describe the structure of their self-joinings. Since these
self-joinings can tell a lot on the factors and centralizer of the corresponding trans-
formation, it is no surprise that we are able to control the factors and centralizer
of GAGs and PAPs.

We have seen in Section 6.1 that in the centralizer of any Gaussian system we
can find transformations isomorphic to any other Gaussian system. It turns out
that for GAGs, there is no other element in the centralizer.

Theorem 7.8 (Centralizer of a GAG [25]). Let Xσ be a GAG, and let T ∈
C(S). Then for each ζ in the real Gaussian subspace Hr

1 of L2(µσ) spanned by
the generating Gaussian process, we have ζ ◦ T ∈ Hr

1 . In particular the system(
R

Z,B(RZ), µσ, T
)
is a generalized Gaussian system.

We also identified in Section 6.1 a family of factors appearing in any standard
Gaussian system. Again, in the case of GAGs, there is no other possible factor.

Theorem 7.9 (Factors of a GAG [25]). Let Xσ be a GAG. Any factor of Xσ is a
classical factor. Any factor over which S is relatively weakly mixing is a Gaussian
factor.

The above theorem is used in [15]: in the case of a GAG system, the factor
generated by a function of finitely many coordinates of the Gaussian process can
only be the whole system or the even factor (and the latter occurs only when the
function is even).

Here are the corresponding results for Poisson suspensions.

Theorem 7.10 (Centralizer of a PAP [21]). Let (X∗,A ∗, µ∗, T∗) be a PAP, and
let R ∈ C(T∗). Then there exists S ∈ C(T ) such that R = S∗.

In particular, when T is in the family (FS), C(T ) is reduced to the powers of
T [16], thus C(T∗) = {T

n
∗ : n ∈ Z}.

Theorem 7.11 (Factors of a PAP [21]). Any non trivial factor of the PAP (X∗,A ∗, µ∗, T∗)
contains a non trivial Poisson factor. Any factor over which T∗ is relatively weakly
mixing is a Poisson factor.

In particular, when T is in the family (FS), T∗ has no non-trivial factor, as T
itself has no non-trivial factor [16]. Note that the primeness and the triviality of the
centralizer of T∗ in this case are striking differences compared to Gaussian systems,
which always possess a lot of factors and a large centralizer. The dissemblance can
be pushed even further as it is proved (see [21] and [19]) that if T is in the family
(FS), T∗ is in fact disjoint from any standard Gaussian system.

8. Future Directions

A lot of questions remain open concerning the intersections of the classes of
Gaussian systems or Poisson suspensions with other families of dynamical systems.
In positive entropy, the situation is quite clear concerning the Gaussian case, but
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as already mentioned in Section 5.2 it is not known whether we can build a Poisson
suspension which is K but not Bernoulli. In the zero-entropy setting, some results
have been obtained for Gaussian systems: some are loosely Bernoulli, some are
not [46], and we know that they cannot be of finite rank [48]. Similar issues for
Poisson suspensions have not been studied yet. A general problem that arises is the
question of disjointness of these systems of probabilistic origin with other classes
such as finite-rank systems. One can hope for a unified answer taking advantage
of the common features shared by Gaussian systems and Poisson suspensions, and
inspired by ideas such as those developed in [4] or [28], where it is proved that both
Gaussian systems and Poisson suspensions are disjoint from the class of distally
simple systems.

For Poisson suspensions, the entropy theory is much richer and the situation
where all three notions of entropy of a sigma-finite measure-preserving system do
not coincide remains rather mysterious. For example, is it true that the Poisson
entropy always dominates the Krengel entropy of the system?

It is noteworthy to mention that Poisson suspensions can also be defined over
non-singular transformations, provided some integrability condition is satisfied.
This is a potentially rich area to explore. (There is an ongoing work on this topic
by A. Danilenko, Z. Kosloff and the second author of the present paper.)

Finally, we point out that this presentation focused on Z-actions, eventhough
the notions of Gaussian systems and Poisson suspensions extend naturally to more
general group actions. For flows (R-actions), Gaussian systems and Poisson sus-
pensions provide interesting examples of flows for which the self-similarity set

I(T ) := {s ∈ R : (T st)t∈R is isomorphic to (T t)t∈R}

can be fully described (see [9, 3, 10]). For other groups, the generalization of
some topics presented in the present survey is not always obvious. The entropy
of Gaussian actions of Abelian groups is proved to be 0 or ∞ in [26], however it
is unknown if the same holds for countable amenable groups. We can also ask for
which group actions we have a Foias-Stratila theory.
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