
HAL Id: hal-02451047
https://hal.science/hal-02451047

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource Auto-scaling for SQL-like Queries in the Cloud
based on Parallel Reinforcement Learning

Mohamed Mehdi Kandi, Shaoyi Yin, Abdelkader Hameurlain

To cite this version:
Mohamed Mehdi Kandi, Shaoyi Yin, Abdelkader Hameurlain. Resource Auto-scaling for SQL-like
Queries in the Cloud based on Parallel Reinforcement Learning. International Journal of Grid and
Utility Computing, 2019, 10 (6), pp.654-671. �10.1504/IJGUC.2019.102748�. �hal-02451047�

https://hal.science/hal-02451047
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24937

To cite this version: Kandi, Mohamed Mehdi and Yin, Shaoyi and

Hameurlain, Abdelkader Resource Auto-scaling for SQL-like Queries

in the Cloud based on Parallel Reinforcement Learning. (2019)

International Journal of Grid and Utility Computing, 10 (6). 654-671.

ISSN 1741-847X

Official URL

DOI : https://dx.doi.org/10.1504/IJGUC.2019.102748

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Resource auto-scaling for SQL-like queries in the
cloud based on parallel reinforcement learning

Mohamed Mehdi Kandi*, Shaoyi Yin
and Abdelkader Hameurlain

IRIT Laboratory,

Paul Sabatier University,

Toulouse, France

Email: mohamed.kandi@irit.fr

Email: shaoyi.yin@irit.fr

Email: abdelkader.hameurlain@irit.fr

*Corresponding author

Abstract: Cloud computing is a technology that provides on-demand services in which the
number of assigned resources can be automatically adjusted. A key challenge is how to choose
the right number of resources so that the overall monetary cost is minimised. This problem,
known as auto-scaling, was addressed in some existing works but most of them are dedicated to
web applications. In these applications, it is assumed that the queries are atomic and each of them
uses a single resource for a short period of time. However, this assumption cannot be considered
for database applications. A query, in this case, contains many dependent and long tasks so
several resources are required. We propose in this work an auto-scaling method based on
reinforcement learning. The method is coupled with placement-scheduling. In the experimental
section, we show the advantage of coupling the auto-scaling to the placement-scheduling by
comparing our work to an existing auto-scaling method.

Keywords: cloud computing; auto-scaling; resource allocation; parallel reinforcement learning.

Reference to this paper should be made as follows: Kandi, M.M., Yin, S. and Hameurlain, A.
(2019) ‘Resource auto-scaling for SQL-like queries in the cloud based on parallel reinforcement
learning’, Int. J. Grid and Utility Computing, Vol. 10, No. 6, pp.654–671.

Biographical notes: Mohamed Mehdi Kandi is a PhD student at Paul Sabatier University,
Toulouse, France. He received his Master’s degree in Computer Science from Paris 6 University,
France, in 2016. Now he works in the Pyramid team of IRIT Laboratory. His research interests
include optimisation and elastic resource allocation for database applications in the cloud.

Shaoyi Yin conducted her PhD at the University of Versailles, France, under an INRIA doctoral
contract and defended in June 2011. Since September 2012, she works at Paul Sabatier University, in
the Pyramid team of IRIT Laboratory, as an associate professor. Her current research interests mainly
include query optimisation in parallel and large-scale distributed environments, especially in the cloud
environment.

Abdelkader Hameurlain is a full professor in Computer Science at Paul Sabatier University (IRIT Lab.)
Toulouse, France. His current research interests are query optimisation in parallel and large-scale
distributed environments, and mobile databases. He has been the general chair of the Int. Conf. on
Database and Expert Systems Applications (DEXA02, DEXA11, DEXA17 and DEXA18). He is a
Co-editor in Chief of the international journal Transactions on Large-Scale Data- and Knowledge-

Centered Systems (LNCS, Springer).

1 Introduction

1.1 Context

Since it was launched in the 2000s, the cloud computing

market continues to evolve. Today’s cloud providers offer a

variety of information technology services, from basic

computing resources to complex applications that aim to

meet

the different tenant needs. Cloud services are based on a
pricing model and Service Level Agreements (SLAs). The

pricing model describes how services are billed. SLAs define

the performance objectives that should be met by the provider

and the measures to be taken in case of non-compliance with

the objectives. If requirements are not respected, the provider
pays penalties to the tenant.

Among cloud applications, we are interested in those

concerning querying databases. Data processing has experienced

in recent years the arrival of frameworks based on the storage

and processing of partitioned data over a set of machines,

mainly Hadoop ecosystem. Extensions that propose a syntax

close to the classical SQL language (Hive) have been added to

these frameworks in order to make them accessible to users

who are accustomed to SQL. This syntax is called SQL-like.

A submitted SQL-like query is transformed into many

MapReduce jobs (Dean and Ghemawat, 2010), or a single job

consisting of a Directed Acyclic Graph (DAG) (Saha et al.,

2015), then assigned to available resources (Kllapi et al., 2011;

Vavilapalli et al., 213). Cloud providers have quickly adapted

to the new data processing frameworks by offering services

like Amazon Elastic MapReduce and Microsoft Azure

HDInsight.

1.2 Problem position

Maximising the profit is an important issue for cloud providers,

but the existing data processing frameworks are not designed in

a way that takes into account the pricing model and SLAs in

the resource allocation process. Expenditures can be reduced if

resource management handles these aspects. The number of

assigned resources should increase if the load is high and

decrease if the demand is low. If it is done in an automated

way, this process is called auto-scaling.

The questions, in this case, are: when to scale and how

much resources we should add or remove. Most current cloud

providers use an intuitive approach based on thresholds for

virtual machines (VMs) level auto-scaling and several related

methods are proposed in literature (Khatua et al., 2010; Chieu

et al., 2011; Simmons et al., 2011; Ghanbari et al., 2011; Han

et al., 2012; Hasan et al., 2012). The main idea of this

approach is to add (or remove) resources if a certain metric is

above (or below) a predefined threshold. The thresholds

are usually defined by humans in the provider or the tenant

side.
The main drawback of the thresholds based approach is

the fact that it requires a deep understanding of workload
trends to choose good thresholds, which is not easy to
achieve. This is why much scientific work was done to
design human independent auto-scaling methods based
mainly on reinforcement learning (Dutreilh et al., 2011; Rao
et al., 2011). The learner is an agent that makes successive
actions in an environment and receives a reward for each
taken action. After a set of random trials, he should learn
how to take good actions which avoid human intervention.

In practice, there is no general reinforcement learning

solution that provides an efficient scaling for all possible

applications and architectures. Each solution must consider the

environment, the cost objective and constraints of a specific

application and we notice that the most existing methods focus

on web querying. A query in these applications can be seen as

an atomic task assigned to a single resource for a short time

period. These methods are not suitable for database querying

applications. Indeed, the structure of a SQL-like query is

considered complex compared to other common applications.

The physical execution plan of the query contains many tasks.

Some of them are parallel, others are linked by a producer-

consumer relation. So parallelism and communication must be

considered.

Existing works that use reinforcement learning for auto-

scaling are based on the information about the present to

define the state description and cost function. This may be

sufficient for applications in which queries consist of one or

few tasks with a short execution time but databases queries

consist of several dependent tasks with relatively long

execution time. Information about the present may generate

under or over scaling. Indeed, a query launched at the
moment t may end at the moment t t where t is not

negligible. This is why it is also important to have some

knowledge about the future during the scaling decision.

Moreover, in a database query, if the consumer is not

launched at the moment the data is generated by the

producer then the intermediate data can be stored on disk.

The storage in the cloud has a significant monetary cost.

1.3 Contribution

In this work, we propose an auto-scaling method based on

reinforcement learning for database querying in the cloud.

In order to satisfy scalability and accelerate learning, the

method applies a parallel variant of reinforcement learning

(Kretchmar, 2002; Grounds and Kudenko, 2008; Barrett

et al., 2013). In this variant, the number of agents is greater

than one. Agents work independently but share their

experience to learn quickly. This variant is recommended

for database querying given the large number of queries and

resources to manage.

The main originality of our work is the fact that we

estimate the resource availability and penalties of a future

time window in order to provide more accurate state

description and reward function in the reinforcement learning

process. These estimations are injected into the reinforcement

learning algorithm to improve agents learning ability. The

computation of the estimations is based on the placement and

scheduling plan. We refer to the overall process (auto-scaling,

placement, and scheduling) as elastic resource allocation.

Another originality of our work is the fact that we take

into account the storage of intermediate data in the reward

function of the reinforcement learning algorithm. Storage is

an aspect that characterises database applications. The

intermediate data can be temporarily stored on disk if the

consumer is not yet available and storage in the cloud has a

significant monetary cost.

The rest of this paper is organised as follows: Section 2

explains the context and an overview of the elastic resource

allocation process. We give a detailed explanation of the

proposed auto-scaling method in Section 3. Section 4

presents the experimental environment and the results. An

overview of the existing work on auto-scaling in the cloud is

provided in Section 5. We conclude in Section 6.

2 Elastic resource allocation process: an overview

In this section, we give an overview of the query

compilation context (2.1). Then, we explain the idea of the

elastic resource allocation process that we propose and the

intuition behind the placement-scheduling phases (2.2).

Finally, we present the performance model (2.3). More

details about placement and scheduling can be found in

Appendix A and B.

2.1 SQL-like query compilation

Figure 1 shows the SQL-like query compilation process.

Tenants submit SQL-like queries using the client interface.

First, the lexical and syntactic analyser verifies that the

query is syntactically correct. Then, the logical optimisation

applies some transformation rules in order to reduce the

volume of manipulated data during the query execution. The

physical optimisation chooses the join algorithms, defines

the join order and generates the execution plan. Finally, the

paralleliser defines the degree of parallelism and generates a

Directed Acyclic Graph (DAG) of tasks.

Older versions of parallel data processing framework

represent this graph by a set of dependent MapReduce jobs

(Figure 2a). MapReduce (Dean and Ghemawat, 2008) is

recognised as an efficient parallel programming model.

Indeed, it allows performing computation on massive data

partitioned on a large number of nodes. However, the

classical MapReduce model has some drawbacks. The graph

is represented by a set of dependent jobs. Between two

successive jobs, there is a write operation, then a read

operation on the Distributed File System (DFS). In addition,

the pipeline is not planned and each job must contain a Map

and a Reduce phase even if one of them is not necessary.

Figure 1 SQL-like query compilation process

Figure 2 Comparison of the graph structure in (a) the multi-job model and (b) the single-job model

Recently, another model has been proposed and already

integrated into existing tools, mainly Hive/Tez (Saha et al., 2015)
and SparkSQL (Armbrust et al., 2015).1 It consists of using a
single job for the entire query (Figure 2b). The internal structure
is flexible. Indeed, the query is represented by a set of stages. A
stage can perform either a Map or Reduce function. Each stage
has many parallel tasks. The task does the processing on part of
the data. The pipeline is allowed between the linked stages and
read/write of intermediate data in DFS is avoided.

In this paper, we refer to the classical MapReduce as the
multi-job model and the new representation as the single-job
model. In Hive/Tez, the query in Figure 1 contains three Map
Joins (MJ) and a Group Operator (GO). It is represented by a
DAG with four Map stages and two Reduce stages.

2.2 Elastic resource allocation process

The cloud service infrastructure consists of a set of physical

machines (Figure 4). A hypervisor, whose role is to manage

VMs, is installed on each physical machine. A VM contains

a set of logical resources. A logical resource is an abstract

representation of a certain amount of reserved CPU,

memory and storage. The system receives DAGs of

submitted queries. The capacity manager adjusts the number

of logical resources reserved for the service (auto-scaling).

The global resource allocation manager performs task

placement and scheduling given the available logical

resources. Each elementary task is assigned to a particular

logical resource for a given time period.

Figure 3 illustrates the elastic allocation process that we

propose. This process is a sequence of four steps: (1) auto-

scaling, (2) choice of method, (3) placement and (4)

scheduling. These steps are performed one after another. A

complete execution of the four steps is called an iteration. A

new iteration is performed in each fixed unit of time dt . In

a given iteration launched at the moment t, the system

handles the DAGs received between (t – dt) and t.

Auto-scaling is the process of determining the number

of logical resources required to meet the load with minimum

cost. We give more details about the proposed auto-scaling

method in Section 3. Following the auto-scaling, the agent

chooses the best method for placement and scheduling of

tasks based on graph sizes and the number of assigned

resources. The placement consists of choosing a logical

resource for each task (Figure 5a). Scheduling allows

choosing the time window assigned to each task (Figure 5b).

At the end of each iteration of this process, the final

placement-scheduling plan, as well as the estimated costs of

penalties and storage of the intermediate data are injected

into the capacity manager in order to be used for the scaling

of the next iteration.

Figure 3 Parallel elastic allocation process

Figure 4 Cloud service architecture

Figure 5 Intuition behind the (a) placement and (b) scheduling

There are n agents that work independently. In our

architecture, only one database querying application is
considered. Each agent is responsible for multiple queries.
There are two benefits of using n agents working in

parallel: (1) experiences can be shared between agents
which accelerate the learning, (2) the elastic allocation
process is faster when there are many agents. To explain the
second point we consider the following example. We
assume that at the moment t , there are 50 allocated logical

resources and 20 queries arriving in the system. Consider
the first case where we have only one agent, the latter must
do the placement-scheduling concerning 20 queries on 50
logical resources. Let’s consider a second case where we
have five parallel agents. In this case, each agent must do
the placement-scheduling concerning four queries (20/5) on
approximately ten logical resources (50/5). The problem is
less complex in the second case since there are fewer
queries and logical resources to manage by an agent, so
placement-scheduling decision algorithms are faster.

Our auto-scaling solution is dependent on placement and
scheduling. These latter are optimisation problems. In the
field of optimisation, there are two main classes of methods:
approximate and exact methods. Our elastic resource
allocation process supports the approximate method
proposed in Kllapi et al. (2011) as well as an exact method
based on Integer Linear Programming (ILP) that is part of
our research (Kandi et al., 2018). The ILP formulation is
presented in Appendices A and B. A choice of the approach
is made first based on the complexity of the queries received
and the number of available resources.

2.3 Performance model

Since the elastic allocation process is performed before
running queries, it is essential to estimate the duration of
tasks. This estimation is based on the size of the data, the
number of tuples, the selectivity of the operators and some
system parameters (Table 1). The formula applied to
estimate task duration depends on the operators executed by
the task. For example, let’s consider a stage Si that

performs a selection on a relation 1R then a Map Join
between the result of the selection and a relation 2R . The
duration (ET) of an elementary task of the stage Si is

estimated as follows (Yin et al., 2018):

() = (ET Si sum

(| 1 | * | 1 | /) / ; / /iR S pd db dl read the data from disk

(| 1 | * | 1 | /)*(/); / /iR S pd ipc cpu execute de select operator

(| (1) | * | 1| /)*(/); / /
i

R S pd iph cpu execute de prob operator

(| 2 | * | 2 | /) / ; / /iR S pd db dl read the data from disk

(| 2 | * | 2 | /)*(/); / /i
R S pd iph cpu execute de build operator

(| 12 | * | 12 | /)*(/); //i
R S pd iph cpu prepare tuples partioning

1 1(| 12 | * | 12 | * / (*) /)* (,)i i i iR S pd pd nb nd max pd pd

/ /)transmit the result to the next stage

Table 1 Cost model parameters (Yin et al., 2018)

Parameter Signification

| |Rx number of tuples in Rx

| |Sx size of a tuple in Rx (Bytes)

| |Rxy number of tuples in Rx Ry

| |Sxy size of a tuple in Rx Ry (Bytes)

selectivity

ipd number of tasks in the stage Si

db disk I/O bandwidth

dl disk latency

cpu CPU processing speed

nb network bandwidth

nd network delay

ipc number of instructions for comparing
two bytes

iph number of instructions for hashing a byte

3 Auto-scaling method

The goal of auto-scaling is to add or remove resources in

order to respond to load variation. The proposed auto-

scaling method is based on parallel reinforcement learning.

We explain in this section the reinforcement learning

principle (3.1), then the modelling of the learning solution

for the auto-scaling problem (3.2).

3.1 Reinforcement learning (RL) principle

The basic idea of reinforcement learning is that we have an

agent who makes decisions in a complex environment. At each

moment, the agent knows the current state of the system and

takes an action that allows moving to another state. When the

agent takes an action, the environment provides him a reward

(or a penalty) – Figure 6. After a set of iterations, the agent

should learn the sequence of actions that maximise the total

reward (or minimise the total penalty). The operation of such a

system is modeled by a Markov decision process (MDP). An

MDP is a mathematical model represented by a state space
(S), an action space (A), probabilities of transitions between

states and rewards (R). At the moment t , the agent is in a

state ts , then he chooses an action ()t ta A s , such that ()tA s

is the set of possible actions when the system is in the state ts .

Following the action, the agent receives a reward 1tr R and

then moves to a state 1ts . The value of the reward and the

next state follow probability distributions: 1(/ ,)t t tp r s a ,

1(/ ,)t t tp s s a . The goal of the agent is to maximise the

cumulative reward (or minimise the cumulative penalty) in the

long run. A measure (,)t tQ s a is associated with each state

(ts) action (ta) pair:

1

1 1 1

11

(,) = (/ ,)

* (/ ,)* (,)max

t t t t t

t t t t t
as tt

Q s a E r s a

P s s a Q s a (1)

where 1(/ ,)t t tE r s a is the expected value of 1 / ,t t tr s a .

1(/ ,)t t tP s s a is the probability to move to the state 1ts

knowing that we are in the state ts and we made the action

ta . 0 < 1 is a discount factor helping the convergence

of Q . The measure (,)t tQ s a quantifies the possible

actions. The best action is the one with the highest value of
Q (or the lowest if r is seen as a penalty). When the MDP

structure is well known, the values of Q can be computed

with the value iteration method (Alpaydin, 2014). However,

usually the structure of the system and its behaviour are not

known in advance, and in this case, reinforcement learning

algorithms, such as Q-learning (described in Alpaydin, 2014

and Watkins, 1989) is more appropriate. There are several

variants of Q-learning. A variant called Sarsa is presented in

Algorithm 1. The algorithm uses learning to find an

estimated value (Q̂). Q̂ is initialised with an arbitrary

value (line 1) then improved in each iteration as the agent

explores the state space (line 13). The strategy to choose the

next action should make a trade-off between exploring the

state space and maximising the reward. For this, the agent
chooses an action randomly with a probability (lines 8–9)

and chooses the action with the highest ˆ (,)Q s a with the

probability 1 (lines 10–11). The parameters , and

the function are defined in advance.

Algorithm 1: Q-Learning Sarsa (Alpaydin, 2014)

1: initialise all ˆ (,)Q s a arbitrarily

 2: initialise s

3: choose an action ()a A s randomly

4: 1iteration

 5: repeat

6: observe s (the new state) and (,)R s a (the reward)

 7: generate a random number " "rand between 0 and 1

8: if < ()rand iteration then

9: choose an action ()a A s randomly

10: else

11: choose an action ()a A s with the highest Q̂

12: end if

13: Update ˆ (,)Q s a :

ˆ ˆ ˆ ˆ(,) (,) *((,) * (,) (,))Q s a Q s a R s a Q s a Q s a

14: s s

15: a a

16: 1iteration iteration

17: wait for the next iteration

18: until the system stops

Figure 6 Interaction between the agent and the environment

3.2 Modelling the learning solution for auto-scaling

We apply reinforcement learning to ensure that the cloud
service described earlier has the correct number of logical
resources. We define the state as a triplet: (1) the number of
logical resources allocated for each type, (2) the current
time of the day, and (3) the resource availability level.

Formally a state = (, ,)s n h d . With 1 2 ()= (, ,....)cardn n n n ,

 is the set of resources types, each type is characterised by its

memory capacity and monetary cost, cn is the number of

assigned type c resources, h is a discrete representation of the

current time of the day, 0 1d define the resource

availability level.

Unlike web applications, the duration of a database

query can be long. The resource availability level in our

method is not just based on the current moment (this is the

case for most of the work of state-of-the-art work) but also

on a future time window calculated from the resource

placement-scheduling plan. The availability level d is

computed with the formula (2). With ()iter is the set of

potential logical resources in the current iteration ‘iter’, T

is the number of considered future time windows, ,r tF

indicate whether the logical resource ()r iter is free at

the moment t (, = 1r tF) or busy (, = 0r tF) according to the

placement-scheduling plan (<t T).

,

() <

(1)

= ,
* (())

r t

r iter t T

F

d round nbDigits
T card iter

(2)

In order to explain the intuition behind formula (2), we
consider the example of Figure 7. The numerator of the
formula represents the surface of the grey area (the
resources are busy). The denominator represents the surface
of the grey area plus the surface of the white area (the

resources are busy + they are free). So d is a number

between 0 and 1, with d is close to 0 (resp. close to 1)

when there are many available resources (resp. many busy
resources) in the considered future time window T .

nbDigits is the number of digits from the decimal point

when we apply the round function. The round function is
necessary to get a state space with a finite number of states.

Figure 7 Placement-scheduling plan example

Possible actions are to keep the same number (0), add (1)

or release (1) a resource. An action ((1), (2),..a a a

(()))a card with () { 1;0;1}a c c and if 1 ,c

1 1 2() = 1 () = 1 () = 0a c a c a c 2 1c c (i.e. we don’t

add or remove more than one resource in a single iteration).
The reward following an action a includes: (1) the cost

of using physical resources ressC , (2) the cost of assigning

and releasing resources ajustC , (3) the costs of penalties paid

by the provider in case of SLA violation penC and (4) the

cost of using storage storC :

(,) = () () () ()ress ajust pen storR s a C s C a C s C s (3)

The cost of using resources includes the processor cost

procC and memory memC :

() = () ()ress proc memC s C s C s (4)

The processor (resp. memory) cost is calculated as follows:

() = * .proc proc c

c

C s W s n (5)

() = * ()* .mem mem m c

c

C s W C c s n (6)

procW is the processor cost weight, memW is the memory cost

weight, . cs n is the number of logical resources of type c

when the system is in state s , ()mC c is the available

memory in the type c resources.

The adjustment cost depends on the cost of adding

resources asgC and the cost of removing resources relC

(1 = 1condition if the condition is true, = 0 otherwise):

()>0 ()<0() = ()*1 ()*1ajust asg a c rel a c

c

C a C c C c (7)

Penalties (penC) and storage (storC) costs depend on task

scheduling (Appendix B). Based on the objective function

of the ILP scheduling model and assuming that the optimal

solution of this ILP is denoted * * *{ , , }y w , we have (the

notation is described in Table A1):

*

,

< <

() = *pen i i t

i D T t T
i i

C s W (8)

*

, ,

<

() = * *stor s i i m t

i S m T t T
i

C s W q w (9)

The goal is to minimise the cumulative reward (R) in long
run. The best action is the one with the lowest value of Q

(formula (1)). In our problem, the behaviour of the MDP is not
known in advance so, as mentioned in the end on Subsection
3.1, an algorithm such as Q-learning can be used to learn an

estimated value Q̂ . The value of Q̂ is improved in each

iteration based on the observed reward and the state description.
In reinforcement learning, the number of times a state is

visited determines the quality of the decision. Indeed, more
visits imply a better experience. It is therefore interesting to
adopt methods that accelerate the evolution of the learning
agent’s experience. We propose to adopt parallel reinforcement
learning (Kretchmar, 2002) to accelerate learning. The system
has a set of parallel agents who share their experiences. Each

agent i makes his decisions using a measure ˆ iQ consisting of

his own local experience ˆ i

lQ and the global experience ˆ i

gQ that

the other agents shared with him.
Algorithm 2 illustrates the parallel reinforcement

learning applied to our problem and executed by an agent i

among a set of agents. In this algorithm: (,)ik s a is the

number of times the action a was taken following a visit to

the state s . The agent can give more importance to his own

experience and so, in this case, lW and gW are chosen such

that >l gW W . Algorithm 2 is executed by the capacity

manager (represented in Figures 3 and 4).

Algorithm 2: Parallel reinforcement learning (Agent i)

1: initialise all ˆ (,)i

lQ s a in an arbitrary way

2: initialise all (,)ik s a to 1

3: for each state s S do

4: () * .proc proc c

c

C s W s n

 5: () * ()* .mem mem m c

c

C s W C j s n

6: () () ()ress proc memC s C s C s

7: for each action ()a A s do

 8: ()>0 ()<0() ()*1 ()*1ajust asg a c rel a c

c c

C a C c C c

 9: end for

10: end for

11: initialise s

12: choose an action ()a A s randomly

13: repeat

14: receive DAGs of the new submitted queries

15: execute the action a (scaling)

16: notify the global resource allocation manager that the scaling is done (Figure 3, arrow (a)), the placement and

scheduling of new queries is therefore launched,

17: get the estimated ()storC s and ()penC s from the resource allocation manager (Figure 3, arrow (b)),

18: (,) () () () ()ress ajust pen storR s a C s C a C s C s

19: observe s (the new state)

20: for each action ()a A s do

21:
,

(,)j

j Agents j i

K k s a

22: ˆ (,)i

gQ s a
,

ˆ(,)* (,)j j

l

j Agents j i

k s a Q s a K

23: ˆ (,)iQ s a

ˆ ˆ* (,)* (,) * *(1)* (,) * (,) * *(1)i i i i

l l g g l gW k s a Q s a W K nbAgents Q s a W k s a W K nbAgents

24: end for

25: generate a random number ‘rand’ between 0 and 1

26: if < ()rand iteration then

27: choose an action ()a A s randomly

28: else

29: choose an action ()a A s with the highest ˆ iQ

30: end if

31: update ˆ (,)i

lQ s a :

32: ˆ ˆ ˆ ˆ(,) (,) *((,) * (,) (,))i i i i

l l l lQ s a Q s a R s a Q s a Q s a

33: (,) (,) 1i ik s a k s a

34: share ˆ (,)i

lQ s a and (,)ik s a with the others agents

35: s s

36: a a

37: 1iteration iteration

38: wait for the next iteration

39: until the system stops

4 Experimental results

We present an experimental evaluation of the auto-scaling

method. In Subsection 4.1, we give a general overview of

the performed simulation. In Subsection 4.2, we compare

our method that uses placement-scheduling plan to estimate

the future resource availability, penalties and storage usage

with an auto-scaling method that works independently of

placement-scheduling. We illustrate the advantage of our

method in terms of monetary cost. In Subsection 4.3, we

show the impact of experience sharing and how the method

scale. We assume that some agents exploit the shared

experience and others not and evaluate the monetary cost

and allocation duration. In Subsection 4.4, we compare two

variants of the algorithm: the standard Q-learning and Sarsa.

The goal is to justify the choice of the Sarsa variant for our

solution

4.1 Simulation setup

We evaluate the proposed solution by simulation. The queries

are retrieved from the TPC-H benchmark then tested on Hive

(a version based on Tez) in order to define: (1) the structure of

DAGs, (2) the number of parallel tasks per stage and (3) the

estimated size of the intermediate data. ILP models are solved

with GLPK. We assume that each agent handles 10 simulated

VMs that contain eight logical resources each. We have

two types of VMs: type 1 VMs (composed of eight logical

resources with 256MB of memory each, price: 0.25$/hour) and

type 2 VMs (composed of eightlogical resources with 512MB

of memory each: 0.5$/hour). For a given query, the provider

pays a penalty of 0.1$ for each minute after the deadline

specified in the SLAs. We assume also that the cost of

adjusting resources (add or remove a resource) is 0.1$.

Our simulation was performed on a computing node with

four AMD processors and 512 GB of RAM. In all experiments,

the global monetary cost is simulated. The global monetary

cost at a given iteration is the sum of the following costs: 1)

used logical resources, 2) penalties caused by violation of

deadlines, 3) adjusting resources and 4) storage of data of

consumers are not yet ready. The global monetary computation

is based on formula (3) – Section 3.2.

In the simulation, we run Algorithm 2 for a large number
of iterations (up to 70000 iterations). An iteration is defined
as a complete execution of lines from 14 to 38 of the
algorithm. At the beginning of each iteration, we assume the
arrival of a number of queries represented by their DAG (line
14 of the algorithm). The number of received queries follows
a random distribution that depends on the time of day. The
number of queries received on the day is more important than
the number received at night. The maximum number of
queries considered is 540 queries/hour. All these queries have
a DAG that follows the TPC-H benchmark. It is important to
mention that a query started at the iteration i may end later

(i.e. at iteration i j , > 0j). In each iteration, a scaling

decision is made (line 25 to 30 of the algorithm).
We set = 0.5 and = 0.8 . We recall that Algorithm 2

uses the parameter to make the compromise between the

choice of the right decisions and the exploration of the state

space. In order to test different scenarios we propose three

policies:

 Policy 1 (three steps):

0.999,

0 < 1

0.4,

() = 1 < 2

0.2,

2 <

when

iteration endStep

when

iteration endStep iteration endStep

when

endStep iteration endOfSimul

 Policy 2 (two steps):

0.999,

0 < 1

() = 0.3,

1 <

when

iteration endStep

iteration when

endStep iteration endOfSimul

 Policy 3 (one step):

0.1, 0 <
() =

when iteration endOfSimul
iteration

4.2 Experiment 1: comparison of our method

and basic reinforcement learning method

(SQLCloudRL vs. BasicCloudRL)

In this section, we compare our work with an auto-scaling

method from the literature. We chose to not compare our

solution with threshold-based methods. The difference

between the reinforcement learning approach and the

threshold approach is discussed in the related work section.

The advantage of reinforcement learning is the fact that it is

independent of human intervention. If we compare our work

with a method based on thresholds we will have to manually

set the values of the thresholds, so performing a fair

comparison is not obvious.

We have therefore compared our work with a method of

literature also based on reinforcement learning. The baseline

is similar to the solution presented in Dutreilh et al. (2011).

The particularity of our work is the dependence between

the auto-scaling and the placement-scheduling. Indeed, as

explained in the Subsection 3.2, the output of the

placement-scheduling is used to give a more precise

representation of the states of the MDP and the reward

function. The baseline, contrariwise, uses the Q-learning

algorithm but assumes that auto-scaling is performed

independently of the outputs of the placement-scheduling.

In the following, we call our proposal SQLCloudRL (SQL-

like Queries Cloud Reinforcement Learning). The baseline

is named BasicCloudRL (Basic Cloud Reinforcement

Learning).
In Figure 8 the global cost ($) is cumulative over an

iteration interval. The value of ‘step’ indicates the length of
this interval. Three agents are considered in each test and
the given values in y-axis correspond to the average
monetary cost per time unit of the three agents. At iteration 1,
each agent has no knowledge of the environment so the
monetary cost is high at the beginning. The agent explores
the environment, stores its experiences and exploits it in the
decision making which makes the monetary cost decreases.

Figure 8 Evolution of monetary cost over time (SQLCloudRL vs. BasicCloudRL)

On the one hand, the scaling decisions for policy 1 and 2 are

almost random at the beginning (() = 0.999iteration when

0 < 10000iteration). The global costs, therefore, remain

stable and high in this period of time. The random decisions

allow the agent to explore more possibilities so learning is fast.

As soon as we change the value of at iteration = 1000, the

agent starts using the stored experience to make the scaling

decisions so the costs drop sharply. Policy 3, on the other hand,

uses a progressive approach. The agent makes a trade-off

between exploration and optimisation from the beginning

(() = 0.1iteration iteration). The cost, therefore, decreases

in a less brutal way than policies 1 and 2.
The same figure shows the advantage of our formulation

compared to the existing auto-scaling method in terms of
monetary cost. The benefit of our proposal is due to the
consideration of estimate the future resource availability level
and penalties from the previous placement-scheduling plan.
The formulation of the baseline can be useful for short queries
(web applications) but not sufficient for long queries of
database querying applications. For long queries, considering a
future estimate allows a more precise definition of a state of the
MDP. The gain in terms of monetary cost becomes very
significant in a real cloud with tens or even hundreds of agents
and after a large number of iterations.

4.3 Experiment 2: impact of experience sharing

(no share vs. share)

We consider three agents who work in parallel and share their

experiences. Agents 2 and 3 use the shared experience (share)

while agent 1 uses only its own experience (no share). Table 2

and Figure 9 show the results. We note the same remarks as the

previous experiment 1 regarding the overall trend of the

curves. In addition, the cost values for the agents who benefit

from the shared experience (agents 2 and 3) are lower than

those who do not (agent 1). Indeed, sharing experience allows

agents 2 and 3 to learn faster than agent 1.

Table 2 Average monetary cost ($) per iteration for Q-learning
without (agent 1) and with (agents 2 and 3) experience

sharing (phase 1: 0 < 10000iteration , phase 2:

10000 < 20000iteration , phase 3: 2000 iteration

policy 1

phase 1 phase 2 phase 3

No share – cost 0.1522 0.1285 0.1224

Share – cost 0.1517 0.1178 0.1170

Gain 5.4%

policy 2

phase 1 phase 2 phase 3

No share – cost 0.1513 0.1245 0.1175

Share – cost 0.1517 0.1123 0.1119

Gain 6.1%

policy 3

phase 1 phase 2 phase 3

No share – cost 0.1322 0.1204 0.1092

Share – cost 0.1216 0.1110 0.1037

Gain 5.8%

Figure 9 Evolution of monetary cost over time (no share vs. share)

Then we vary the number of agents and observe the
evolution of the monetary cost and allocation duration:
scaling+placement+scheduling (Figure 11). On the one
hand, the monetary cost decreases with the increase in the
number of agents. Indeed, more there are agents sharing
their experience, faster is the learning and therefore the
auto-scaling is done in a more efficient way. On the other
hand, the increase in the number of agents implies more
messages exchanged and therefore more allocation duration.
To limit the allocation duration when the number of agents
is very large, it is possible to group the agents into clusters
such that each agent shares its experience only with the
agents of his cluster. Another solution is not to exchange at
each iteration but rather after a certain number of iterations.

4.4 Experiment 3: comparison of the standard

Q-learning algorithm and the Sarsa variant

(standard Q-learning vs. Sarsa)

We show in this experiment why we chose the Sarsa variant

as a learning algorithm. The difference between the standard

Q-learning algorithm and Sarsa is the way to update the

values of ˆ (,)Q s a . Standard Q-learning uses the best action

a of the next state s to update ˆ (,)Q s a while Sarsa first

chooses an action a using the current policy and then

returns to update ˆ (,)Q s a . The two algorithms combine the

exploration and the optimisation in the decision making but

the standard Q-learning considers that the agent takes always

the optimal policy when updating the values of Q̂ whereas

Sarsa considers the fact that actual policy combines the

exploration and the optimisation (i.e. Sarsa allows the agent

to learn that some of his decisions are random). The stored

experience in Sarsa is, therefore, more accurate than the

standard Q-learning. We consider only one agent in this

experiment. Table 3 and Figure 10 confirm that Sarsa is more

efficient than Standard Q-learning in terms of monetary cost.

Table 3 Average monetary cost ($) per iteration for standard

Q-learning and Sarsa (phase 1: 0 < 20000iteration ,

phase 2: 20000 < 40000iteration , phase 3:

40000 < 70000iteration)

policy 1

phase 1 phase 2 phase 3

Standard QL – cost 0.1518 0.1304 0.1208

Sarsa – cost 0.1519 0.1232 0.1182

policy 2

phase 1 phase 2 phase 3

Standard QL – cost 0.1522 0.1256 0.1163

Sarsa – cost 0.1525 0.1176 0.1133

policy 3

phase 1 phase 2 phase 3

Standard QL – cost 0.1344 0.1228 0.1089

Sarsa – cost 0.1269 0.1108 0.1029

Figure 10 Evolution of monetary cost over time (standard Q-learning vs. Sarsa)

Figure 11 Monetary cost vs. average allocation time

4.5 Discussion

The performed experiments concern three aspects:

 First, reinforcement learning and its applicability to

the auto-scaling problem for SQL-like queries. A

comparison of our auto-scaling method and an existing

method showed the benefit of using the placement-

scheduling output. The state definition of the MDP is

more precise so the monetary cost is lower.

 Then, the collaboration between agents. We observed

that exploiting the shared experience allows agents to

learn faster and reduce costs but the allocation time is

more important because of the communication between

agents.

 Finally, the performance of Sarsa learning. Sarsa variant

is more efficient than the standard Q-learning. This can

be explained by the fact that Sarsa is based on more

precise calculations of Q̂ . Indeed, Sarsa allows the agent

to learn that some of his decisions are random.

5 Related work

The existing methods that deal with auto-scaling are diverse in
regards to the decision making approach. Each work has been
designed with particular goals and focusing on a target
architecture. State-of-the-art methods can be classified in
different ways. In this section, we give a brief overview of
existing methods and focus on two approaches: (1) threshold
based and (2) reinforcement learning. On the one hand, because
of its intuitive appearance, the threshold based approach is
adopted by the current cloud providers. On the other hand,
reinforcement learning is currently experiencing interest from
the scientific community and its adoption for different cloud
applications and architectures is a promising trend.

5.1 Threshold based approach

Using threshold rules is a well-known approach for auto-

scaling in the cloud. The idea is to add new resources when a

certain metric exceeds an allocation threshold and to release

resources when the metric is below a release threshold.

Existing work can be classified into two categories. Some

works are based on the observed values of the metric (Han

et al., 2012; Hasan et al., 2012) while others apply prediction

techniques (Khatua et al., 2010). Han et al. (2012) claim that

scaling resources does not always require to add or remove

VMs constantly. Modifying VM’s capacity (CPU and

memory) can be conducted to achieve scaling with fewer

costs and less time. They introduced a lightweight algorithm

to enable scaling at the level of underlying CPU and memory.

The solution uses separate thresholds for the processor and

the memory. The considered metrics are based on observation

and not predictions. Moreover, communication costs are not

considered.

The communication aspect has been considered in some

works. Hasan et al. (2012) use link load, jitter, and delay as

metrics. They focus on the relation between compute and

network. They emphasise the fact that these three domains are

often considered separately for scaling. To address this

limitation, they proposed a threshold mechanism that

combines metrics from computing and network domains.

This work also considers only observed values to compute

metrics.

Some other works propose to associate the approach of

thresholds with a voting process (RightScale). Each VM votes

for a scaling action (add or remove resources). The vote is

based on one or more rules managed by metrics and thresholds.

The scaling action is triggered if the majority of VMs agree.

This solution was adopted by Chieu et al. (2011) and Simmons

et al. (2011). There are also works that combined the threshold-

based approach with other scaling approaches. Ghanbari et al.

(2011) propose an elasticity policy using both control theory

and threshold based approaches. Unlike the use of thresholds

which is more intuitive, the control theory is based on

mathematical modeling. RightScale was used in this work as a

threshold based management cloud system.

All the works cited above use the observed values to

calculate the metrics. Other studies have considered the

prediction of future values. We mention, for example,

Khatua et al. (2010) who uses time series theory (Mills,

1991) to predict future values. If any of the predicted values

exceeds the predefined threshold then an event is triggered.

The intuitive nature of threshold rules attracted cloud

providers. However, the choice of metrics to consider and

the setting of thresholds in an efficient manner requires

human intervention and a deep understanding of the current

workload trends which is not easy to achieve. Another

approach independent of human intervention interests the

scientific community. It is based on reinforcement learning

5.2 Reinforcement learning approach

Reinforcement learning has been adopted for auto-scaling in

some cloud work. Existing methods can be differentiated by

the scaling mode, the learning algorithm and the technique

used to accelerate learning.

Scaling mode in the cloud can be horizontal or vertical.

In the horizontal scaling, possible actions are to add or

remove resources (Dutreilh et al., 2011). In the vertical

scaling, contrariwise, the number of resources is fixed and

possible actions consist to adjust their configuration in terms

of CPU and memory (Rao et al., 2009, 2011).

The typical reinforcement learning algorithm is standard

Q-learning but some works use a variant called Sarsa

(Tesauro et al., 2006). The two variants were considered and

compared in the experimental section. More details on the

difference between standard Q-learning and Sarsa can be

found in Alpaydin (2014).

Despite their advantages, reinforcement learning

algorithms have certain problems including the large

learning time and the size of the state space. Dutreilh et al.

(2011) introduce a greedy policy to find a good initialisation

of learning values, a convergence speedup technique, and

performance model change detection. Rao et al. (2009)

propose initially to adopt a global reinforcement learning

model for vertical scaling. In this model, the state is

described by the amount of CPU/memory of all VMs in the

cloud. This approach gives rise to a very large number of

states and therefore a lot of time to sufficiently explore the

model. Then, Rao et al. (2011) consider that each VM has

its own local model and in this case, the state is defined

by the amount of CPU/memory of this VM only so the

complexity is reduced.

Barrett et al. (2013) use a parallel version of learning but

the level of generality is limited to the VM level (not logical

resource level), the auto-scaling is independent of

placement-scheduling and the specificities of databases

querying are not considered in the state description and

reward function).

5.3 Discussion

Few works for auto-scaling in the cloud are dedicated to

database querying. There are some works that proposed auto-

scaling solutions for databases in the cloud but they focused

on specific technologies, for example, MongoDB (Huang

et al., 2013) or Hadoop (Gandhi et al., 2016). These works

made performances (not monetary) metrics in their proposals.

Some work focuses on NoSQL databases. For example,

TIRAMOLA is an open-source framework to perform auto-

scaling of NoSQL clusters according to user-defined policies

(Konstantinou et al., 2012; Angelou et al., 2012; Tsoumakos

et al., 2013). Decisions on adding or removing workers are

modelled as MDPs. There is also existing work on cost-aware

horizontal scaling of NoSQL databases (Naskos et al., 2015,

2017, 2018). These proposals are based on MDPs as well and

they use probabilistic model checking as the main decision

mechanism. In our work we focus on more complex and

long-running queries.

The level of granularity in most existing work on auto-

scaling is limited to the VM level and queries are seen as

atomic entities. In our work, we consider a finer granularity

level. Indeed, a VM contains a set of logical resources and

each query is decomposed into a job (or stage) graph with

dependencies. Each logical resource uses a specific amount

of physical resources (CPU, memory, and disk) on a

specific machine. A job (or stage) contains a set of parallel

tasks. The problem is therefore much more complex if we

compare it to web applications.

Finally, the management of intermediate data is

generally neglected in the existing work. This is an

important feature for data processing applications. Indeed, if

the next consumer of intermediate data is not available

immediately, then this data might be stored. The use of

storage capacity in the cloud has a monetary cost that cannot

be ignored. Disks on Amazon S3, for example, are billed

according to the size and duration of storage.

6 Conclusion

We addressed in this paper the resource allocation problem

for database querying in the cloud. We proposed an auto-

scaling method coupled with placement-scheduling. The

auto-scaling is based on parallel reinforcement learning and

experience sharing. The results show that: (1) considering

placement and scheduling plan to describe the MDP is more

suitable to long queries than the reinforcement learning

methods proposed in previous work, (2) using experience

sharing reduces the monetary cost but generates exchanges

that increase the allocation duration, (3) the Sarsa variant of

Q-learning brings a lower monetary cost compared to the

standard Q-learning.
In future work, we will focus more on placement and

scheduling problems. So far, we proposed a static method
based on estimates (Appendices A and B). The real values
may not match those of the estimates at execution time
which will generate additional costs. We plan to design a
dynamic allocation strategy that detects estimation errors
during execution time and change the allocation plan to
reduce the impact of these errors.

References

Alpaydin, E. (2014) Introduction to Machine Learning, MIT Press.

Angelou, E., Papailiou, N., Konstantinou, I., Tsoumakos, D. and
Koziris, N. (2012) ‘Automatic scaling of selective sparql joins
using the tiramola system’, Proceedings of the 4th

International Workshop on Semantic Web Information

Management, ACM, p.1.

Armbrust, M., Xin, R.S., Lian, C. et al. (2015) ‘Spark sql:
relational data processing in spark’, Proceedings of the 2015

ACM SIGMOD International Conference on Management of

Data, ACM, pp.1383–1394.

Barrett, E., Howley, E. and Duggan, J. (2013) ‘Applying
reinforcement learning towards automating resource
allocation and application scalability in the cloud’,
Concurrency and Computation: Practice and Experience,
Vol. 25, No. 12, pp.1656–1674.

Chieu, T.C., Mohindra, A. and Karve, A.A. (2011) ‘Scalability and
performance of web applications in a compute cloud’, e-

Business Engineering (ICEBE), 2011 IEEE 8th International

Conference on, IEEE, pp.317–323.

Dean, J. and Ghemawat, S. (2008) ‘Mapreduce: simplified data
processing on large clusters’, Communications of the ACM,
Vol. 51, No. 1, pp.107–113.

Dean, J. and Ghemawat, S. (2010) ‘Mapreduce: a flexible data
processing tool’, Communications of the ACM, Vol. 53,
No. 1, pp.72–77.

Dutreilh, X., Kirgizov, S., Melekhova, O., Malenfant, J., Rivierre, N.
and Truck, I. (2011) ‘Using reinforcement learning for
autonomic resource allocation in clouds: towards a fully
automated workflow’, ICAS 2011, The Seventh International

Conference on Autonomic and Autonomous Systems, pp.67–74.

Gandhi, A., Thota, S., Dube, P., Kochut, A. and Zhang, L. (2016)
‘Autoscaling for hadoop clusters’, Cloud Engineering (IC2E),

2016 IEEE International Conference on, IEEE, pp.109–118.

Ghanbari, H., Simmons, B., Litoiu, M. and Iszlai, G. (2011)
‘Exploring alternative approaches to implement an elasticity
policy’, Cloud Computing (CLOUD), 2011 IEEE International

Conference on, IEEE, pp.716–723.

Grounds, M. and Kudenko, D. (2008) ‘Parallel reinforcement
learning with linear function approximation’, Adaptive Agents

and Multi-Agent Systems III. Adaptation and Multi-Agent

Learning, Springer, pp.60–74.

Han, R., Guo, L., Ghanem, M.M. and Guo, Y. (2012) ‘Lightweight
resource scaling for cloud applications’, Cluster, Cloud and

Grid Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium on, IEEE, pp.644–651.

Hasan, M.Z., Magana, E., Clemm, A., Tucker, L. and Gudreddi,
S.L.D. (2012) ‘Integrated and autonomic cloud resource
scaling’, Network Operations and Management Symposium

(NOMS), IEEE, pp.1327–1334.

Hromkovi , J. (2013) Algorithmics for hard problems: introduction to

combinatorial optimization, randomization, approximation, and

heuristics, Springer Science & Business Media.

Huang, C.-W., Shih, C.-C., Hu, W.-H., Lin, B.-T. and Cheng, C.-
W. (2013) ‘The improvement of auto-scaling mechanism for
distributed database-a case study for mongodb’, Network

Operations and Management Symposium (APNOMS), 2013

15th Asia-Pacific, IEEE, pp.1–3.

Kandi, M.M., Yin, S. and Hameurlain, A. (2018) ‘An integer
linear-programming based resource allocation method for
SQL-like queries in the cloud’, ACM Symposium on Applied

Computing (SAC), Pau, France.

Khatua, S., Ghosh, A. and Mukherjee, N. (2010) Optimizing the
utilization of virtual resources in cloud environment’, Virtual

Environments Human-Computer Interfaces and Measurement

Systems (VECIMS), 2010 IEEE International Conference on,
IEEE, pp.82–87.

Kllapi, H., Sitaridi, E., Tsangaris, M.M. and Ioannidis, Y. (2011)
‘Schedule optimization for data processing flows on the
cloud’, Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data, ACM, pp.289–300.

Konstantinou, I., Angelou, E., Tsoumakos, D., Boumpouka, C.,
Koziris, N. and Sioutas, S. (2012) ‘Tiramola: elastic nosql
provisioning through a cloud management platform’,
Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, ACM, pp.725–728.

Kretchmar, R.M. (2002) ‘Parallel reinforcement learning’, The 6th

World Conference on Systemics, Cybernetics, and Informatics.

Lawler, E.L. and Wood, D.E. (1966) ‘Branch-and-bound methods:
a survey’, Operations Research, Vol. 14, No. 4, pp.699–719.

Mills, T.C. (1991) Time Series Techniques for Economists,
Cambridge University Press.

Naskos, A., Gounaris, A. and Katsaros, P. (2017) ‘Cost-aware
horizontal scaling of nosql databases using probabilistic model
checking’, Cluster Computing, Vol. 20, No. 3, pp.2687–2701.

Naskos, A., Gounaris, A. and Konstantinou, I. (2018) ‘Elton: a
cloud resource scaling-out manager for nosql databases’,
2018 IEEE 34th International Conference on Data

Engineering (ICDE), IEEE, pp.1641–1644.

Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos,
D., Konstantinou, I. and Sioutas, S. (2015) ‘Dependable
horizontal scaling based on probabilistic model checking’,
15th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), IEEE, pp.31–40.

Rao, J., Bu, X., Xu, C.-Z. and Wang, K. (2011) ‘A distributed self-
learning approach for elastic provisioning of virtualized cloud
resources’, Modeling, Analysis and Simulation of Computer

and Telecommunication Systems (MASCOTS), 2011 IEEE

19th International Symposium on, IEEE, pp.45–54.

Rao, J., Bu, X., Xu, C.-Z., Wang, L. and Yin, G. (2009) ‘Vconf: a
reinforcement learning approach to virtual machines auto-
configuration’, Proceedings of the 6th international

conference on Autonomic computing, ACM, pp.137–146.

Saha, B., Shah, H., Seth, S., Vijayaraghavan, G., Murthy, A. and
Curino, C. (2015) ‘Apache tez: A unifying framework for
modeling and building data processing applications’,
Proceedings of the 2015 ACM SIGMOD international

conference on Management of Data, ACM, pp.1357–1369.

Simmons, B., Ghanbari, H., Litoiu, M. and Iszlai, G. (2011)
‘Managing a saas application in the cloud using paas policy sets
and a strategy-tree’, Proceedings of the 7th International

Conference on Network and Services Management, International
Federation for Information Processing, pp.343–347.

Tesauro, G., Jong, N.K., Das, R. and Bennani, M.N. (2006) ‘A
hybrid reinforcement learning approach to autonomic
resource allocation’, Autonomic Computing, 2006. ICAC’06.

IEEE International Conference on, IEEE, pp.65–73.

Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S. and
Koziris, N. (2013) ‘Automated, elastic resource provisioning
for nosql clusters using tiramola’, Cluster, Cloud and Grid

Computing (CCGrid), 2013 13th IEEE/ACM International

Symposium on, IEEE, pp.34–41.

Vavilapalli, V.K., Murthy, A.C., Douglas, C. et al. (2013) ‘Apache
hadoop yarn: yet another resource negotiator’, Proceedings of

the 4th annual Symposium on Cloud Computing, ACM, p.5.

Watkins, C.J.C.H. (1989) Learning from Delayed Rewards, PhD
Thesis, King’s College, Cambridge.

Yin, S., Hameurlain, A. and Morvan, F. (2018) ‘SLA definition for
multi-tenant dbms and its impact on query optimization’,
IEEE Transactions on Knowledge and Data Engineering,
Vol. 30, No. 11, pp.2213–2226.

Note

1 There are some differences between Hive/Tez and SparkSQL
on the technical side but the output of query complication is
similar. In both tools, the query is represented by a Directed
Acyclic Graph (DAG) that contains stages and parallel tasks.

Appendix A Task placement ILP model

Table A1 shows the sets, parameters, and variables of the

placement ILP model. The linear constraints are the following.
The memory amount needed for a task of the stage i

must not exceed the available memory amount in the chosen

logical resource r :

*

, ,()* (()), , ,m i m r m y iC i x C T r i m r (A1)

Each task is placed on one and only one logical resource:

, , = 1, ,i m r i

r

x i m (A2)

In order to ensure intra-stage parallelism, two tasks

belonging to the same stage cannot be placed in the same

resource:

, , 1, ,i m r

m
i

x i r (A3)

We recall that ,a bv is the maximum amount of data

transferred between the tasks placed on the resource a and

the task placed on the resource b . This definition satisfies

the statement (A4).

, , , , , ,
1 2 1 2

1 2 ,

= 1 = 1

, , , , , , > 0

i m r j r r r r i j

i j i j

x and x v Q

i j m r r r Q
(A4)

The statement (A4) can be expressed linearly with:

, , , , , , , ,

,

* * ,

, , , , , , > 0

i j i m a i j j r b a b i j

i j i j

Q x Q x v Q

i j m r a b Q
(A5)

We add the constraint (A6) to improve the fair distribution

of tasks between resources. Without this constraint, we

noticed that tasks are not distributed in a balanced way on

the resources. Tasks are more likely to be on the same

resource. This reduces communication costs but there is a

risk to be in situations where we have some too busy

resources (risk of exceeding deadlines) and other resources

underexploited. Adding the constraint (A6) makes it

possible to take into account the balanced distribution of

tasks on the available resources. The compromise between

load balancing and communication costs is expressed

in the objective function. We introduce the variable

{0,1...., }T . The objective function we present later

includes as a variable to minimise.

, , ,

<

* (1) ,i i m r r t

i m t T
i

T x F r (A6)

The following objective function f takes into account the

processor, memory, and network cost. It also takes into
account load balancing:

, ,

1 2 ,
1 2

1 2

= ()* *

(,)* *

i i m r

i m r
i

com r r rep

r r

f C r T x

C r r v W

The ILP formulation of the placement problem is:

, ,

, 1 2
1 2

minimise

subject to (A1), (A 2),(A 3),(A5),(A6)

{0,1}, , ,

{0,1...., }, ,

{0,1...., }

i m r i

r r

f

x i m r

v UpperBound r r

T

In the experimental section, the optimal solution of the
placement ILP is found with GLPK software using Branch-
and-Bound algorithm (Lawler and Wood, 1966; Hromkovi ,
2013).

Table A1 Notation used in the ILP placement and scheduling models

Sets

Set of stages of all submitted queries

i Set of tasks of the stage i

Set of resources types, each type is characterised by its memory capacity and monetary cost

Set of potential logical resources

The set of final stages of the submitted queries

Parameters

()yT r the type of the resource r , ()Ty r

* ()mC i The memory amount needed for a task of the stage i

()mC c the available memory amount in a type c resource c

,i jQ The amount of data transferred between a task of the stage i and a task of the stage j

iT The local response time of a task from stage i

T The number of considered future time windows

,r tF Indicate whether the resource a is initially available at the moment t (= 1) or not (= 0), r

Table A1 Notation used in the ILP placement and scheduling models (continued)

Parameters

1 2(,)Dist r r The distance between the resource 1r and the resource 2r

procW The processor cost weight

memW The memory cost weight

comW Load communication weight

repW repartition weight

()C r The cost of the logical resource r (() = * (())proc mem m yC r W W C T r)

1 2(,)comC r r The cost of communication between the logical resources 1r and 2r (1 2 1 2(,) = * (,)com comC r r W Dist r r)

,i jS indicates whether the stage i and j are linked by non-pipeline, ,i j , ,i jS {0,1} ("non-pipeline"

means that the task j can start from the moment the task i ends completely)

,i jP indicates whether the stage i and are linked by pipeline, , {0,1}i jP ("pipeline" means that the task j

can start as soon as the task i generates its first output)

,i mA indicates the logical resource in which the task im of the stage i was placed following the placement

phase

iD the deadline for the query to which the stage i belongs

iW the penalty weight associated with each run time window after the deadline of the stage

sW the weight associated with the storage cost of intermediate results

iq the estimated amount of data generated by the stage i tasks

Variables

, ,i m rx Define whether the task im of stage i is placed on the resource r (= 1) or not (= 0),

, , {0,1}i m rx

,1 2r brv The maximum amount of data transferred between the task placed on the resource 1r and the task placed on

the resource 2r

fictive variable used in constraint (15), {0,1...., }T

, ,i m ty defines whether the task im of the stage i started before, at (= 1) or after (= 0) the moment

0,...,t T , , , 0,1i m ty

, ,i m tw Defines whether the intermediate results of the task im of the stage i are stored at the moment

{0,..., }t T (= 1) or not (= 0), , , 0,1i m tw

,i t fictive variable, i , {0,..., }t T

Appendix B Task scheduling ILP model

The output of the placement model is considered as an input
to the scheduling ILP model that we present in this section.
Table A1 shows the sets, parameters, and variables of the
scheduling model. The linear constraints are as follows.

We can deduce from the definition of the family of
variables y that:

, , , , 1, , , <i m t i m t iy y i m t T (B1)

The intermediate results of a task are maintained on the
local storage space until all successive tasks begin:

, , , , , ,
1 2 1

1 2 , ,

= 1 = 0 = 1

, , , , = 1 = 1

i m t j m t i m t

i j i j i j

y and y w

i j m m S or P
(B2)

This constraint can be expressed linearly as follows:

, , , , , , , ,
1 2 1

1 2 ,

* *(1) 1,

, , , , < , > 1

i j i m t i j j m t i m t

i j i j

S y S y w

i j m m t T S
(B3)

, , , , , , , ,
1 2 1

1 2 ,

* *(1) 1,

, , , , < , > 1

i j i m t i j j m t i m t

i j i j

P y P y w

i j m m t T P
(B4)

A resource cannot run more than one task at a time (exclusivity
constraint). From the definition of the family of variables y and
knowing that a task cannot be interrupted before its end, we can

deduce that: , , , , = 1i m t i m t T
i

y y if the task m of the stage i

uses the resource r at moment t ; = 0 otherwise. The linear

formulation of the exclusivity constraint is as follows:

, , , ,

1
=

,

, , ,

<1
=

,

()

, , <

i m t i m t T
i

mi t Ti i
A r
i m

i m t r t
mi t Ti i

A r
i m

y y

y F r t T
(B5)

We propose the following formulation for the precedence
between tasks constraint. We recall that ‘pipeline’ means that
the task j can start as soon as the task i generates its first output.
‘non-pipeline’ means that the task j can start from the moment
the task i ends.

, , , , ,1 ,

, , , , 1

j r t i m t T i j
i

i j i

y y S

i j m r t T
(B6)

, , ,1 , , , , < 1j r t i j j iy S i j r t T (B7)

, , , , ,1 ,

, , , , <

j r t i m t i j

i j

y y P

i j m r t T
(B8)

The economic costs that influence the scheduling of tasks

are penalties and storage of intermediate results. The goal is

to find the combination of y and w that minimises this

cost. Each query has a deadline specified in SLAs. The

accumulation of penalties begins when the execution of the

query exceeds the deadline. The objective function to

minimise is the following. The first (resp. second) line

represents the penalty cost (resp. storage cost):

, ,

< <

, ,

<

= * (1)max

* *

i i r t
ri D T t T ii i

s i i m t

i m t T
i

g W y

W q w
(B9)

This objective function is non-linear. To have a linear form,
we introduce the family of variables such as:

, , ,1 , , <i r t i t iy i r t T (B10)

The objective function can be expressed linearly as follows:

,

< <

, ,

<

= *

* *

i i t

i D T t T
i i

s i i m t

i S m T t T
i

g W

W q w
(B11)

The ILP formulation for the scheduling problem is:

, ,

, ,

,

minimise

subject to (B1), (B3), (B4), (B5), (B6), (B7), (B8), (B10)

{0,1}, , , <

{0,1}, , , <

{0,1}, , <

i m t i

i m t i

i t

g

y i m t T

w i m t T

i t T

The optimal solution of the scheduling ILP is found with

GLPK software using Branch-and-Bound algorithm (Lawler

and Wood, 1966; Hromkovi , 2013).

