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When task descriptions are precise they can be analysed to yield a variety of insights about interaction, such
as the quantity of actions performed, the amount of information that must be perceived, and the cognitive
workload involved. Task modelling notations and associated tools provide support for precise task
description, but they generally provide a fixed set of constructs, which can limit their ability to model new
and evolving application domains and technologies. This article describes challenges involved in using fixed
notations for describing tasks. We use examples of recognized tasks analysis processes and their phases to
show the need for customization of task notations, and through a series of illustrative examples, we
demonstrate the benefits using our extensible task notation and tool (HAMSTERS-XL).
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1 INTRODUCTION

Task Analysis is a cornerstone of User Centered Design approaches, aiming to collect information
from users about the work they are doing and the way they perform it. According to Johnson [24]
“any Task Analysis is comprised of three major activities; first, the collection of data; second, the
analysis of that data; and third, the modelling of the task domain” (p.165). The means for
representing the outcomes of task analysis has important implications for the value and insight
gained from the process, not least because any omissions cannot be discussed (among the
stakeholders) or taken into consideration in later design phases.

The expressive power of the notation used to store and organize the information collected is
thus a key element that is put forward by researchers proposing new notations [6]. Since the
seminal HTA notation proposed by [1][2], relatively few notations to describe user tasks have
been proposed and they all tend to remain unchanged after their creation. While the notations
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remain largely constant, their associated tools typically evolve to address new challenges. For
instance, Paterno’s team has proposed several tools exploiting CTT notation since its creation in
1997 [55]: the original CTTe tool [42] supported editing, simulating and verifying CTT
task models; CTTEVis [57] added support for visualization; and a new tool added support
for collaborative modelling [31]. The stability of notations contrasts with the constant evolution
of application domains, technologies, and the nature of work operators’ work. This evolution
can create a gap between what the notation can describe and the actual work, limiting the scope
and potential benefits of using the notation at all. For instance, a notation like KMAD [6] or CTT
[55] would produce the same representation of tasks for interacting with a calculator
regardless of whether the calculator was a physical device, a desktop application, or an app on a
mobile phone. This lack of precision and detail make it impossible for analysts to assess
the interaction implications of moving from one technology to the other one.

Designing a notation and its associated tools is a complex and time-consuming process. It is
therefore unsurprising that evolutions are limited and can only be produced by research teams
with long lasting interests and recurrent funding. This is part of the reason for why
tasks notations have been built to address a broad spectrum of users’ work, covering
standard application domains and addressing widely available interaction techniques (such
as WIMP interfaces). However, extending notations and tools to support task analysis in
specialized domains requires either new notations or extensible/customizable notations. The
need of extensions is however well perceived and, for instance, temporal operators of CTT
notation have been extended in [61] to be able to describe user interface behaviour with task
models. This is a particular extension as the objective was to use the extended notation for a
purpose different than describing users’ tasks. A similar approach has been followed in [32]
where preconditions were added to elementary tasks with the objective of generating User
Interfaces. However, these extensions were then used for describing preconditions in task
models  themselves  [16].  This demonstrates the need and the usefulness of customizing
notations to increase their suitability for modelling.

This article addresses customization of task analysis at two levels: first, a notation for
modelling tasks is modified with features that enable the notation to be customized, allowing
new interactive elements to be described using the notation; second, an associated modelling
tool is extended to support the editing and simulation of customized task models.
Although our description and demonstration of these new abilities is based on an existing
task modelling notation, the concepts are generic enough to be embedded in other platforms.

The article is structured as follows: section 2 presents the motivation underlying the
customization of tasks descriptions. It first highlights the importance of task analysis in UCD
approaches. Then, using an illustrative example, it demonstrates the increasing gap between the
expressive power of task modelling notations and the actual work context and technologies of
interaction. Section 3 presents related work on task modelling techniques and how these
techniques can be embedded in the generic process of task analysis. This generic process makes
explicit the expected outcome of the task analysis and how these outcomes can be supported by
modelling tasks and analysing those task models. Section 4 describes issues associated with the
selection and customization of task modelling techniques, and the customization process is
exemplified with the HAMSTERS task modelling notation [40][35]. Section 5 presents the
HAMSTERS-XLE environment, a computer-aided software environment that supports task
modelling using the customizable HAMSTERS-XL notation. Section 6 further demonstrates the
value of the tools and methods through a set of examples of customized task modelling.

2 MOTIVATIONS

This section highlights the current limitations of task modelling notations when used for non-
standard application domains and technologies. Starting with a list of potential benefits for



exploiting task analysis in User Centered approaches, we demonstrate that static notations
constrain the benefits of notation-based task analysis.

2.1 Scope and objectives of task analysis in UCD approaches

Task analysis is a fundamental technique in Human-Computer Interaction [19], used to
understand the users’ goals and tasks as well as their means for completing them. Many instances
of this technique exist to provide support for the design and evaluation of interactive systems.
The following non-exhaustive list identifies some of the objectives of task analysis, highlighting
its broad range of uses:
- Identification and description of the required functions for interactive system [19] [55],
- Identification and description of knowledge required to perform a task [10] [25] [39]
[59],
- Identification and description of the temporal ordering of the user actions with the
system [26] [34] [55],
- Identification and description of the different user roles and actors for groupware
systems [58] [62],
- Identification and description of workflow between users for collaborative activities [58]
[62],
- Understanding of an application domain [54],
- Recording the results of interdisciplinary discussions [46] [54],
- Production of scenarios for user evaluation [65] as well identification and generation of
relevant test cases [8],
- Heuristic evaluation of usability of interactive applications [7] [58],
- Predictive assessment of task complexity and workload (motor, cognitive, perceptive)
[45],
- Predictive assessment of user performance when interacting with the system [23],
- Exploration of the range of ways in which the system may be used [58],
- Preparation of training programs [1] [2] [38],
- Production of user manual [18] [53] and contextual help [20] [47] [53] [54],
- Identification and description of possible allocation of functions and tasks between the
system and the user [35] [48],
- Designing new applications consistent with the user conceptual model [54],
- Identification and description of potential user errors [14] [61]

Task analysis is thus a pillar of UCD approaches for the design of interactive systems. If the
results of task analysis do not contain sufficient information, the missing information may
negatively affect the design of the interactive system and its usability. The following section
illustrates this problem.

2.2 The effectiveness of task analysis depends on modelling the selected notations’
expressiveness

The models that result from task analysis will differ according to the features of the selected
modelling language or notation. These modelling differences are likely to illuminate (or suppress)
different aspects of the interaction. It is therefore important to choose the most suitable task
modelling technique, i.e. the notation with the most suitable expressiveness, which highlights the
aspects that are relevant to the goals of his/her analysis.

This section demonstrates by example that the effectiveness of a task analysis process depends
on the expressiveness of the notation used to describe the tasks. In this demonstration,
two different task modelling notations are employed to describe the simple task “Withdraw
money” from two versions of an Automated Teller Machine (ATM). The analysis focuses on

the user’s cognitive activities and the quantity of physical movement required. The first version
of the ATM



has a keyboard and a non-tactile screen (depicted in Fig. 1a). The second version of the ATM has
a fully tactile screen (depicted in Fig. 1b).

a)

Fig. 1. Example of ATM with a) hard keys and output only screen and b) fully tactile screen

In order to perform the analysis, we first gather the set of user tasks, and we then record the
data using two task modelling notations: the CTT (ConcurTaskTrees) notation [55] and the
HAMSTERS notation and tool [40]. The CTT notation and CTTE tool are widely used for task
analysis (more than 10K registered users) [64]. HAMSTERS aims at editing and simulating user
tasks with large-scale interactive systems [40], and it provides support for task-centered design
and development of interactive systems [49]. Both notations provide support for describing user
tasks in a hierarchical and temporally ordered way.

Fig. 2 to Fig. 7 present the CTT task models (global views and focus views) for the user task
“Select amount” required to reach the user goal “Withdraw Money” with the ATM. Fig. 3 focusses
on the part “a” of Fig. 2, concerning amount selection using the hard keys ATM. First, the system
displays available amounts (“Display available amounts” system task with perceivable object,
represented with an arc on top of the system task) that the user perceives (“Perceive available
amounts” user task). The user chooses needed amount among the list of available amounts
(“Choose amount” user task). Then, the user focus on the area where the needed amount is
displayed.

- = B s
e i
Dizplay available amounts Ferceive available amounts -7 3 Focuson area around dizplayed needed amount

Analyze available amount in the list Decide to select needed amount

Fig. 3. Focus on part « a » of the CTT task model of the user task “Select amount” of Fig. 2



Fig. 4 presents the following tasks of the Fig. 3 and the part “b” of Fig. 2. The user perceives
the selection control, analyses its position and decides to trigger it. Then, the user moves the
finger on key and presses it to trigger the interactive task to select amount.

AT ey gl

Ferceive selection contral Analyze position of selection control Decide to trigger selection contral oufo interact Click to zalact amount

e

Mowve fingerto key Prass key

Fig. 4. Focus on part « b » of the CTT task model of the user task “Select amount” of Fig. 2
Fig. 5 describes the part “c” of Fig. 2. The user perceives that the button is down and gets a
sound feedback (“Produce sound “beep”” system task with perceivable object and “Perceive sound
“beep”” user task, represented with an arc on top of the system task) from the ATM. Then, the
system processes the selection and gives a selection feedback (it displays selected amount).
Finally, the user perceives and analyses the selected amount. Then, the user decides that the
correct amount is selected.
m
})—@_}}_2;:%5—}

Perceive button is down etfesdbach Frocess selaction et saTaedip Analyze amount iz selactad Decide amaunt iz selected

e e

Froduce sound "heep" Ferceive zound "beep” Display selected amount Fereeive salectad amount

Fig. 5. Focus on part « ¢ » of the CTT task model of the user task “Select amount” of Fig. 2

Fig. 6 proposes an overview of the user task “Select amount” required to reach the user goal
“Withdraw Money” with a fully tactile screen.

Fig. 6. CTT Task model of the user task « select amount » with the “fully tactile screen” version of the
ATM

Fig. 7 focuses on the part “a” of Fig. 6 where we see a tiny difference in the first produced
feedbacks. Indeed, the system produces a haptic feedback (“Haptic feedback” system task with
perceivable object, represented with an arc on top of the system task) whereas the system
produces a sound feedback in the hard keys version of the ATM.
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Fig. 7. Focus on part « a » of the CTT task model of the user task “Select amount” of Fig. 6

It is important to note that the task models for describing the user tasks with both types of
technologies (“hard keys and output only screen” version and “fully tactile screen” version) are
very similar. The structures of the models are the same, the number of tasks are the almost the
same, the representation of the nature of the tasks (i.e. the types of tasks) are the same. The main
differences are the text labels displayed under the tasks. Then, it is not easy to analyse the
differences of usage between the two versions of the ATM.

From these task models, we extract the precise number of tasks per types and we build the
table of comparison of the number of tasks for the two versions of the ATM (see Table 1).

Table 1. Comparison of the number of tasks per types for the two version of the ATM

CTT models for “hardkeys +  CTT models for “fully tactile
output only display” version  display” version of the ATM

of the ATM
User 14 13
Interactive 1 1
System
Objects perceivable by the user 5 6

The data from the CTT models, summarized in Table 1, suggests that the two alternative ATM
designs are similar in terms of user actions. However, it is not possible to analyse whether the
distribution of cognitive and motoric activities is also similar — CTT lacks the expressivity to
explicitly encode these features.

We now use the HAMSTERS notation to describe the user tasks for the same two versions of
the ATM. Fig. 8 and Fig. 9 presents the HAMSTERS models for the user task “Select amount”
required to reach the user goal “Withdraw Money” with the ATM.”. In Fig. 8, the user faces an
ATM with hard keys and a non-tactile screen. Once the user is authenticated (folded abstract task
“Authenticate”), the system “Display(s) available amounts” and the user decides the amount to
withdraw (“Inf: Amount needed”) from the displayed list (“Perceive available amount” and
“Choose amount”). The user needs to “Focus on area around displayed needed amount” in order
to “Perceive selection control” matching the amount needed. When the user “Decide(s) to trigger
selection control”, she/he “Move(s) finger to key”, “Press (the) key” and “Perceive(s) button is
down”. This triggers the system output “Select amount” for which the system provides a sound
feedback (“Produce sound beep”) that is perceived by the user. The system also provide a visual
selection feedback through the “Display selected amount” output task.
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Fig. 8. HAMSTERS Task model of the user task “select amount” with the “hard keys + output only screen”

In Fig. 9, the user exploits an ATM with a fully tactile screen. Here we observe that whilst the
initial system and user behaviours are the same, the feedback provided by the system is different.

Indeed, the system do not produce a beep: the system “Display(s) visual feedback” and produces
“Haptic feedback” that the user should perceive.
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Fig. 9. HAMSTERS Task model of the user task “select amount” with the “fully tactile screen”



It is important to note that the task models for describing the user tasks with both types of
technologies (“hard keys and output only screen” version and “fully tactile screen” version) are
very similar. The structures of the models are the same, the number of tasks are the almost the
same. The representation of the nature of the tasks (i.e. the types of tasks) is broader but there
are no visible differences between the natures of the tasks for the two versions of the ATM. There
are also differences in the text labels displayed under the tasks. From these task models, we extract
the number of tasks per types and we update the table of comparison of the number of tasks for
the two versions of ATM (see Table 2).

Table 2. Comparison of the number of tasks per types and of the types of manipulated data

CTT models for ~ CTT models for HAMSTERS HAMSTERS
“hardkeys + “fully tactile models for models for “fully
output only display” ATM “hardkeys + tactile display”
display” ATM output only ATM
display” ATM

User 14 13 15 14
Perceptive NA NA 6 5
Motor NA NA 2 2
Cognitive NA NA 1 1
Cognitive NA NA 3 3
analysis
Cognitive NA NA 3 3
decision

Interactive 1 1 1 1
Input NA NA 1 1
Input/Output NA NA 0 0

System 4 4 4 5
Output NA NA 3 4
Processing NA NA 1 1

Manipulated data 5 6 7 5
Object 5 6 1 1
Information NA NA 3 3
Input device NA NA 1 0
Output device NA NA 2 0
Input/output NA NA 0 1
device

The HAMSTERS model (right columns of Table 2) permits easy comparison of the cognitive
demands and number of motor actions with the two ATM designs (they are similar). However,
neither the CTT nor HAMSTERS models reveals data on the quantity of movement for the two
ATM demands - neither notation provides the expressiveness required for this analysis.

This example of task analysis performed with two different task modelling notations illustrates
the fact that the scope of task analysis relies on the notation used to describe user tasks. Having
a notation that embeds all the required elements for the targeted analysis is thus important to
reach all the goals of the targeted analysis.



2.3 Interactive systems and interaction techniques evolve faster than task modelling
notations

Each task modelling technique initially targets a particular type of interactive system and
sometimes a particular application domain (Table 3 shows some examples). However, the type of
technology manipulated by the user has an impact on the user tasks. For example, from a user
motoric action perspective, triggering a command by pressing a mouse button is different from
triggering the same command by performing a gesture in the air. The previous section shows a
simple example of this limitation, but the increasing variety and number of interaction techniques
and interactive systems generates an important need of means for precisely refining the
description of user tasks. Task modelling notations should support the addition of new types of
user actions, as well new types of devices, data and knowledge that may be required during the
performance of interactive tasks.

Some task modelling notations have been refined to support representation of specific data
types and devices. For example, since the release of the TERESA framework [CITE], the CTT
notation was extended to support description of the type of interactive system (desktop, mobile)
manipulated by the user [42]. Another example is the K-MAD notation, which provided elements
to describe large and structured conditions on objects for enabling the execution of a task [6]. The
HAMSTERS notation was also modified to allow description of manipulated devices, information
and physical objects [39]. However, these refinements are insufficient to cover the rapid evolution
of the technologies and usages for interactive systems.

3 RELATED WORK

This section provides an overview of existing task analysis techniques and their main objectives.

3.1 Task analysis techniques and their associated task modelling notations

This section provides a non-exhaustive review of existing task analysis techniques, as
summarized in Table 3. For each technique the table summarizes the primary scope and objective
of the analysis (the main purpose for a designer/analyst to use the technique), output format for
the results of the analysis, notation for the task models, the associated technologies for the
interactive system under analysis, and an example of results of the task analysis. Table 3
illustrates the relationships between the scope and objectives of the task analysis and the
characteristics of the associated task modelling notation. For example, the task analysis
techniques and associated notation TKS was created to specify knowledge required by the user
to use a desktop application. The elements of the TKS notation consequently embed constructs
for representing procedural and declarative knowledge.

It is important to note that some tools supporting those notations offer some customization
but this is never made explicit as a feature of the tools. A good example of that is CTTE [42] where
each task element belongs to a category (abstract, user, system, interactive). This list of categories
cannot be extended but it is possible to add a new task type to any category as an attribute of the
task element. However, this information is not visible on the models and users are required to
open the information about the task element to identify its task type. This demonstrates again the
need for customization and the proposed approach presented in the paper supports explicit and
systematic customization of task modelling notations.



Table 3. Examples of task analysis techniques and their main characteristics (chronological order)

Task Scope and Output  Associated Associated Examples of
analysis objectives of the format task technologies result of the
technique task analysis modelling for the analysis
notation interactive
system under
analysis
HTA [1] Identification of user Task HTA Steel Set of alternatives
Hierarchical tasks model production, of user tasks,
Task Analysis Preparation of and chemical descriptions of
training programs tables of refining, power procedures for
tasks plant training
GOMS [23] Prediction of human Tables of ~ KLM, CMN- Desktop Estimated time to
performance while predicte GOMS, computer move text in a text
interacting with a user d times NGOMSL, edition tool,
interface for user CPM-GOMS estimated time to
actions learn a set of tasks
TKS [25] Identification of the Task TKS Desktop Spec. of procedural
knowledge required to  models computers and declarative
perform a task knowledge required
to use a system
CTT [55] Identification of user Task CTT Desktop Spec. of the UI
tasks, system tasks models, computers (has dialog
and interactive tasks scenario since been Percentage of user
Identification of s refined for tasks covered by the
temporal relationships mobile and web interactive system
between them technologies)
Identification of UI
objects perceivable by
the user
GTA [62] Identification of user Task MAD Desktop Spec. of
roles and user tasks models, computers collaborative
for collaborative scenario activities while
activities, identify s, flow using a groupware
usability problems diagrams system
COMM [26] Identification of user, Task COMM Desktop Spec. of multi-user
system, interactive models computers, multimodal
and group tasks, command and interactive systems
identification of control
temporal applications
combinations between
modalities
HAMSTERS Identification of user, Task HAMSTERS Desktop Spec. of user tasks,
[40] system and interactive =~ models, computers, consistency
tasks, temporal scenario command and between user tasks
relationships, s control and system dialog
manipulated data applications model, automation
Allocation of possibilities,
functions knowledge required
Identification of to use the system
cooperative activities
CoTAL [5] Identification of roles, Task CoTAL Desktop Spec. of roles, actors
actors and cooperative ~ models computers, and cooperative

activities

smart rooms

activities while
using a groupware
system




3.2 Process for performing a task analysis that relies on task models

Performing a task analysis requires a choice of analysis technique, and this choice influences the
outcomes and insights generated from the analysis. Annett [1] and Diaper [11] both recommend
the following preliminary steps when considering a task analysis: identify the scope of the
analysis, identify the output format for the analysis, identify the data that needs to be collected
and then select the most relevant technique.

Fig. 10 summarizes the process of task analysis, with preliminary steps on the left. Once a
particular task modelling technique is selected (top middle of the Fig. 10), it is applied (right side
of Fig. 10). The set of steps for the application of the chosen task modelling technique are the
following: information collection and identification of user tasks, production of the task models,
and validation of the task models and processing of the task models according to the objectives
of the analysis.

The dotted lines around the artefacts “Most relevant task modelling technique” (middle top of
Fig. 10), “Task models” (right, middle of Fig. 10) and “Application of the task modelling technique”
indicate that the chosen technique and notation may not support description of all of the
necessary information. The Fig. 10 therefore highlights the limitation of task modelling notations
and tools for adequately fulfilling the task analysis processes — the “most relevant task analysis
technique” may not fully cover the types of information that need to be represented.
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Fig. 10. Process for performing a task analysis that relies on task models



4 A PROCESS FOR CUSTOMIZING A TASK MODELLING NOTATION

Section 2 established that the choice of task analysis notation influences the resultant design
insights emerging from the task analysis. It also established that when new interaction contexts
emerge (such as new task domains or technologies) it is likely that gulfs of expressivity will be
created due to the inability of the notation to adequately capture salient task details. In order to
overcome the limitation of the task analysis processes that rely on task modelling notations, we
propose a modification of the task analysis process summarized in Fig. 10. The new steps aim at
enabling the customization of the task modelling notation, in order to fill the gap between its
expressive power and the actual work context. We demonstrate the feasibility of the process using

the example of a task modelling notation, named HAMSTERS-XL.

4.1 Process for performing a task analysis that relies on task models

Fig. 11 depicts the proposed process for customizing a task modelling notation, using a modified

version of Fig. 10.
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The main additions in the process concern the notation customization steps in the middle
column of the Fig. 11, which enables all of the required information to be captured by the notation
(and hence the dotted elements of Fig. 10 are solid in Fig. 11).

The next section provides an example of this process using the HAMSTERS-XL notation.

4.2 The core elements of the HAMSTERS-XL notation

The HAMSTERS-XL notation is a new version of the HAMSTERS notation [40]. HAMSTERS
(Human - centered Assessment and Modelling to Support Task Engineering for Resilient
Systems) is a tool-supported task modelling notation for representing human activities in a
hierarchical and structured way, with the intention of supporting modelling consistency,
coherence and conformity between user tasks and interactive systems [34].

4.2.1 Hierarchy, task types and temporal ordering. The HAMSTERS-XL notation specifies a tree
of nodes that can be tasks or temporal operators. The top node represents the main goal of the
user, with lower levels representing sub-goals, tasks and actions, similar to HTA representation
[1]. Fig. 2 and Fig. 8 present examples of this hierarchical decomposition.

Fig. 12 shows the palette of selectable elements in the HAMSTERS-XL notation. The parts
numbered 1, 2, 3, 5 presents the main task types: abstract, user, interactive and system tasks. User
task types can be refined into perceptive, motor, cognitive analysis, and cognitive decision tasks.
These task types provide support for assessing automation, and, in particular, for assessing
allocation of tasks and functions between the user and the system [35], as well as for comparing
cognitive load between different designs (as illustrated in section 2.2).
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Fig. 12. Palette of the elements of notation of HAMSTERS

Temporal operators (numbered 4 in Fig. 12) are used to represent temporal relationships
between sub-goals and between activities, as introduced in [55] (see [56] for the last version of
the notation). In Fig. 9, the task models describe the possible ordering of user actions using the
temporal operators sequence “>>" and concurrence “|||”. Additional temporal characteristics can
also be specified for optional, iterative, and timed tasks (illustrated in Fig. 13).
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Fig. 13. Representation of temporal properties of tasks

4.2.2 Data manipulated during the accomplishment of a task. Elements of notations for
representing data manipulated by the user or the system are present in several notations such as
objects in CTT [55] and K-MAD [6], and knowledge in TKS [25]. HAMSTERS-XL also provides
support for the explicit representation of several types of data manipulated and required for the
accomplishment of a task (depicted in Fig. 14).
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Fig. 14. Data manipulated during the accomplishment of a task

Fig. 14a. presents the information and knowledge data types that the user may manipulate.
“Inf” nodes represent the information that the user requires, such as the “Inf: Amount needed”
nodes in the ATM example shown in Fig. 8 and Fig. 9. The user may also derive information
requirements from information presented by the system, such as determining the Amount Needed
based on system feedback (e.g., in Fig. 8 and in Fig. 9 the perceptive task “Perceive available
amount” influences the determined amount needed). The “knowledge” nodes in Fig. 14a refer to
declarative, strategic and situational knowledge (the user’s procedural knowledge is implicitly
encoded in the structure of the task model itself).

Fig. 14b. presents the following data types: physical object, time and event. Performing a task
may require to use, produce, modify, capture or release a physical object (“Phy O” followed by a
text description in Fig. 14c)). For example, using an ATM requires the physical object “Card”. The
data type “Event” provides support for the description of events that may trigger the performance
of a task. The data type “Event” provides support for describing the task triggers named
“Temporal”, “External event” and “Environmental cue” that have been enumerated and studied in
[12].

Fig. 14c. presents data types that belong to the system side: (software) object (“Obj:” followed
by a text description), software application (“SwA:” followed by a text description), input device
(“in D:” followed by a text description), output device (“out D:” followed by a text description)
and input/output device (“i/o D:” followed by a text description). Fig. 8 and Fig. 9 exemplify their
use in describing input and output devices (keyboard, display, tactile display) as well as the objects
produced by an input task (e.g., “O: requested amount”).

The HAMSTERS-XL notation provides support for the description of pre-conditions for
accomplishing a task (graphical elements arrows drawn between tasks and data). Pre-conditions
can be simple (conditional on one type of data) or composed (conditional on several types of data).
With HAMSTERS, it is possible to describe pre-conditions by drawing a “Test” arrow between
the data and the task. More complex pre-conditions can be specified using Boolean expressions.

4.2.3 Additional constructs available in HAMSTERS. Complexity in models is a recurrent
problem, and the time required to produce them can disincentivise their use in design projects.
HAMSTERS provides three mechanisms (Sub-models, Sub-routines [40] and Components [15]) to
help reduce the complexity (through structuring and reuse) and time demands of producing task
models, as shown in [15] [40].



Collaborative tasks. HAMSTERS-XL supports specification of tasks that are completed
individually, collaboratively and cooperatively. Collaborative work can be described at different
abstraction levels: at the group level and at the individual level. A group task is a set of task that
a group has to carry out in order to achieve a common goal [41], whereas a cooperative task is an
individual task performed by a person in order to contribute to the achievement of the common
goal [60]. Collaborative tasks may be performed with time constraints (local/distant,
synchronous/asynchronous) and properties (production, communication, coordination) [33].

Human errors. HAMSTERS-XL provides notational elements that identify and describe possible
human errors [14], which provides support to determine opportunities for re-design [37].

A detailed description of the main elements of the notation is available in [36].

5 HAMSTERS-XLE: HAMSTERS-XL Environment

This section presents HAMSTERS-XLE, which is the computer aided software environment for
customizing, editing and simulating HAMSTERS-XL task models. It provides support for:
- editing and simulation of task models created with the HAMSTERS-XL notation,
- creating customized versions of the HAMSTERS-XL notation (adding or removal of
elements of notation)
Fig. 15 shows a screenshot of HAMSTERS-XLE with the task models for the comparison of the
two version of the ATM open (the central pane shows the description for the task “Withdraw
Money” using the tactile version of the ATM.
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Fig. 15. Screenshot of the HAMSTERS-XL Environment

The HAMSTERS-XLE uses the Netbeans Platform [44] and Maven framework [3]. It
encompasses basic IDE functions such as project management, unit testing, and versioning. As
explained in Section 4.3, the elements of notation that require customization are the types of tasks
and data; HAMSTERS-XLE supports customization of these elements, using the steps shown in
Fig. 16.
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Fig. 16. Steps for using HAMSTERS-XLE for customizing HAMSTERS-XL notation

6 VALIDATION OF THE PROCESS FROM EXAMPLES

To demonstrate the feasibility and usefulness of the customization process, this section presents
small examples from case studies of task analysis.

6.1 HAMSTERS-XL|Tactile ATM

This first example presents customization of the HAMSTERS-XL notation in support of the
Tactile ATM example introduced in Section 2.2. Five customizations were required to cover
specific task elements, as summarized in see Table 4.

Table 4. Proposed customizations for HAMSTERS-XL|Tactile ATM

Icon \ f's Tb @ 9

Description Move arm Finger press Finger touch Sight Hear
motoric task motoric task (put on) perceptive perceptive
motoric task task task

Fig. 17 presents the task model for the goal “Withdraw money” using an ATM with hard keys
and an output only screen. The sequence of high-level tasks to reach the goal are: to authenticate,
to select amount, the ATM has to process request and, to finalize withdraw by taking the money
and card. The Fig. 17 details “Select amount” abstract task with the following sequence. First, the
ATM displays available amounts and the user perceives them and choose one among them. Then,
the user has to reach the associated hard key (“Move arm to key” Right arm move motoric task
and “Put finger on the button” Right hand finger put on motoric task) and to press it to
communicate her/his choice to the ATM (“Press key” Right hand finger press motoric task and
“Select amount” Interactive input task). The user perceives the sound feedback (“Ear sound beep”
Ear perceptive task) and the selected amount. Finally, he/she analyses and determines that she/he
correctly selected the desired amount.
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Fig. 17. Task model of the user task “Withdraw money” with the “hard keys + output only screen” version
of the ATM produced using the customization HAMSTERS-XL|Tactile ATM
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Fig. 18. Task model of the user task “Withdraw money” with the “fully tactile screen” version of the ATM
produced using the customization HAMSTERS-XL|Tactile ATM

Fig. 18 presents the task model for the user goal “Withdraw money” using an ATM with a fully
tactile screen. The tasks to reach the goal are the same as the previous described model except for
the motoric task and feedbacks tasks. The user just has to put the finger on the screen to trigger
the interaction (“Put the finger on the screen” finger touch motoric task) whereas the user has to



press the button in the previous model. Moreover, there is no sound feedback with this version
of ATM but a haptic feedback perceived by the user (“Feel haptic feedback” touch perceptive task).

Table 5 provides a summary comparison of the original HAMSTERS models and the
HAMSTERS-XL models for the hardkey and tactile ATMs. The customized HAMSTERS-XL
models provide additional insights into specific perceptive and motoric actions that were
unavailable with the original models.

Table 5. Comparison of the number of tasks per type for the two versions of the ATM

HAMSTERS HAMSTERS HAMSTERS XL HAMSTERS XL
models for models for models for models for
“hardkeys + “fully tactile “hardkeys + “fully tactile
output only display” ATM output only display” ATM
display” ATM display” ATM
User 15 14 16 15
Perceptive 6 5 6 6
See NA NA 5 5
Hear NA NA 1 0
Feel 0 1
Cognitive 6 6 6 6
Cognitive analysis 3 3 3 3
Cognitive decision 3 3 3 3
Motoric 2 2 3 2
Move arm NA NA 1 1
Press NA NA 1 0
Put on NA NA 1 1
[button/screen]
Interactive 1 1 1 1
Interactive input 1 1 1 1
System 4 5 3 4
Process 1 1 1 1
Interactive output 3 4 3 4
Data 7 5 7 5
Output Device 2 0 2 0
Input Device 1 0 1 0
Input/Output Device 1 1
Object 1 1 1 1
Information 3 3 3 3

6.2 HAMSTERS-XL|Taste

Next, we describe customization in Hamsters-XL for tasks based on Vi and Obrist’s experiment
[63] concerning the influence of taste on risk-taking behaviour. The main user task for this
experiment is the standardized Balloon Analogue Risk-Taking (BART) task, which involves
inflating air balloons. The main measure of the risk-taking behaviour is function of the average
value of the number of pumps for unexploded balloons. Fig. 19 describes the procedure of the
experiment. First, participants answer two questionnaires. Then, they ingest a stimulus (a taste
or a neutral). Finally, they pump-up a virtual balloon and decide to stop and cash out to collect
the points reward (later converted in money). However, the balloon either can inflate or explode
randomly. If the balloon explodes, the participant loses collected points.
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Fig. 19. Overview of the experimental procedure from [63]

The customizations required for this task are summarised in Table 6.

Table 6. Proposed customizations for HAMSTERS-XL|Taste
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Fig. 20. Task model of the user goal “Play the gambling “Inflate balloons” game” produced using the
customization HAMSTERS-XL|Taste



The Fig. 20 presents the task model “Play the gambling “inflate balloon” game”. To reach the
goal the user has first to ingest a taste stimulus or a neutral taste stimulus: water (“Taste stimulus”
Taste perceptive task). Then, depending on the ingested taste, the user may adopt a risky or a safe
behaviour to pump-up the balloon (test on the value of “Taste” Taste Type for the “Pump-up
balloon with risky behaviour” and “Pump-up balloon safely” Abstract iterative tasks).

6.3 HAMSTERS-XL|Cockpit

The final example examines the pilots’ task of modifying the display range of the Navigation
Display in a commercial aircraft cockpit, with two different types of Flight Control Unit (a
mechanical version with physical buttons and knobs and a graphical user interface version
controlled with a keyboard and Control Cursor Unit).

In an aircraft cockpit, the navigation display (ND) is one of the key element that help pilots
understanding the aircraft environment. Both pilots have their own ND in front of them. The ND
is capable of displaying, amongst other data:

- The aircraft progress on the flight plan (the green line represented in Fig. 21c),
- The radar image produced by the aircraft weather radar showing density of clouds ahead
of the aircraft (red/yellow/green images represented in Fig. 21c).

In order to plan for both short and long-term actions related to weather conditions, pilots
frequently use the ability to modify the visualization range of the ND. The higher the range, the
further the radar inspects weather conditions but the less precise the information is.

Fig. 21. a) Knob (at the left) for manipulation of visualization range of the ND; b) the KCCU (at the left)
for the manipulation of the virtual knob (at the right) to update visualization range of the ND; c) the ND

Analysis of the pilots’ task shows that the customizations shown in Table 7 need to be included
within HAMSTERS-XL.

Table 7. Proposed customizations for HAMSTERS-XL|Cockpit
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Fig. 22. Task models for the task “increase visualization range” in the aircraft cockpit (with the physical
knob on the left side and with the virtual knob on the right side)

Fig. 22 shows two different task models for the user “Increase visualization range” task. The
task model at the left details the task with the physical knob. First, the user has to grip the knob
(“Grip knob” Right hand grip motoric task). Then, the user feels the knob against her/his hand
and turns right the knob to reach the next value. The task model at the right details the task
“Increase visualization range” with the KCCU and the virtual knob. First, the user has to grab the
KCCU (“Grab KCCU” Right hand grab motoric task). Then, the user has to move the KCCU ball
with the index, the middle and the ring fingers (“Move ball left/up/right/down” Right hand move
three fingers task) to move the cursor on the next value. Finally, the user presses the KCCU button
(“Press button” Right hand finger press motoric task) to select the next range value.

Table 8 provides a summary of the quantity of different types of activities required to complete
tasks with the physical and virtual knob versions of the interfaces, highlighting the need for
additional motor actions with the virtual knob.



Table 8. Comparison of the number of tasks per type for the two versions of the ATM

HAMSTERS XL models for = HAMSTERS XL models for

“Increase visualization “Increase visualization
range” with physical knob range” with virtual knob
version version

User 5 5+n
Perceptive 3 3
See 2 2
Feel 1 1

Motoric 2 2+n
Grip 1 0
Grip and Turn 1 0
Move 3 fingers 0 n
Grab 0 1
Press 0 1
Interactive 1 1
Input/Output 1 1
System 1 1
Output 1 1
Manipulated data 3 3
Object 1 1
Output device 1 1
Input device 1 1

6.4 Feedback from users

HAMSTERS-XLE provides support to perform the main user tasks when editing task models: «
Add task to a model », « Add operators »... (see the list of main user tasks for task modelling
identified by Vigo et al. [64]). Additional task modelling user needs have been gathered during
several research and industrial projects, as well as during tutorial sessions at ACM CHI
conferences [50] [49], INTERACT conference [51] and EUROCONTROL [13]. We had about 60
users from various application domains (e.g. web, business applications, health and medical
appliances, military and civil aircrafts, air traffic management) and the main user profiles were
software engineers, human factor experts and project managers (ranging from novice to senior
in their job). Task type customization was the most recurring need, followed by the task
properties customization. For example, UI software designers and project managers of the Air
Traffic Management domain argued that a particular type of task that is very important and that
is frequently performed by air traffic controllers needed to be added to the notation. They
commonly name this type of task “elbow communication” (it is a nonverbal exchange of
information between two controllers). They can now add this task type and perform task
modelling by applying the proposed process with HAMSTERS-XLE.

Concerning the application of the process with HAMSTERS-XLE, we gathered qualitative user
feedback from the engineers and researchers being part of the research and industrial projects.
The illustrative example presented in section 6.4 is an excerpt of task models that have been
produced during an industrial project with a commercial aircraft manufacturer. The proposed
process was fully applied several times by 5 different users (engineers or researchers) with
HAMSTERS-XLE and thus the effectiveness criteria of usability is reached.

HAMSTERS-XL is publicly available to the community! and we continuously try to gather
feedback and insights from users.

1 https://www.irit.fr/recherches/ICS/softwares/hamsters/




7 CONCLUSION

Task models provide a precise means for making explicit and analysing user goals and how the
activities required to complete them. However, task modelling techniques typically do not evolve
at the same pace as interactive technologies, leading to a gulf between modelling needs and the
expressive capabilities of the modelling environments.

This paper has highlighted these problems, and it has proposed the use of customizable task
modelling notations and associated tools to ease the problems. The main contributions are:

- demonstration of the need for customizable task modelling techniques in order to be able
to produce task models that fit the scope and objectives of the task analysis,

- development of a process and principles for identifying the customization needs and an
instantiation of this process with the HAMSTERS-XL task modelling technique,

- demonstration of the feasibility of the approach with a dedicated tool (HAMSTERS-XLE)
supporting the customization process and the exploitation of the customized notation
(editing and simulating of task models),

- the application of several customizations to a set of illustrative examples extracted from
larger case studies, demonstrating the applicability and the benefits of customizing task
modelling techniques.

The tool supported notation is publicly available (see additional files in the submission).

It is important to note that the customization of notations comes with an increase of the
number of elements of a notation and of the number of elements in the task models (describing
the work of the users with that notation). This increase adds costs and time to the modelling
activities and has to be carefully assessed by the analysts. However, this trade-off is the same as
when using any modelling technique and processes (be it in task analysis domain or in the
software engineering one, for instance). It is beyond the scope of this paper to argue about such
tradeoffs and whether modelling is a good strategy or not. However, clearly, specific application
domains (such as safety critical ones [43]) benefit from precise understanding of tasks and
associated issues such as operators’ workload.

The need for customized modelling notations is not specific to task modelling notation but has
been proved of interest for most design activities of interactive systems (user interface layout [27]
[29], system behaviour [21] [52], system architecture [9] [22]...). In computer science domain and
in software engineering in particular, some of the modelling tools thus provide means for
customization (of course very different from describing user behaviour) and also tries to allow
users tuning the tool so that they can fit better to their needs and their work. For example, Langer
et al. proposed an Eclipse plugin to support extensibility of Domain Specific Modelling Languages
[28]. An interesting topic for future work would be generalize the work done here, to identify
abstractions and to use that abstract model to compare customization needs for task analysis and
for software engineering. Even though very complex and requiring the analysis of a lot of tools
and notations, such work might identify conceptual concepts to support customization in a
generic way as this has been done in the area of end user customization of application [4] [30].
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