
HAL Id: hal-02451016
https://hal.science/hal-02451016

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-level reasoning about graph transformation
programs

Amani Makhlouf, Christian Percebois, Hanh Nhi Tran

To cite this version:
Amani Makhlouf, Christian Percebois, Hanh Nhi Tran. Two-level reasoning about graph transfor-
mation programs. 12th International Conference on Graph Transformation (ICGT 2019), Jul 2019,
Eindhoven, Netherlands. pp.111-127. �hal-02451016�

https://hal.science/hal-02451016
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1007/978-3-030-23611-3_7

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24924

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Makhlouf, Amani and Percebois, Christian

and Tran, Hanh Nhi Two-level reasoning about graph

transformation programs. (2019) In: 12th International Conference

on Graph Transformation (ICGT 2019), 15 July 2019 - 19 July 2019

(Eindhoven, Netherlands).

Two-Level Reasoning About Graph
Transformation Programs

Amani Makhlouf, Christian Percebois(B), and Hanh Nhi Tran

IRIT, University of Toulouse, Toulouse, France
{Amani.Makhlouf,Christian.Percebois,Hanh-Nhi.Tran}@irit.fr

Abstract. This paper presents a method for verifying graph transfor-
mation programs written in Small-tALC, an imperative language which
allows expressing graph properties and graph transformations in ALCQI
description logic. We aim at reasoning not only about the local effect
when applying a transformation rule on a matched subgraph but also
about the global impact on the whole input graph when applying a set of
rules. Using ALCQI assertional and terminological formulae to formalize
directed labeled graphs, Small-tALC allows specifying local properties on
individual nodes and edges as well as global properties on sets of nodes
and edges. Our previous work focuses on verifying local properties of the
graph. In this paper, we propose a static analyzer at terminological level
that intertwines with a static analyzer at assertional level to infer global
properties of the transformed graph.

Keywords: Graph transformation · Description logics ·
Static analysis · Abstract interpretation · Program verification

1 Introduction

To allow verifying the correctness of graph transformations, many works, rooted
in algebraic approach for formalizing graph transformations, have introduced
logic systems that are specially tailored for expressing graph properties under
study (see e.g. [1–5]).

The work presented in this paper uses another approach which directly
encodes graphs in an existing logic [6,7] in order to benefit the inference mech-
anisms provided for the chosen logic. Adopting this approach, we proposed
the graph transformation language Small-tALC [8] which specifies graphs with
ALCQI description logic formulae [9] and defines transformation statements
to manipulate graphs in an imperative paradigm. Transformation specifications
and code are based on the same logic thus we can take advantage of a Hoare-like
calculus and also of proven program verification techniques to reason about the
correctness of graph transformations.

Small-tALC graphs are directed and labeled. A graph consists of nodes repre-
senting individuals and edges representing relations between individuals. A node
can be labeled to express that it belongs to the concept denoted by the node’s

_https://doi.org/10.1007/978-3-030-23611-3 7

label; the label of an edge denotes the role of the relation represented by the
edge. Graph properties can be specified by ALCQI assertional axioms (ABox)
about nodes and edges and by terminological axioms (TBox) about set of nodes.

A Small-tALC program consists of a set of transformation rules. Each rule
comprises a precondition specifying the matching constraints of the rule on a
host graph, a code consisting of transformation statements and a postcondition
specifying the properties of the graph yielded from the rule’s application. Both
rule’s specifications and code are formalized at ABox level. In [7,10], we devel-
oped tools to formally verify the correctness of each transformation rule using
Hoare logic. However, our previous works allow verifying only a plain set of
rules, not the correctness of a whole transformation program. Moreover, using
only assertional formulae to specify graph properties, we could analyze only local
properties on individual nodes and edges.

We now extend the approach to reason not only about the local effect when
applying a transformation rule on a matched subgraph but also about the global
impact on the whole input graph when applying a set of rules. For this purpose,
first we exploit both ALCQI assertional formulae (ABox) and terminological
formulae (TBox) to formalize directed labeled graphs, and thus allow specifying
respectively local properties as well as global properties. We then propose a
static analyzer at terminological level that intertwines with a static analyzer
at assertional level to infer global properties of the transformed graph. Rules
verification at ABox level was presented in [10]. The focus of this paper is the
TBox analyzer for transformation programs.

We introduces our graph transformation language Small-tALC in Sect. 2 and
present in Sect. 3 the main idea of two-levels reasoning about Small-tALC pro-
grams by exploiting the ABox and TBox components of ALCQI. In Sect. 4 we
explain how to infer, by abstract interpretation, TBox global properties from
ABox statements. The relation between ABox and TBox verifications is stud-
ied in Sect. 5. Section 6 shows that some monadic second-order properties can
be expressed by Small-tALC TBox assertions too. We finally provide some dis-
cussions on related work in Sect. 7 and wrap up the paper with a conclusion
including further work in Sect. 8.

2 The Small-tALC Language

Small-tALC [8] is an imperative graph transformation language based on the
description logic ALCQI [9]. The distinctive characteristic of this graph trans-
formation language is the tight integration of logical aspects with the intended
execution mechanism, with the overall aim to obtain a decidable calculus for
reasoning about program correctness in a pre-/post-condition style.

2.1 Logic Foundation

ALCQI represents knowledge at two levels: TBox introduces the terminology,
i.e., the vocabulary of an application domain, while ABox contains assertions

about named individuals in terms of this vocabulary. The vocabulary consists
of concepts, which denote sets of individuals, and roles, which denote binary
relationships between individuals. An interpretation I that is used to define
the semantics of DLs comprises a non-empty set ∆I called the interpretation
domain and an interpretation function ·I . The interpretation function assigns
an element iI ∈ ∆I to each individual i of the ABox, a subset of individuals
CI ∈ ∆I to each concept C of the TBox, and a subset of ordered pairs of
individuals rI ∈ ∆I × ∆I to every role r of the TBox.

Let C be a concept, x and y be individuals, and r be a role. If x belongs to
the concept C, then x is called C-type. If x is r-related to y, then y is called a
r-successor of x. ALCQI provides concept constructors to build more complex
concepts as given in Table 1.

Table 1. ALCQI concept constructors

Name Syntax Semantics

top ⊤ ∆I

bottom ⊥ ∅

negation ¬C ∆I\CI

conjunction C ∩ D CI ∩ DI

disjunction C ∪ D CI ∪ DI

existential restriction ∃ r C {x ∈ ∆I | ∃y, (x, y) ∈ rI ∧ y ∈ CI}

universal restriction ∀ r C {x ∈ ∆I | ∀y, (x, y) ∈ rI ⇒ y ∈ CI}

at-most restriction ≤ n r C {x ∈ ∆I | |(x, y) ∈ rI ∧ y ∈ CI | ≤ n}

at-least restriction ≥ n r C {x ∈ ∆I | |(x, y) ∈ rI ∧ y ∈ CI | ≥ n}

equality restriction = n r C {x ∈ ∆I | |(x, y) ∈ rI ∧ y ∈ CI | = n}

inverse role r−1 {(y, x)| (x, y) ∈ rI}

(∃ r C) describes the set of individuals having at least a r-successor which is
C-type. (∀ r C) presents the set of individuals whose all r-successors are C-type.
(≤ n r C) and (≥ n r C) are qualified number restrictions expressing that an
individual has at most (respectively at least) n r-successors which are C-type.

2.2 Small-tALC Graphs

An interpretation I can be drawn as a directed labeled graph [11] where TBox

represents concepts and roles respectively as nodes labels and edges labels, and
ABox specifies individuals and binary relations between them respectively as
graph nodes and graph edges.

In Small-tALC, concept assertions (i : C) express that an individual i is
C-type, i.e. the node i is labeled with C (C-node). Role assertions in the form
(i r j) express that an individual i is connected by the role r to the individual
j i.e. the edge (i, j) is labeled with r (r-edge). By combining concept assertions

and role assertions, ABox formulae are made up and used to specify properties
on named graph nodes and edges. Figure 1 depicts a graph having two A-nodes
a1, a2 and two B-nodes b1, b2. b1 is a r-successor of a2 and b2 is a r-successor
of a1. There are also two anonymous C-type nodes which are r-successors of a1,
thus a1 belongs to the concept which has at least 2 C-nodes as r-successors.

In the rest of the paper, we call AFact an ABox assertion, and AFormula

an ABox formula.

Fig. 1. A graph satisfying the AFormula (a1 : A) ∧ (a2 : A) ∧ (b1 : B) ∧ (b2 : B) ∧
(a1 r b2) ∧ (a2 r b1) ∧ (a1 : (≤ 2 r C))

TBox axioms use general concept inclusions (GCI) [12] to express properties
concerning concepts. TBox axioms are so-called TFacts in Small-tALC and are
of the form C ⊆ D or C = D where C and D are concepts. An interpretation
I is a model of C ⊆ D if CI ⊆ DI . When CI ⊆ DI in every model of I,
D subsumes C. Thus, TFormulae, which are Boolean combinations of TFacts,
can be used now to express global graph properties on set of nodes. For example,
the TFact (∀ r−1 A) ⊆ B expresses that r-edges outgoing from A-nodes all go
towards B-nodes. The graph of Fig. 1 does not hold this property because it has
two r-edges outgoing from A-nodes to C-nodes.

2.3 Small-tALC Statements

Small-tALC features atomic statements to add, delete or select graph nodes and
edges. We have defined five atomic Small-tALC statements according to the
following grammar, where i and j are node variables which will be bound to the
host graph’s nodes during the transformation’s execution, C is a concept name,
r is a role name, F is an ALCQI AFormula and v is a list of node variables:

stmt ::= add(i : C) (CI = CI + {i})

| delete(i : C) (CI = CI − {i})

| add(i r i) (rI = rI + {i, j})

| delete(i r i) (rI = rI − {i, j})

| select v with F

Operationally, the first four Small-tALC statements define new interpreta-
tions i.e. new graphs by adding and deleting individuals (nodes) and pair of
individuals (edges) to and from the interpretations of concepts and roles. The

interpretation function of TBox concepts and roles are thus evolved. In this
sense, a rule operates on AFormulae but affects as well TFormulae. Note that
the Small-tALC statements do not add/delete individuals to/from the graph,
but change their label to modify the interpretation represented by the graph.

Since concepts and roles are considered as sets of nodes and set of pairs of
nodes respectively, add(i : C) and add(i r j) have no effects if i ∈ C and (i, j) ∈ r

respectively. Therefore, no parallel edges with the same label are allowed. The
statement delete(i : C) does not remove it definitely from the graph, but excludes
it from the interpretation function CI of the indicated concept C, i.e. the node
will no more be labeled with C.

An original construct is the select statement that non-deterministically binds
node variables to nodes in the subgraph that satisfies an AFormula. This assign-
ment is used to select specific nodes where the transformations are requested to
occur. The remaining language constructs are conventional control structures:
sequence, branching and iteration.

2.4 Small-tALC Programs

A Small-tALC program consists of a set of transformation rules and a main

entry point of the program. A rule is structured into three parts: a precondition,
the transformation code (a sequence of statements) and a postcondition. The
pre- and postconditions of a rule are two AFormulae which specify respectively
a source graph which can be transformed by the rule and the target graph
supposed to be produced by the rule.

Fig. 2. Small-tALC program Edges − Reversing

Rules that are defined separately in a Small-tALC program are called sequen-
tially in the main. Two types of rule calls are proposed: a simple call (call) and
an iterative call (call!). The first executes the code of the rule if a subgraph in
the source graph matches the ABox precondition formula. The second executes
the code of the rule as long as a subgraph matches the precondition. We can
inject TFormulae into main to specify the properties of the transformed graph
before (pre-TFormula) and after (post-TFormula) applications of one or many
rules.

We illustrate in Fig. 2 a Small-tALC transformation program which reverses
all r-edges from A-nodes to B-nodes. This transformation is done in two steps:
first the r-edges from A-nodes to B-nodes are transformed into s-edges from A-
nodes to B-nodes; then each s-edge from an A-node to a B-node is replaced by
a r-edge in the opposite direction from the B-node to the A-node. The program
thus is made up of two rules: (1) rename which locally renames a r-edge between
an A-node a and a B-node b, so that a r b turns into a s b; (2) reverse which
locally replaces a s-edge between an A-node a and a B-node b by a r-edge
between b and a so that a s b turns into b r a. The main of the program calls,
in an iterative way, first the rule rename then reverse.

The question is how to prove that the given program produces the expected
states of the graph specified by TFormulae. This verification problem will be
discussed in the next section.

3 Small-tALC Program Verification

We are interested in verifying the correctness of transformation programs, i.e.
checking whether a transformation behaves the way it is expected to and pro-
duces what it should. Therefore, besides verifying the correctness of each rule,
we need to verify that the sequence of rules in the main program is also correct.

3.1 Motivating Example

For instance, consider the program in Fig. 2. To prove that the transformation
is correct, the following points must be verified:

1. The correctness of the rules rename and reverse with respect to their ABox

pre- and postconditions,
2. The correctness of applying iteratively the two rules rename and reverse

with respect to the TBox assert clauses.

The second point necessitates examining global modifications in the host
graph. The properties to be verified in (2) are global because they concern a set of
nodes of type A or of type B thus they cannot be expressed with AFormulae but
by TFormulae. We can specify the transformation program of Fig. 2 as follows: if
in the source graph there are r-edges connecting A-nodes to B-nodes and there
is not s-edges outgoing from A-nodes, then after applying iteratively the rules

rename and reverse, there are r-edges connecting B-nodes to A-nodes and there
is not r-edges nor s-edges outgoing from A-nodes.

More precisely, according to DL definitions [9], the TFormula (∃ r−1 A) ⊆
B ∧ (∃ s−1 A) = ⊥ asserts that before transformation B-nodes subsume the
target nodes of the r-edges outgoing from A-nodes and that the set of target
nodes of the s-edges outgoing from A-nodes is empty. From this assumption, we
verify after transformation the TFormula (∃ r−1 A) = ⊥ ∧ (∃ r−1 B) ⊆ A

which expresses now that the set of target nodes of the r-edges outgoing from
A-nodes is empty and that A-nodes subsume the set of target nodes of the r-
edges outgoing from B-nodes. After the transformation, (∃ s−1 A) = ⊥ stays as
an invariant to express the temporary use of s-edges which are created in the
rule rename are deleted in the rule reverse.

This paper focuses on reasoning about global properties on concepts and
roles, i.e. properties of the graph as a whole as in (2), that are impacted by appli-
cation of a set of rules, one or many times. For this purpose, we provide reasoning
capabilities not only at rule-level using AFormulae but also at program-level
using TFormulae. Proving the correctness of a program entails verifying that
both the source graph (an interpretation) and the target graph (another inter-
pretation) are models of the TBox and ABox. The next sections presents our
solution to verify a rule at ABox level and to verify a program at TBox level.

3.2 Rule Verification Using ABox Layer

Within a rule, Small-tALC uses AFormulae to specify graph elements manipu-
lated by the rule’s code in the pre- and postconditions. Therefore, only named
graph nodes and edges in the current matched graph are concerned. In other
words, a rule-level verification allows reasoning only about the local effect when
applying once a rule on a matched graph.

Adopting Hoare-like calculus, a prover was developed [7,10] to prove that a
Small-tALC rule {P}S{Q} is correct. This verification process is based on an
ABox static analysis performed in a backward mode in order to compute the
weakest precondition (wp) [13]. Each rule statement s of S is assigned to a pred-
icate transformer yielding an ALCQI formula wp(s,Q) assuming the postcondi-
tion Q. The correctness of the code S of a rule with respect to Q is established
by proving that the given precondition P implies the weakest precondition.

3.3 Program Verification Using TBox Layer

As stated in Sect. 2.3, TFormulae are implicitly updated by rules statements
that explicitly add and delete individuals and pairs of individuals respectively
into and from concepts interpretations. Reasoning about graph global properties
when executing a sequence of ABox rules turns into studying the effects of ABox

statements on the TBox properties. This results in verifying TFormulae of the
transformation program in order to check if the graph is correctly transformed
as expected.

Using TFormulae, we consider an abstract graph that is a superset of the
concrete Small-tALC graph: properties on nodes are ignored and only properties
about the sets of nodes and the sets of source and target nodes of roles are
taken into account. Considering such global properties results in losing certain
information regarding AFormulae. For example, we can not know concretely
each pair of connected nodes given the property “all r-edges outgoing from A-
nodes go towards B-nodes” i.e. (∀ r−1 A) ⊆ B. This abstraction idea and its
formalization is called the theory of abstract interpretation [14].

The main question in this paper is how to infer the TBox properties on
abstract graphs thus allow verifying a program consisting of a sequence of ABox

rules, not only at rule level as done in our previous work. In the next section,
we present in detail our solution for this question.

4 Static Analysis by Abstract Interpretation

In order to verify the global state of a graph before and after rule applications,
we study the impact of ABox Small-tALC statements on a given TFormula

representing TBox properties. To do so, we analyze the effect of adding (deleting)
an element to (from) a set on the set equality and inclusion relationships.

4.1 Interpretation of Small-tALC Statements

The aim of our proposed static analysis is to infer a post-TFormula on the basis
of a given pre-TFormula considered as a rule’s assumption by interpreting the
rules statements in a forward chaining. The inference of a such TFormula is
done by studying the effect of add and delete statements on each TFact in
the pre-TFormula considering the statement’s precondition as hypothesis. For
instance, given the TFact C = D in a pre-TFormula, adding an individual i to
C through the instruction add(i : C) may affect the validity of C = D. If i is
already an element of C, according to set theory, add(i : C) has no effect on
the set C. Consequently, C = D remains valid. However, if i does not belong to
C, add(i : C) will add one additional element to C, thus C becomes C ∪ {i}.
Consequently, C = D turns into C ⊇ D. The AFact i : C can be checked in the
precondition of the statement add(i : C).

To clarify the static analysis process, consider the inference of a post-

TFormula after the call of the rule rename with respect to the pre-TFormula

(∃ r−1 A) ⊆ B ∧ (∃ s−1 A) = ⊥ given in the main of Fig. 2. As illustrated in
Fig. 3, the pre- and postconditions of the statements are specified by computing
the strongest postcondition (sp) of the statement from its precondition. The sp

of a statement expresses most accurately the evolution of the graph being trans-
formed at the ABox level. Taking into account these ABox effects on individual
nodes and edges, we want to determine the most precise evolution, at TBox level,
of the concepts and edges containing these individuals. The inference of a post-
TFormula after each statement is done by studying the effect of the statement
on the TFormula while taking into account the properties of the manipulated

nodes identified in the ABox precondition of the statement. In this example,
the statement delete(a r b) that removes the r-edge between the nodes a and b

does not affect any TFact of the pre-TFormula. In fact, the deletion of the pair
(b, a) from the set r−1, knowing that a : A and b : B, holds the validity of the
inclusion (∃ r−1 A) ⊆ B and does not concern the TFact (∃ s−1 A) = ⊥ which
remains valid. However, adding an s-edge between the nodes a and b, knowing
that a : A and b : B from the statement’s precondition, transforms the TFact

(∃ s−1 A) = ⊥ into (∃ s−1 A) ⊆ B in the post-TFormula.

Fig. 3. Inference of a TFormula after each statement of the rule rename

Table 2 summarizes the effect of the statement add(i : C) on both equality
and inclusion relationships between concepts. The second column presents the
pre-TFact; the AFacts considered as hypothesis for the interpretation are shown
in the third column. The fourth column provides the inferred TFact obtained
by the interpretation, so called post-TFact. In cases where the pre-TFact is
confirmed as being not valid yet the effect of the statement on the pre-TFact

can not be deduced, that TFact will be deleted from the TFormula. This case
is marked in the table by X. For instance, given the pre-TFact C ⊆ D, adding
an instance i to the concept C with i not declared of concept C nor D may
make the inclusion not valid. No more informations can be deduced to infer a
post-TFact so it is deleted from the final TFormula so-called post-TFormula.
Due to the limited number of pages allowed, the tables referring to the others
atomic statements as well as the supporting tools are not presented here but
available for download1.

The select statement has no effect on a TFormula as it is an assignment of
nodes variables. Whereas if condition then s1 else s2 is interpreted by trans-
forming the pre-TFormula regarding the sequence s1 on the one hand, and s2 on
the other. The result is the disjunction of both of the resulting post-TFormulae.

The body of the while loop is interpreted once, as well as the body of a rule
that is called in an iterative way in the main. In fact, whether the interpretation

1 https://www.irit.fr/∼Martin.Strecker/CLIMT/Software/smalltalc.html.

Table 2. Interpretation of the statement add(i : C)

Statement pre-TFact AFact post-TFact

add(i : C) C = ⊥ - ¬(C = ⊥)

¬(C = ⊤) i : C ¬(C = ⊤)

else X

C = D i : C C = D

else D ⊆ C

C ⊆ D i : C ∨ i : D C ⊆ D

else X

C ∪ D = ⊥ - ¬(C ∪ D = ⊥)

¬(C ∪ D = ⊤) i : C ∨ i : D ¬(C ∪ D = ⊤)

else X

C ∪ D = E i : C ∨ i : D ∨ i : E C ∪ E = E

else E ⊆ C ∪ D

C ∪ D ⊆ E i : C ∨ i : D ∨ i : E C ∪ D ⊆ E

else X

C ∩ D = ⊥ i : C ∨ i : ¬D C ∩ D = ⊥

else ¬(C ∩ D = ⊥)

¬(C ∩ D = ⊤) i : C ∨ i : ¬D ¬(C ∩ D = ⊤)

else X

C ∩ D = E i : C ∨ i : E ∨ i : ¬D C ∩ D = E

else E ⊆ C ∩ D

C ∩ D ⊆ E i : C ∨ i : E ∨ i : ¬D C ∩ D ⊆ E

else X

(∃ r C) = D - D ⊆ (∃ r C)

(∃ r C) ⊆ D - X

(∃ r−1 C) = D i : (= 0 r ¬D) (∃ r−1 C) = D

else D ⊆ (∃ r−1 C)

(∃ r−1 C) ⊆ D i : (= 0 r ¬D) (∃ r−1 C) ⊆ D

else X

of the same sequence of statements is done one or several times, the resulting
TFormula remains the same as Small-tALC statements are limited to adding
and deleting elements to and from sets as already mentioned. For instance, con-
sider a TFact C = D and a statement that adds repeatedly a selected instance
d to the concept D. By interpreting the statement for the first time, C = D

turns into C ⊆ D. Adding other elements d to the concept D maintains the
validity of the TFact C ⊆ D. Consequently, the traditional widening operator
of the abstract interpretation, which guarantees termination when applied to

increasing sequences [14], is simpler in our context than in programs employing
non symbolic operations.

4.2 Soundness of the Static Analysis

Deriving a TFormula for Small-tALC programs does not guarantee that our
static verification calculus is sound. Given a correctness formula ⊢ {P}S{Q},
we need to show that the proposition |= {P}S{Q} about the semantics of the
correctness formula holds. This entails to consider |= {P}S{Q} as a new judg-
ment based on state updates meaning that the program S when invoked in the
state σ will terminate in the state τ . We denote S(σ, τ) this relation and define
|= {P}S{Q} as ∀σ.P (σ) ⇒ (∃τ.S(σ, τ) ∧ Q(τ)). Proof is done on the derivation
of Hoare correctness formulae considering Small-tALC operational semantics.

Let us consider S = add(i : C), inspired from the assignment statement
V := E in imperative languages for which sp(V := E,P) = ∃V ′.P [V ′\V]∧ (V =
E[V ′\V]), we compute sp(add(i : C), P) as a substitution: sp(add(i : C), P) =
∃C ′.P [C ′\C] ∧ (C ′ + i\C). If the formula sp(add(i : C), P) ⇒ Q is valid, then
for all source graphs G verifying P (σ) we conclude Q(σ′) for target graphs G′

where σ′ denotes the state σ updated by the action add.
In the following, we prove two inferences about adding a node i to a concept

C. The first one is basic and corresponds to the first line of Table 2. Suppose a
state σ = (C = ⊥). Then sp(add(i : C), C = ⊥) = ∃C ′.(C = ⊥)[C ′\C] ∧ (C ′ +
i\C), that is C ′ = ⊥∧C = C ′ + i which implies σ′ = ¬(C = ⊥). As P (σ) is true
for G, we have Q(σ′) for G′. Thus, P (σ) ⇒ S(σ, σ′) ∧ Q(σ′). This case is quite
straightforward because it does not presuppose any AFact for P .

The second one assumes the precondition C = D, as indicated by the third
line of Table 2. We aim at knowing when this relation of subsumption TBox

between the concepts C and D is also a postcondition of the substitution [C′ +
i\C] related to add(i : C). The outcome of this question depends on whether the
individual i belongs to concept C. If σ = (C = D ∧ i ∈ C), we can conclude that
σ′ = (C = D), otherwise, σ = (C = D∧i �∈ C) is transformed into σ′ = (C ⊇ D).
In the first case, we have sp(add(i : C), C = D ∧ i ∈ C) = ∃C′.(C = D ∧ i ∈
C)[C ′\C] ∧ (C ′ + i\C), i.e. C ′ = D ∧ i ∈ C ′ ∧ C = C ′ + i which implies C = D,
because i ∈ C ′ ∧ C = C ′ + i ⇒ C = C ′. On the other hand, when i �∈ C,
sp(add(i : C), C = D ∧ i �∈ C) = C ′ = D ∧ i �∈ C ′ ∧ C = C ′ + i which implies
C ⊇ D, because i �∈ C ′∧ C = C ′+i ⇒ C ⊇ C ′. As previously, and in both cases,
as P (σ) is true for G, we have Q(σ′) for G′. Thus, P (σ) ⇒ S(σ, σ′) ∧ Q(σ′).

We can prove the other lines of Table 2 similarly, considering the ABox sub-
stitutions of the language and the TFormulae involved.

5 Relation Between the ABox/TBox Verifications

The purposes of ABox and TBox verifications differ. TBox verification aims
to verify concepts inclusion relationships (universal assertions), whereas ABox

verification is more about fact-checking and instance-checking (membership

assertions). In terms of program verification, they are complementary. However,
these two components are undoubtedly dependent.

5.1 Dependence Between the ABox/TBox Verifications

Inferring TFormulae does not consider only rules statements, but takes into
account rule specifications on instances properties too. Therefore, weakening
AFormulae has a direct effect on the process of inferring TFormulae. In case
where instances properties are not revealed in the precondition, some properties
on sets may not be proven to be valid and so are discarded from the post-
TFormula.

For instance, consider the program of Fig. 4 consisting of the rule replace

which replaces a r-edge between two nodes a and b with s. The precondition of
the rule asserts that b is a B-node, however, it does not inform about the concept
of a. Note that this rule is proven to be correct by the Small-tALC prover.

Fig. 4. Example of inconsistent TFormulae

Consider the TFact (∃ s−1 A) = ⊥ before the rule call expressing that there
is no s-edges outgoing from A-nodes. Aiming for verifying after the rule call that
edges outgoing from A-nodes are going towards B-nodes i.e. (∃ s−1 A) ⊆ B, the
static analyzer studies the effect of the rule replace. So it interprets firstly the
statement delete(a r b) which does not affect the validity of (∃ s−1 A) = ⊥,
and secondly the statement add(a s b) which certainly does because the given
TFact concerns the added s-edge. In this case, the static analyzer shows that
the TFact (∃ s−1 A) = ⊥ is unsatisfiable, but does not infer any other fact since
the concept of a is unknown (corresponding to a case X in the interpretation
table of the statement add(i r j)). Hence, the given TFact (∃ s−1 A) ⊆ B is
supposed inconsistent with ABox assertions of the rule replace.

Now suppose that the developer asserts as well in the precondition of the rule
that a is an A-node as shown in bold on Fig. 4. In this case, the static analyzer
would deduce that (∃ s−1 A) ⊆ B. We can conclude that the more strengthened
AFormulae are, the more the diagnostic of TFormulae gets refined.

5.2 Complementarity Between the ABox/TBox Verifications

Verification of a rule’s triple using Hoare logic guarantees a correct transforma-
tion of the manipulated nodes. At a more abstract level, verification of the TBox

checks the effect of the rules on the graph as a whole. These two verification lev-
els are complementary: each level verifies properties that can not be expressed
by the other one.

Let us reconsider the program in Fig. 2 consisting in reversing r-edges outgo-
ing from an A-node a towards B-nodes. Suppose now that the developer makes
an error in the rule reverse by writing the statement add(a r b) instead of
add(b r a) as shown in bold in Fig. 5. In this case, the rule renames each
s-edge to r-edge without reversing it. Consequently, applying the sequence
{rename!, reverse!} on a graph will produce a target graph identical to the
source graph.

Fig. 5. Incorrect rule reverse

The rule reverse is proven as a correct Hoare-triple by the Small-tALC
prover, i.e. the rule’s code ensures the postcondition with the given precon-
dition. This happens because the rule’s postcondition is weak: it checks only the
concept of a and the nonexistence of s-edges outgoing from a. However, exploit-
ing the Small-tALC TBox static analyzer to verify the post-TFormula given in
the main program, we notice that the TFact (∃ r−1 A) = ⊥, which expresses
that there is not a r-edges outgoing from A-nodes, is unsatisfiable.

Warned by the result of the TBox verification, the developer strengthens the
postcondition of the rule reverse with the AFact a : (= 0 r B) to check that
no r-edge is outgoing from a. Now the prover fails to verify the rule with the
modified postcondition. The developer then realizes that b must be connected
by r to a.

Since one is allowed to write weaken specifications of a code while maintaining
the validity of a rule’s triple at the ABox level, a given postcondition may not
reveal all the properties of the transformed instances to be verified yet yield to
a correct triple. In those cases, using TBox verification with TFormulae can
identify an abnormal effect on the graph.

On the other hand, verifying exclusively that the given TFormulae are con-
sistent with the global graph does not attest actually that rules triples are written

correct since the TBox verification infer TFormulae from rules supposed cor-
rect. Hence, it is necessary as well to prove rules triples using Hoare logic by
writing complete specifications to get tangible results.

Ultimately, each of the ABox and TBox verifications has different level of
verification and so are complement. ABox checks whether instances that are
manipulated in a rule are locally transformed. TBox checks the effect of instances
transformation on the abstract graph. Hence, errors that are not identified by
one level, can be identified by the other.

6 Verifying Monadic Second-Order Properties

Verifying rules using the Hoare logic with ABox assertions on individuals is
limited for checking local properties of the graph. With quantification over sets,
TBox assertions can express global properties of graphs and can be exploited to
verify some monadic second-order (MSO) properties [6].

For instance, consider the problem of verifying that a graph is bipartite i.e.
a graph that is colored in two colors e.g. A and B, and in which every edge
connects a node of A to one of B. Figure 6 shows the Small-tALC rule grow that
allows connecting, with a r-edge, two nodes belonging to two different concepts.
The bipartiteness property can be expressed in the Small-tALC TFormulae by
two TFacts: (∃ r A)∩A = ⊥ to verify that the set of source nodes of the r-edges
going towards A and A are disjoint, and (∃ r B) ∩ B = ⊥ to verify that the set
of source nodes of the r-edges going towards B and B are disjoint. To close off
the possibility to add a r-edge outgoing from nodes belonging to other concepts
than A or B, closure axioms are necessary: A ∪ B = ⊤ ∧ A ∩ B = ⊥ i.e. all the
graph’s nodes are exclusively of concept A or of concept B. This TBox invariant
expressing a global property of the graph can be checked before and after calling
iteratively the rule grow.

Fig. 6. Small-tALC program making up a bipartite graph

Our TBox abstraction level neglects the source and target nodes of an edge.
Hence, our current work is not able to express directly MSO properties related
to connectivity of a graph. We envisage increasing the expressiveness of TBox

formulae by choosing a richer description logic, notably which offer role con-
structors and role connectors such as inclusion and transitivity.

7 Related Work

In the theory of algebraic graph transformations, Habel and Pennemann [1]
defined nested application conditions to describe graph properties. However these
first-order tailored logic formulae need to be derived into specific inference rules
in order to provide a specific theorem-proving that suits them. This approach
has been adopted by the graph transformation language GP [15] which provides
a Hoare-like calculus. Nested conditions of GP have been recently extended to
MSO properties on graphs by introducing new quantifiers for set variables of
nodes and edges and having morphisms with constraints about set member-
ship [5].

The algebraic approach has also given rise to the dedicated logic for graph
properties, called Graph Pattern Logic [16] and Navigational Logic [17], which
consider that a graph pattern P is just an object in the category of graphs.
Thereby, a global property for a graph G can be reduced to identifying a mor-
phism from P to G. The authors have invested patterns dedicated to graph
paths between nodes. We share with them the idea that reasoning mechanisms
are supported by the underlying logic.

The static satisfiability of a DL knowledge base updated by a finite sequence
of insertions and deletions performed on concepts and roles has been studied by
Calvanese et al. [18]. The authors introduce a simple imperative language with
the basic actions A⊕C and A⊖C on an interpretation I for concepts A and C.
A ⊕ C stands for the addition of the content of CI to AI and A ⊖ C represents
the removal of CI from AI .

In order to capture the action effects on a DL knowledge base K, a transfor-
mation TR(K) associated to each action has been defined. This transformation
on a finite interpretation domain enables to reduce static verification to finite
satisfiability of K: TR(K) is K-preserving if there exists a model when apply-
ing TR(K) on interpretations. Transformations allow to modify labels of sets
of nodes instead of individuals. Constraints on interpretations coding graph-
structured data are expressed by specific ALCHOIQbr DL formulae, including
nominals (O) which enables modifying single node labeling.

Dynamic logics [19] are well suited for dealing about properties of evolving
data. J. H. Brenas et al. [20] investigate such logics for graph transformations
and define C2PDLS, a combination of both combinatory and converse propo-
sitional dynamic logics, augmented by substitutions. The main idea is to split
the nodes of the considered graphs into two sets: one contains the nodes before
substitutions take place; the other stores nodes that will be created by future
transformations and those that have been deleted in the past. This separation
allows some reasoning on reachability properties considering named nodes.

In our Small-tALC context, ABox updates do not represent changes or refine-
ments in the conceptualization of TBox axioms. We allow adding and deleting
individuals and roles in an imperative style with extensional ABox rules, while
provide a mechanism to infer intentional TBox knowledge which is consistent
with ABox changes. From the user point of view, we share the same desired effect
called projection in action-oriented paradigm, i.e. knowing whether an assertion
that one wants to make true really holds after executing a rule [21].

8 Conclusion and Future Work

Our logic-based graph transformation language Small-tALC allows to reason on
graph transformations and verify local and global properties of graphs by exploit-
ing ABox and TBox levels of description logic respectively. The properties of
nodes manipulated in each rule are expressed in ABox pre- and postconditions
so that a Hoare-like calculus can be realized to verify the correctness of a rule.
Besides this ABox verification, we presented an approach based on a static
analysis aiming to deduce implicit TBox assertions about concepts from explicit
ABox assertions and valid TBox premises. Our TBox verification process deter-
mines whether the given ABox and TBox assertions are consistent. A formal
proof sketch of our static algorithm has been addressed.

We showed that using TFormulae, some monadic second-order properties
can be verified. It would be interesting as future work to improve the expres-
siveness of our TFormulae in such a way that more global properties can be
verified e.g. considering the cardinality restrictions and roles constructors.

Other dialects and in particular DL ALCQIO with nominals O which allows
the description of concepts by the enumeration of named individuals can be
considered as well. The key is to work out how we can increase the expressivity
of Small-tALC programs in order to be able to prove more interesting specifi-
cations. We also investigate Small-tALC functionalities to manage explicit and
inalterable TBox axioms now given by the end-user.

References

1. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009).
https://doi.org/10.1017/S0960129508007202

2. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 23

3. Orejas, F., Ehrig, H., Prange, U.: A logic of graph constraints. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 179–198. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78743-3 14

4. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Giese,
H., König, B. (eds.) Graph Transformation, pp. 17–32. Springer, Cham (2014)

5. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph pro-
grams. In: Giese, H., König, B. (eds.) Graph Transformation, pp. 33–48. Springer,
Cham (2014)

6. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations, pp. 313–400 (1997)

7. Strecker, M.: Modeling and verifying graph transformations in proof assistants.
Electron. Notes Theoret. Comput. Sci. 203(1), 135–148 (2008)

8. Baklanova, N., et al.: Coding, executing and verifying graph transformations with
small-tALCQe. In: 7th International Workshop on Graph Computation Mod-
els(GCM) (2016). http://gcm2016.inf.uni-due.de/

9. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York (2003)

10. Makhlouf, A., Percebois, C., Tran, H.N.: An auto-active approach to develop cor-
rect logic-based graph transformations. Int. J. Adv. Softw. 11(1,2), 147–158 (2018)
http://oatao.univ-toulouse.fr/22689/

11. Sattler, U.: Reasoning in description logics: basics, extensions, and relatives. In:
Antoniou, G., et al. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 154–182.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74615-7 2

12. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update and
erasure in description logic ontologies. J. Logic Comput. 19(5), 745–770 (2009)

13. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, New York (1990). https://doi.org/10.1007/978-1-4612-3228-5

14. Cousot, P.: Abstract interpretation based formal methods and future challenges. In:
Wilhelm, R. (ed.) Informatics. LNCS, vol. 2000, pp. 138–156. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44577-3 10

15. Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundam.
Inform. 118, 135–175 (2012)

16. Navarro, M., Pino, E., Orejas, F., Lambers, L.: A logic of graph conditions extended
with paths. In: Pre-proceedings 7th International Workshop on Graph Computa-
tion Models (2016). http://gcm2016.inf.uni-due.de/pre-proceedings.html

17. Lambers, L., Navarro, M., Orejas, F., Pino, E.: Towards a navigational logic for
graphical structures. In: Heckel, R., Taentzer, G. (eds.) Graph Transformation,
Specifications, and Nets. LNCS, vol. 10800, pp. 124–141. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75396-6 7

18. Ahmetaj, S., Calvanese, D., Ortiz, M., Simkus, M.: Managing change in graph-
structured data using description logics. ACM Trans. Comput. Logic 18(4), 27:1–
27:35 (2017). https://doi.org/10.1145/3143803

19. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. In: Gabbay, D.M., Guenthner, F.
(eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 4,
pp. 99–217. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0456-
4 2

20. Brenas, J.H., Echahed, R., Strecker, M.: C2PDLS: a combination of combinatory
and converse PDL with substitutions. In: Gammarth, T., Mosbah, M., Rusinow-
itch, M. (eds.) 2017 the 8th International Symposium on Symbolic Computation in
Software Science, SCSS 2017, 6–9 April 2017, pp. 29–41 (2017). https://easychair.
org/publications/paper/dx4z

21. Liu, H., Lutz, C., Miličić, M., Wolter, F.: Reasoning about actions using description
logics with general TBoxes. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 266–279. Springer, Heidelberg
(2006). https://doi.org/10.1007/11853886 23

