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ABSTRACT
Embedded real-time networks must ensure guaranteed de-
lays. Network calculus is a theory providing bounds on such
delays. This mathematical theory currently relies on, hu-
man made, pen and paper proofs. The current work offers
to formalize such proofs in Coq, an automated proof checker.
We formalize a subset of the theory large enough to handle
a complete proof of bounds on a representative case study.
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1. INTRODUCTION
Nowadays, real-time systems are pervasive in embedded

applications such as the aerospace or automotive industries.
Such applications being critical, it is mandatory to establish
a high degree of confidence in their functional and tempo-
ral behaviour. Whereas a lot of work is available on func-
tional verification, this paper focuses on temporal correct-
ness. Analysis methods in this regard do exist and they are
mathematically proved. However, these proofs are only re-
viewed and verified by humans which implies a substantial
risk of error, due to their complexity or subtle hypotheses.

Therefore, some mistakes can be made during the writing
and reviewing process of a proof. A major source of mis-
takes is the omission of an implicit hypothesis when reusing
a previous results. Such omissions have occurred several
times in real-time analysis proofs. For example, it has been
recently discovered that some self-suspension consideration
was inexact 20 years after publication of the original paper
[14]. As another example, an error in real-time analyses of
the CAN bus, was discovered only 13 years after the original
publication [9].

We aim at increasing the confidence in mathematical proofs
by automating the proofreading process. This can be made
by a computer running a proof assistant. Such tools are
developed by computer scientists and mathematicians for
nearly half a century. We can for instance mention Coq, Is-
abelle or PVS [3, 15, 16]. We can use one of them to formally
define mathematical objects, enunciate theorems and finally
describe proofs of these theorems. A computer is then able
to automatically check these proofs.

As a first advantage to the use of a proof assistant, the con-
fidence in the correctness of the proofs is reduced to the ab-
sence of bugs in the tool, the coherence of the implemented
logic and potential axioms used. On this last point, the tool
allows to know exactly which axioms are used in each proof.

Another advantage is to identify where and how hypothe-
ses are used by a proof. In extreme cases, it happens that
some hypotheses are in fact unused in the course of a proof.
To check this, it is enough to remove the considered hypoth-
esis and attempt a recompilation of the proof.

Finally, a proof assistant enables a simpler and safer reuse
of the results: an application of a theorem is only possible
when all hypotheses are collected. Thus, it is not possible
to forget hypotheses.

The proof assistant we use in this paper is Coq [3], devel-
oped by Inria, based on a small kernel and extended by a
large sets of libraries.

The kernel implements an intuitionistic logic. Our confi-
dence is based on this reduced kernel that ultimately check
all Coq proofs. This kernel uses a low level language that is
simple but hardly usable by humans. Coq thus provides an
interface to make it operable, it interprets user’s commands
to elaborate a proof in the kernel language.

Coq comes with a standard library providing mathemat-
ical models and properties. Other libraries go beyond this
standard set, such as the Mathcomp [12] or the Coquelicot
[4] libraries. The correctness of these libraries relies on the
fact that they are checked by the kernel.

In order to formalize proofs on a specific problem, a Coq
user first defines a mathematics model (the modeling of the
problem). Then she expresses some properties of the model
(stating lemmas or theorems) and eventually writes Coq
commands to prove these properties.

During this process, Coq checks that definitions and state-
ments of properties are well formed and that the proofs hold.

Our proofs will focus on embedded networks and will use
an analysis method of temporal properties on these net-
works: the network calculus (NC). This theory heavily relies
on tropical algebra through the dioid of min-plus functions.

As previously described, our first step will consist in writ-
ing NC definitions in the Coq language. Secondly, NC re-
sults found in the literature will be prove within Coq. Only
a NC expert can check that the Coq definitions match with
the ones in the literature. Thus our models have to be read-
able even without a deep Coq expertise. In contrast, the
second step, proof writing, does not need to be checked by
a human since the compilation guarantees the proofs.

While our final goal is to be able to verify a full industrial
network, our current contributions are:

• an extension of the Coq Mathematical Components li-
brary of algebraic structures,

• formal definitions and proofs of some typical network cal-



culus theorems,

• an application on a first case study, handling 5 flows
through 5 servers with FIFO policy.

Section 2 presents related works on proof assistants and
real-time network analyses. Then, Section 3 presents our
formal development. Section 4 is a case study on a perfor-
mances analyses of a network. Finally, we conclude with
Section 5 and explain our future work in Section 6.

2. RELATED WORK
Network calculus tools take as input the description of a

network and compute delay bounds. The validity of these
bounds relies on both the correctness of the network calculus
theorems (produced by authors and checked by reviewers)
and the correctness of the implementation (relying on devel-
oper skills).

Formally proving correct implementation was the aim of
[11], using the proof assistant Isabelle. Our goal is to prove
both theory and implementation correctness, using another
proof assistant, Coq.

Our work is part of the project RT-proofs [2]. The main
objective of this project is to lay the foundations for computer-
assisted formal verification of timing analysis results. Many
works have been performed already, for example a verifica-
tion of a CAN schedulability analysis with Coq [10].

Finally, a library for the development of machine-checked
schedulability analysis using Coq is also available [8]

3. NETWORK CALCULUS WITH COQ
The Network Calculus theory is based on the min-plus

dioid [5]. Thus, our first contribution consists in adding this
algebraic structure to the Mathcomp library (Sections 3.1,
3.2). We then formalize main NC results (Section 3.3). Some
metrics on the Coq development are given in Section 3.4.

3.1 Algebraic structures
We use some of the existing elements in the Mathcomp

library [12] to define the algebraic structure of complete
dioids. The Mathcomp library provides some algebraic struc-
tures useful in our case (monoids, rings,...) but not dioids.

So, with the help of this library, we add a description of
the dioid structure as defined by [13].

Definition 1 (Dioid). A set D with two operators ⊕
and ⊗ is called a dioid if

• ⊕ is associative and commutative and admits a neutral
element 0̄

• ⊗ is associative and admits a neutral element 1̄

• ⊗ is left and right distributive over ⊕
• 0̄ is absorbing for ⊗
• ⊕ is idempotent, i.e: ∀a ∈ D, a⊕ a = a

A dioid is said to be complete if it is closed for infinite sum
and if the product distributes over infinite sums on both
sides.1 Under some assumptions, a subset of a complete
dioid remains a complete dioid.
1All these algebraic structures and their properties have
been developed using only intuitionistic logic. Even proofs
on infinite sums don’t require classical reasoning since we
only prove results based on the hypothesis that such sums
do exist. In contrary, the next section will deal with real
numbers whose formalization in the Coq standard library
requires classical logic with the excluded middle axiom.

Theorem 1. Let D be a complete dioid with operators ⊕
and ⊗. Any D′ ⊆ D including 0̄ and 1̄ and stable for ⊕, ⊗
and infinite sums is also a complete dioid.

We can then define the kleene operator, useful in NC.

Definition 2 (Kleene operator). Let D be a com-
plete dioid with operators ⊕ and ⊗, the kleene operator on
a ∈ D is: a∗ =

⊕+∞
i=0 a

i with a0 = 1̄ and ai+1 = a⊗ ai

By using this definition, we can state the next theorem.
This result is shared with language theory.

Theorem 2. Let D be a complete dioid with ⊕ and ⊗, for
all a, b in D, a∗ ⊗ b is the least solution of x = (a⊗ x)⊕ b.

There exist many other results on dioids [5, 13]. Among
them we prove 78 properties useful for NC.

All of these results have been submitted as a pull request
on the Mathcomp library2.

3.2 Instances
To use these properties in the NC context, we have to

prove that sets of interest are dioids. This implies to:

• give a set D,

• give operators ⊕, ⊗ and their neutral elements,

• prove that dioid properties (cf. Definition 1: associativity,
commutativity...) hold.

NC handles functions on real values: F : R+ → R, with
R = R

⋃
{−∞,+∞}, and uses the following two operators:

• minimum: (f ∧ g)(t) = min(f(t), g(t))

• convolution: (f ∗ g)(t) = inf
06s6t

{f(t− s) + g(s)}

Theorem 3. The set of functions F with ⊕ = ∧ and
⊗ = ∗ is a complete dioid.

Depending on the authors and even on the papers, NC
results handle either F or some specific subsets:

• F+ : R+ → R+
,

• F↑: subset of non-decreasing elements of F+.

Theorem 4. The sets F+ and F↑ with ⊕ = ∧ and ⊗ = ∗
are complete dioids.

This is proved by using Theorem 1. One contribution of
our work is to explicit which subset is needed for each result.

To develop these constructions, we use results of the Co-
quelicot library [4]: the set R and its properties.

3.3 Network calculus

3.3.1 Model
NC models data flows by the cumulative amount of data

at a point in a network at time t.

Definition 3 (Cumulative function). A function f :
R+ → R+ is a cumulative function if f :

• is non-decreasing: ∀t, d ∈ R+, f(t) 6 f(t+ d),

• starts at 0: f(0) = 0,

• is left-continuous.

2https://github.com/math-comp/math-comp/pull/357

https://github.com/math-comp/math-comp/pull/357
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Figure 1: Illustration of the notion of delay

The set of cumulative functions is denoted C. They are non-
decreasing because they represent a cumulative amount of
data and this one can not decrease. We consider that flows
do not contain data before t = 0, so C functions start in 0.

A server is a relation between two cumulative functions:
A for arrival and D for departure of the server.

Definition 4 (Server). A server S ⊆ C × C satisfies:

• ∀A ∈ C, ∃D ∈ C, (A,D) ∈ S
• (A,D) ∈ S ⇒ D 6 A

The first property means that, for all arrival there exists a
departure. The second property means that departure can
not happen before arrival so D 6 A.

Another notion of NC we use is called arrival curve. It is
used to constrain cumulative functions.

Definition 5 (Arrival curve). Let A ∈ C be a cu-
mulative function. The function α ∈ F↑ is an arrival curve
for A if A 6 A ∗ α.

To specify servers, NC uses the notion of minimal service.
We define it below, first using mathematics, then in Coq.

Definition 6 (minimal service). Let S be a server and
β ∈ F+. The server S is said to offer a minimal service
curve β if: ∀(A,D) ∈ S =⇒ A ∗ β 6 D.

Definition is_min_service (S : C → C → Prop) (beta : Fplus)
:= forall A D, S A D → A ∗ beta 6 D.

The notation Fplus represents the set F+ presented in
Section 3.2. (S : C → C → Prop) means that S is a relation
on C. The term S A D signifies (A,D) ∈ S and the arrow →
stands for logical implication in Coq.

3.3.2 Properties
To analyze temporal network performances, NC defines a

notions of delay. The delay experienced by the flow whose
arrival is A and departure is D is denoted d(A,D), illus-
trated in figure 1. A formal definition can be found in [5].

Different policies for servers are defined in NC. One of
them is the First-In First-Out policy. In such a server, each
packet is served after all previously arrived packets have
been served. For this policy, a NC theorem bounds the delay
experienced by each packet. We proved this theorem in Coq.

Finally, NC provides a method to compute a contract on
the output of a server,i.e., an arrival for the next server.

3.4 Coq development overview
Table 1 gives some metrics on our Coq development. It

can first be observed that the number of definitions in In-
stances is higher compared to Dioid and NC. This difference
has no significant meaning: it comes from a difference in Coq
programming style between the two libraries.

Definitions Properties Lines Lines/prop.
Dioid 19 78 1616 21
Instances 108 159 2888 18
NC 26 52 2253 43

Table 1: Summary Table of Coq definitions and
property done

Figure 2: Network Topology

More interestingly, the ratio between the number of lines
and the number of properties in Dioid and Instances is lower
than in NC. This means that Dioid and Instances contain
properties which only require short proofs, never exceeding
10 lines and most of time taking only one. On the contrary,
NC requires larger, more complex, proofs.

These definitions and properties are very much inspired
from a NC textbook [5], giving pen and paper proofs of NC
properties. It is thus possible to compare pen and paper to
Coq versions of these proofs. Formalizing pend and paper
proofs in Coq provides several benefits. As expected, some
typos have been found but we also found a few mistakes
in proofs, which we had to fix3. More interestingly, some
results appeared to be over specified: Coq helped us to sim-
plify the hypotheses. Lastly, some properties have been both
simplified and generalized: pen and paper proofs valid only
for specific dioid instances have been leveraged to any dioid,
with a shorter proof.

4. CASE STUDY
In this section, we work on a simple network with a par-

ticular topology shown on Figure 2. In this network, we con-
sider that data transmissions are periodic with a 20 Mbits
per second rate. The frame sizes are fixed to 1 Kbyte The
scheduling policy for each server is FIFO, as introduced in
subsection 3.3.2. The speed rate of each server is fixed to
100 Mbits per second. Servers are assumed to have no la-
tency. Flows 1, 2 and 3 converge on the leftmost switch
and share its output port. The next switch separate them:
flow 1 goes up and competes with flow 4 on the output port
of the upper switch. Flow 3 symmetrically goes down and
meets the flow 5. All flows then converge to the rightmost
switch, flows 1, 2 and 3 sharing one output port and flows 4
and 5 the other.

The objective is, for each flow, to bound the delay when
crossing the entire network. To do so, we have written a
Coq proof which consists in two steps. A first step considers
each server and its crossing flows individually, and applies
the Coq results presented in the previous sections. The sec-
ond step consists in combining local results with respect to

3For example, in proof of theorem 6.2, a confusion was made
between > and >, invalidating the proof.



Flow 1 2 3 4 5
Delays bound (µs) 601.6 368 601.6 233.6 233.6

Table 2: Delay bound for each flow

the topology presented in Figure 2. This leads to algebraic
expressions of the delays (in the min-plus dioid) whose nu-
merical values are computed using the min-plus calculator
from RTaW [1]. This tool implements the algorithms from
[6] whose pen and paper proofs have not been formalized in
Coq yet. The results are presented in Table 2.

5. CONCLUSION
The aim of this work was to formalize (using Coq) results

on delay bounds of real-time network (using the NC theory).
This required the formalization in Coq of the algebraic

structure of complete dioids. We rely on the Mathcomp
library and we shared our development to this library. Then,
we built specific instances of complete dioids used in NC with
the help from the Coquelicot library.

Last, we developed a set of NC definitions and results,
sufficient to perform the complete proof of a first case study.

Thus, we obtained a Coq development of 6757 lines con-
taining a definition of the algebraic structure of dioids, in-
stances of dioids and NC results. This work took one year,
considering that the main author was a newcomer to both
Coq and the NC theory.

Several benefits come with this formal development: we
found a few mistakes in proofs from [5], which we had to
fix. More interestingly, some results appeared to be over
specified: Coq helped us to reduce the hypotheses. Last,
some results have been generalized while simplifying their
proofs.

Finally, the results are applied to a first case study. We
used here a tool from RTaW to compute the final numerical
results but Coq is used to prove the correctness of the com-
puted expressions and all properties used to obtain these
expressions.

We notice that there are three possible kinds of modifi-
cations of our case study. First, a modification of its nu-
merical values (throughput, packet sizes...) does not change
the Coq proof, since only numerical parameters of the final
computation are affected. Second, a modification of the ser-
vice policy requires to prove new theorems related to the
new policy, but does not change the global structure of the
proof. Finally, a modification in the network topology or
routing breaks the structure of the proof.

6. FUTURE WORK
One may wonder how the work done for this small case

study is relevant for realistic configurations.
Verification of actual embedded network, like AFDX [7]

requires only two more results: on static priority scheduling
and packetisation. We plan to add such Coq proofs.

In our case study, we use an external tool to compute the
value of analytic expressions. We plan to either have Coq
compute them by itself or verify the values computed by the
external tool. This will allow us to have a complete Coq
validation of performances bounds values.

The change of routing implies a manual modification of
the proof. However, the structure of the proof is very repet-

itive, and quite a direct mapping of the network topology.
We plan to automatize this part: either inside Coq, using
dedicated tactics, or collaborating with an external tool, as
done in [10].
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