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The acquisition of mammalian endothermy is poorly constrained both phylogenetically and temporally. Here we inferred
the resting metabolic rates (RMR) and the thermometabolic regimes (endothermy or ectothermy) of a sample of eight
extinct synapsids using palaeohistology, phylogenetic eigenvector maps, and a sample of seventeen extant tetrapods of
known RMR (quantified using respirometry). We inferred high RMR values and an endothermic metabolism for the
anomodonts (Lystrosaurus sp., Oudenodon baini) and low RMR values and an ectothermic metabolism for Clepsydrops
collettii, Dimetrodon sp., Edaphosaurus boanerges, Mycterosaurus sp., Ophiacodon uniformis and Sphenacodon sp. A
maximum likelihood ancestral states reconstruction of resting metabolic rates performed using the values inferred using
phylogenetic eigenvector maps in extinct synapsids, and the values measured using respirometry in extant tetrapods,
shows that the nodes Anomodontia and Mammalia were primitively endotherms. Finally, we performed a parsimony
optimisation of the presence of endothermy using the results obtained in the present study and those obtained in
previous studies that used phylogenetic eigenvector maps. For this, we assigned to each extinct taxa a thermometabolic
regime (ectothermy or endothermy) depending on whether the inferred values were significantly higher, lower or not
significantly different from the RMR value separating ectotherms from endotherms (1.5 mL O, .h™1.g™%67). According to

this optimisation, endothermy arose independently in Archosauromorpha, in Sauropterygia, and in Therapsida.

Keywords: endothermy; synapsids; quantitative paleohistology; paleophysiology
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Introduction

One of the greatest challenges of current research in
palaeobiology is the inference of physiological features of
extinct vertebrates. Among them, endothermy is
particularly relevant because this feature is linked to a
wide array of anatomical, physiological and behavioural
features. Endothermy has been defined as the presence of
any mechanism of non-shivering thermogenesis that
increases both body temperature and resting metabolic
rate (1). Mammals, the only extant synapsids, are
endotherms (2-5). The origin of mammalian endothermy
is poorly constrained both phylogenetically and
temporally, in spite of the fact that the acquisition of this
ability is a key innovation (endotherms are less dependent
on climatic conditions and can occupy more ecological
niches (6)). Many approaches have been used to constrain
the phylogenetic and temporal frames of this acquisition.
One of them involves identifying unequivocal anatomical
correlates of endothermy such as respiratory turbinates or
evidence for an insulative pelage (7). Respiratory
turbinates are rarely preserved in fossils but bone ridges
of turbinate attachment are first recognizable in
therocephalians and in cynodonts (7), so they may have
been acquired by the eutheriodonts. Oldest evidence for
an insulative pelage (fossilized fur impressions) has been
found in the Middle Jurassic nonmammalian therapsids
(Castorocauda lutrasimilis (Ji, Luo, Yuan et Tabrum,
2006) (8); Megaconus mammaliaformis (Zhou, Wu,
Martin et Luo, 2013) (9); Agilodocodon scansorius
(Meng, Ji, Zhang, Liu, Grossnickle et Luo, 2015) (10)).
Thermal modelling (11), the isotopic composition of
mineralized remains (12) and bone palaeohistology (1,13—
15) have also been used to infer the thermophysiology of
nonmammalian synapsids. Here we will use this last
approach.

Traditionally, qualitative bone histology has been used
to estimate the bone growth rate (16—18), indirectly linked
to the metabolic rate, i.e. the rate of energy expenditure,
and to the thermometabolism (19,20). This framework is
based on (A) theoretical grounds “the types of tissue
deposited in the bones of extinct animals are the most
direct evidence of basal metabolic rates, because they
directly reflect growth rates [...]. The sustained deposition
of fast-growing bone tissues, as displayed by mammals,

birds and other dinosaurs, must reflect sustained high

basal metabolic rates” (21) and (B) empirical evidence:
the variation of bone growth rates significantly explained
the variation of resting metabolic rates in a sample of

(19). More
histology and phylogenetic eigenvector maps (13,22)

extant amniotes recently, quantitative
allowed to infer directly the resting metabolic rates of
extinct Archosauromorpha (1,13), Sauropterygia (15) and
extinct Therapsida (14). More recently, quantitative
histology and phylogenetic eigenvector maps (13,22)
allowed to infer directly the resting metabolic rates of
extinct Archosauromorpha (1,13), Sauropterygia (15) and
extinct Therapsida (14).

Olivier et al. (14) used this last approach and provided
evidence for an ancestral acquisition of endothermy at the
node Eutherapsida. However, the sample composition of
this study (14) did not allow to test the hypothesis of an
acquisition of endothermy in a more inclusive node. Thus,
the present study is aimed at further constraining the
temporal range and the phylogenetic frame of the
acquisition of endothermy in Synapsids. To do so, we will
infer the metabolic rates of a sample of extinct synapsids
(including Carboniferous non-neotherapsid synapsids)
using a recently developed bone histological variable, the
relative primary osteon area (RPOA) (named previously
primary osteon density in 15),

eigenvector maps (PEM) (13,22).

and phylogenetic

Material and Methods
Material

We analysed femora of a total of 25 species of
tetrapods. Seventeen of them are extant tetrapods: three
(Gallus 1758),
platyrhynchos (Linnaeus, 1758) and Crocodylus niloticus
1768)),  four  lepidosaurs
(Bosc, 1792),
(Linnaeus, 1758), Podarcis muralis (Laurenti, 1768) and
Zootoca vivipara (Lichtenstein, 1823)), three turtles
(Chelodina oblonga (Gray J.E., 1841),

sinensis (Wiegmann, 1835) and Trachemys scripta

archosaurs gallus (Linnaeus, Anas

(Laurenti, (Varanus

exanthematicus Varanus niloticus

Pelodiscus

(Thunberg in Schoepff, 1792)), six mammals (Capreolus
capreolus (Linnaeus, 1758), Microcebus murinus (Miller,
1777), Mus musculus (Linnaeus, 1758), Cavia porcellus
(Linnaeus, 1758), Lepus europaeus (Pallas, 1778) and
Oryctolagus cuniculus (Linaeus, 1758)) and one amphibia
waltl (Michahelles, 1830)),

(Pleurodeles acting as
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an outgroup for our analyses.

The remaining eight species are extinct synapsids. The
histological ~thin sections of the Anomodontia
(Lystrosaurus sp. (Cope, 1870) and Oudenodon bainii
(Owen, 1860)) analysed were previously studied by
Olivier et al. (14). They are the closest relatives of extant
mammals in our sample. Both of them come from late
Permian and, in the case of Lystrosaurus, it can be found
until the early Triassic. The other extinct taxa of the
sample are older: Clepsydrops collettii (Cope, 1875), the
oldest known synapsid, and Ophiacodon uniformis (Cope,
1878) belong to the Ophiacodontidae clade; Dimetrodon
sp. (Cope, 1878) and Sphenacodon sp. (Marsh, 1878)
belong to the Sphenacodontidae clade; Mycterosaurus sp.
(Williston, 1915) (Varanopidae) and Edaphosaurus
boanerges (Romer & Price, 1940) (Edaphosauridae). The
oldest one, Clepsydrops collettii, lived in the Late
Carboniferous. The others are Permian taxa. Extinct taxa
were chosen primarily because of their availability at the
vertebrate hard tissues histological collection of the

Museum national d’Histoire naturelle (MNHN, Paris).

Methods
Preparation of sections

Femoral diaphyses were embedded in epoxy resin.
Transverse and longitudinal thin sections were obtained
and mounted on glass slides (23). These sections were
prepared and deposited at the vertebrate hard tissues
histological collection of the Paris MNHN, where they are
available upon request to the curator (a list of accession
numbers is given in supplementary file 1). We studied
only the femora because it was the only bone present for
all of the extinct taxa analysed. Bone histology was
studied through transverse sections, completed, when it
was necessary, by longitudinal sections (24). The
histological terminology follows (25) with addenda from

(26).
Resting metabolic rates

As endothermy cannot be directly inferred from the
analysis of bone sections, we used proxies. Metabolic rate
is directly linked to the thermometabolism: an endotherm
shows a higher metabolic rate than an ectotherm ceteris

paribus (3). Considering that metabolic rate is linked to

bone growth rate (BGR) and BGR to histological features,
then histological features can be used as a proxy to infer
metabolic rates (19,20).
metabolic rate is linked to other functions, as locomotion,

However, considering that
digestion, reproduction and regulation, we need to
standardise it. For adult endothermic amniotes the basal
metabolic rate (BMR) has been defined as the minimum
rate of energy expenditure measured under thermoneutral
and postabsorptive conditions in the inactive phase of the
daily cycle (27). For adult ectothermic amniotes the
standard metabolic rate (SMR) has been defined as the
minimum rate of energy expenditure measured at a given
temperature within the animal’s range of activity (28) or
as the metabolic rate “measured for fasting individuals
during the period of normal inactivity (night for most
squamates)” (29). We used the resting metabolic rate
(RMR) for the whole sample, defined as the metabolic
rate “measured for fasting individuals during the period of
normal activity” (29).

RMR, measured in mL O, .h™!, is an indicator of the
‘whole’ energetic expenditures of the organism. We need
to standardise by mass unit. Thus, we used mass-specific
RMR, measured in mL O, .h7l.g”! . The effect of body
mass on RMR has been corrected in two different ways in
studies: (1) the RMR
measured in mL O, .h™l.g™ , where ‘b’ is the allometric

previous mass-independent
exponent of the regression between raw RMR to body
mass, and (2) the geometry-corrected RMR measured in
mL O, .h™.g™0¢” | where 0.67 is the allometric exponent
of the regression between the ratio surface-to-volume to
body mass for geometrically similar organisms (30). We
used the geometry-corrected RMR because our sample of
extant tetrapods includes growing animals and as a
consequence the allometric exponent of the regression
between raw RMR to body mass may be a mixture of
ontogenetic and interspecific allometry (please see (19)
for a detailed discussion on this topic). Thus, we used
geometry-corrected RMR (mL O, .h™1.g0%7) measured at
the ontogenetic stage of sustained high BGR to
standardise data and allow repeatability. All RMR values
for extant taxa were taken from the literature: most
(fourteen) of them come from Montes et al. (19). For the
remaining three taxa, values were computed using data
taken from other studies: Capreolus capreolus from
Mauget et al. (31); Lepus europaeus from Hackldnder et

al. (32); and Oryctolagus cuniculus from Seltmann
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et al. (33).
Quantitative histology

We used a variable strongly correlated with the type of
osteogenesis (static versus dynamic) involved in bone
formation: relative primary osteon area (RPOA) defined
as the ratio between the surface occupied by osteon

(Sosteon) and the analysed bone surface (Stotal):

Sosteon

RPOA =
Stotal

This variable was proposed previously and named
primary osteon density or POD (15). We decided to
rename it to avoid confusion with the “primary osteon
diameter” defined by (33). Osteon diameter has been
shown to be strongly associated with BGR (34).
Considering that BGR significantly explains the variation
RMR (19), both osteon diameter and osteon density are
expected to be associated with RMR. Moreover, high
growth rate is very energy consuming (19), so a high
value of RPOA is expected to reflect a high RMR.
Anyway, in spite of these empirical arguments, we tested
the relationship between RPOA and RMR using
phylogenetic comparative methods.

Phylogenetic comparative methods
Phylogeny

We used phylogenetic comparative methods (PCM) to
infer extinct taxa’s RMR. These methods include

statistical ~analyses that take into consideration
phylogenetic relationship as an explanatory factor (35).
Phylogeny includes topology and branch lengths. In this
study, branch lengths are computed as the difference in
age between two linked nodes (a more inclusive node and
a less inclusive node) or between a node and a terminal
taxon. Ages of nodes were taken from the PaleoBiology
Data Base (https://paleobiodb.org last access: 25M June
2018) and reflect the minimal age of the oldest known
fossil included in the clade. A minimal distance of 4 Myr
was enforced in cases of nodes having the same age, or a
distance of less than 4 Myr.

The phylogeny was taken from previous studies

(13,14,36) for extant taxa and the two Anomodontia. The

relationships of other extinct taxa were taken from
Brocklehurst et al. (37), except for Clespydrops collettii
which was placed according to Laurin & de Buffrénil
(38). We consider the Archelosauria hypothesis of a close
Testudines

and Archosauria,
(39,40) and

relationship  between
supported by many palaeontological
molecular (41) studies.

Phylogenetic Generalised Least
Squares (PGLYS)

The first step was to test the appropriateness of RPOA
as proxy to infer RMR. For this we quantified the fraction
of the variation of RMR explained by the variation of
RPOA using phylogenetic generalised least squares
regressions (PGLS) (42-44) with the caper package (45)
in R (46). If a significant fraction of RMR was explained
by the variation of RPOA, then this last variable can be
confidently used as a predictor to infer the former in a
phylogenetic context. Shapiro-Wilk normality test were
the PGLS
regression of RMR on RPOA using the ’shapiro.test’

performed on residuals obtained from

function from the R core software (46).
Phylogenetic signal

We performed two phylogenetic signal tests (Pagel’s A
(47) and Blomberg’s k (48)) using the phytools package
(49) in R (46).

Phylogenetic Eigenvector Maps
(PEM)

The following step was to infer extinct taxa’s RMR,
using PEM (22). This method infers quantitative values of
a biological variable for target taxa using a model. The
topology of the phylogeny is coded as a matrix that is
afterwards transformed assuming an evolutionary model
and taking into account the quantified values in extant
taxa, with the aim of representing trait change patterns.
Two parameters control the extent of the evolutionary
change along the branches. The a steepness parameter (0
< a < 1) indicates how abrupt are evolutionary changes
along branches after each split, whereas the | parameter
(0 < Y < o) indicates the relative evolutionary rate
(22,50). We assumed that the trait evolved in a steady
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steady manner throughout the phylogeny and consistently
we assigned a single pair of values (a and ), but it is
possible to assign specific pairs of parameters to each
node in a given phylogeny (22). Under pure Brownian
motion (purely neutral evolution), a = 0 and the expected
changes are proportional to the square root of the branch
lengths (22,50). In contrast, when a = 1, evolutionary
change occurs at a fixed rate dyirrespective of branch
length (22,50). The a steepness parameter was estimated
using the ‘PEM.fitSimple’ function in MPSEM (22) and
had a value of 0.353 in the model used to perform
inferences. We assigned a default value equal to 1 to the
evolutionary rate parameter following Molina-Venegas et
al. (50). Considering that a large number of eigenvectors
are produced (n-1, being n the number of taxa analysed),
we used the ‘ImforwardsequentialAICc’ function in
MPSEM (22) to perform a forward stepwise selection
procedure and compile a set of PEM eigenvectors. Two
models are produced, the first one based on the phylogeny
only and the second one based on the phylogeny plus a
predictor variable (here RPOA). We applied an Akaike
Information Criteria (AIC) (51) to find the best model, i.e.
the one with the highest R square and the lowest AIC
value. The chosen model was used to infer target species’
RMR using the MPSEM package (22) in R (46). Finally,
we performed a verification of its accuracy using a in
leave-one-out cross-validation test, by re-estimating RMR
values of the extant taxa (for which these values are
known) using the inference procedure and comparing the
empirical values with the inferred ones using the MPSEM
package (22) in R (46).

Ancestral States Reconstruction

Two ancestral states reconstructions were performed.
First, we inferred the maximum likelihood (ML) ancestral
states of RMR for all nodes, and the corresponding 95%
confidence intervals, using the 'fastAnc' function of the
phytools package (49) in R (46). Second, we transformed
our results of RMR into a dichotomic character: 0 for
ectotherms and 1 for endotherms. The threshold to
perform this attribution corresponds to a value (1.500 mL
O, .h t.g™%67) slightly lower than the lowest RMR value
observed in our sample of extant endotherms. These are
Mus musculus with 1.697 and Microcebus murinus with
1.526 mL O, .h"1.g"067. Thus, a taxon with an inferred

value significantly higher than the threshold is scored as
endotherm. This last optimisation was performed using

Mesquite software (52), with the “Trace Character
History” algorithm, using parsimony.

Results
Quantitative histology

Results from histological quantifications are

summarised supplementary file 2.

PGLS

We used PGLS analyses to test whether the explanatory
(predictor) variable, here RPOA, explains a significant
fraction of the response variable (here RMR). We
performed a Shapiro-Wilk normality test on residuals
obtained from the PGLS regression of RMR on RPOA
and we found that the null hypothesis of normality was
rejected (P=0.001939). Thus, we performed a natural
logarithm transformation of RMR and a natural logarithm
transformation of RPOA+1 (because several RPOA
values equal zero and the natural logarithm of zero is not
defined). We repeated the PGLS regression using the
transformed variables and the Shapiro-Wilk test on the
residuals did not reject the null hypothesis of normality of
residuals (P=0.3014). P-value of the PGLS regression
between In(RMR) on In(RPOA+1) is highly significant
(2.092e°%). RPOA explains 79% of the variation of RMR
(R? = 0.787; n = 17). The highly significant P-value and
high R? found here allow us to use RPOA as a predictor
variable to infer RMR using PEM.

PEM

The first step to perform palaeobiological inferences
was the choice of the best model. Two models were tested
through an AIC procedure: the first one takes into account
the phylogenetic relationships, and a second one adds to it
the explanatory (predictor) variable (RPOA). A third
possibility (a model including only POD as an
explanatory variable; in other words, a model without
phylogeny or including a star phylogeny) has been ruled
out because both the response variable (RMR) and the
explanatory variable (RPOA) show a highly significant
phylogenetic signal. Pagel’s A of In(RMR) =0.995,
P=6.577729¢-05; Blomberg’s k of In(RMR) =1.396;
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Figure 1. Resting metabolic rates inferred using palaeohistology and phylogenyetic eigenvector maps. We used a model that includes the phylogeny
plus relative primary osteon area as explanatory factors. Blue squares indicate ectothermy and red squares endothermy. The broken line represents the
lower RMR value found in extant endotherms. For extinct taxa, segments represent the 95% confidence intervals of the inferences. For extant taxa,

crosses represent values inferred in leave-one-out cross-validation tests.

P=0.001. Pagel’s A of In(RPOA+1) = 0.999; P=0.012;
Blomberg’s k of In(RPOA+1) = 0.613; P=0.001. Results
of AIC selection procedure are given in figure 1. The
model including RPOA + phylogeny was selected to infer
RMR because it shows the highest R squared and the
lowest AIC value. Inferred values are shown in figures 1
and 2. Script is provided in supplementary file 3. Our
RMR show that the
(Lystrosaurus sp. and Oudenodon baini) show high RMR

inferences two anomodonts
values. All these taxa were probably endotherms because
the inferred RMR values are significantly higher than the
lowest values measured in the extant endotherms of the
sample (Mus musculus and Microcebus murinus). All
other extinct taxa show unambiguous ectotherm-like
RMR values.

Ancestral States Reconstruction

Maximum likelihood ancestral states reconstructions of
RMR using values inferred in this study are shown in
figure 2, and a parsimony optimisation of the presence of
endothermy using the results obtained in the present study
and those obtained in previous studies using PEMs
methodology (1,13-15) is shown in figure 3. Of our

our sample of fossil taxa, only wvalue inferred for
Oudenodon is significantly higher than the threshold
separating endotherms from ectotherms (1.500 mL
O, .h™1.g™067), We inferred a high RMR for Lystrosaurus
(1.936 mL O, .h71.g067), but the inferior limit of the
confidence interval is slightly smaller (1.491) than the
threshold (1.500). Therefore, we considered that the
endothermy of Lystrosaurus was marginally significant.
Regarding inferences obtained in other studies using
PEM, we excluded two taxa in the optimisation of figure
3 because Legendre et al. (13) and Cubo & Jalil (1) found
These

archosauriform Proterosuchus fergusi (Broom, 1903) and

divergent inferred values. taxa were the
the dinosaur Maiasaura peeblesorum (Horner & Makela,

1979).

Discussion

The presence of endothermy in extinct synapsids has
been inferred using different proxies. Using proxies is
obviously necessary because the thermometabolic regime
of extinct taxa is not accessible through direct observation
of fossilised features. The presence of anatomical features

linked to endothermy in extant mammals, as the presence
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Figure 2. Maximum likelihood ancestral states reconstruction of resting metabolic rates performed using the values inferred using phylogenetic
eigenvector maps for the eight extinct synapsids, and the values measured using respirometry in the seventeen extant tetrapods. Within Synapsida, the

nodes Anomodontia and Mammalia were primitively endotherms.

of fur (53) or of respiratory turbinates (7) have been
widely used. The former has traditionally been seen as
evidence for, at least, a near-endothermic condition,
because of its homeothermic function by retaining the
generated heat (7,53). The earliest known occurrences of
fossilized fur impressions have been dated in the Middle
Jurassic  (Castorocauda (8);  Megaconus  (9);
Agilodocodon (10)). Considering that endothermy has
been defined by Cubo & Jalil (1) as the presence of any
mechanism of non-shivering thermogenesis (e.g. 5,49,50)
that increases both body temperature and resting
metabolic rate, the presence of fur and hair are not
definitive evidence for endothermy because, at best, they
can indicate a homeothermic condition.

The same reasoning can be applied to respiratory
turbinates: these are osseous or cartilaginous convoluted
pieces in the nasal cavity. The oldest presence of
respiratory turbinates in synapsids is dated from
Lopingian (late Permian) (56). During inhalation, they
warm and moist the incoming air and do the opposite for
expiration (56,57). Doing so, they help to keep a stable
temperature and limit the loss of moisture through
breathing. According to several authors, endothermy
cannot be sustained without these structures (58) leading

these to be considered as the best evidence for an
endothermic condition. However, the obligate presence of
respiratory turbinates to achieve homeothermy was
recently challenged (59).

Another proxy is geochemistry. The isotopic ratio
between 160, the common form of oxygen, and 80, a rare
heavy isotope, is used to infer body temperature. This
ratio, measured in calcium phosphate from bones and,
especially, dentary enamel, is dependent on environmental
and body temperatures during the formation of the sample
(12,60). We can infer the relative internal body
temperatures from calcium phosphate using fractionation
equations (12,60-63). Lot of studies have been conducted
in different organisms, as for Ichthyosaurs and Plesiosaurs
(63). Recently, Rey et al. (12) studied a large sample of
Neotherapsida with this approach and discussed two
competing hypotheses: either a single apparition of
endothermy at the Neotherapsida node, or two
independent acquisitions at the nodes of Dicynodontoidea
and Epicynodontia. According to these results, the
endothermy was acquired in the synapsid clade, at best,
during the Roadian (early Permian) with the singe
apparition scenario. With the convergent evolutionary

scenario, endothermy would have been appeared during
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the Lopingian, as for respiratory turbinates.

On the specific case of Dimetrodon, some studies tried
to estimate the effect of the sail in thermal regulation
(11,64). In this specific case, the authors created models
in order to simulate the heat exchanges and the specific
role of the sail. They concluded that the sail allowed
Dimetrodon to be active earlier than similar but sail-less
predators. However, this proxy deals with external heat
income and not with endogenous mechanisms of non-
shivering thermogenesis (endothermy).

Bone histology, the last proxy, has largely been based
on Amprino’s rule (65): the organisation of the collagen
matrix records bone growth rate (65). In other words, a
fast growth leads to poorly organized type of tissue (i.e.,
woven bone), whereas a low growth rate produces a
highly organized type of tissue (lamellar or non-lamellar
parallel fibered bone) (25). Thus the presence of woven
bone has been interpreted as evidence for fast bone
growth rate, linked to the endothermy (38,66-68).
However, many counterexamples exist: many ectotherms,
e.g., Alligator (69) or Varanus (70), are able to form
woven bone. In contrast, primary osteon density, the
histological feature recently proposed by Fleischle et al.
(15), is tightly linked to bone growth rate and to resting
metabolic rate. Most endothermic amniotes are able to
form an initial scaffold composed of woven bone that
includes large cavities and produces a rapid volume
expansion of the cortex during early ontogenetic stages
(e.g. in the long bones of ratites (71) and in the long
bones of the king penguin (72)). On the contrary, in most
ectothermic amniotes, periosteal bone is composed of
parallel-fibered bone including, if any, small cavities, and
producing a slow volume expansion of the cortex (e.g. in
squamates (73)). Consistently, relative primary osteon
area (RPOA) was used in this study (primary osteon
density in 15; see above) to infer the thermometabolic
regime (ectothermic or endothermic) of our sample of
extinct synapsids.

RPOA explains a significant fraction of the variation of
RMR (quantified using respirometry) in the sample of
using PGLS
regressions). Thus, assuming the actualism principle, a

extant tetrapods (results obtained
priori the former can be used to infer the later in extinct
taxa. Molina-Venegas et al. (50) analysed accuracy of
inferences (here retrodictions) using pGLM and PEM

approaches. They concluded that accuracy of predictions

is high for traits with high phylogenetic signal (with high
Pagel’s A values), and that it decreases when tip branch
lengths increases, accuracy being reasonably good for tip
branch lengths smaller than 10% of the total length of the
tree. In our case study, Pagel’s A for both the response and
the explanatory variables are extremely high (Page’s
A=0.995, P= 6.578e-05 and A=0.999, P=0.012
respectively) and all tip branch lengths but one
(Mycterosaurus, see below) are smaller than 10% of the
total length of the tree. Therefore we assume that all our
RMR inferences obtained using PEM are accurate.
Inferred RMR values for our sample of extinct
synapsids using PEM are shown in figures 1 and 2. Value
inferred for Mycterosaurus should be analysed with
caution because the branch length of this taxon (42.3 My)
is bigger than 10% of the total height of the tree (358,9
My) and, according to (50), this fact lead to a loss of
accuracy when performing inferences. Our inferences for
Lystrosaurus sp. (1.936 mL O, .h™1.g™067 ; 1.491 - 2.515)
and Oudenodon baini (2.397 mL O, .h™t.g"067 ; 1.828 -
3.142) are congruent with those obtained by Olivier et al.
(14), who used a different histological feature (osteocyte
lacunae density). We performed maximum likelihood
ancestral states reconstructions using these values and
those measured in extant species (figure 2). As expected,
RMR inferred for nodes 49 (birds) and 36 (mammals) in
figure 2 are significantly higher than the threshold
separating endotherms from ectotherms (1.500 mL
0O, .hlg?%). Likewise, RMR inferred for node 35
(Anomodontia: (Lystrosaurus — Oudenodon)) is also
significantly higher than the quoted threshold. However,
value inferred for node 34 (Therapsida:((Lystrosaurus —
Oudenodon) — Mammals))) does not exclude ectothermy.
Finally, we performed a parsimony optimisation of the
presence of endothermy (figure 3). For this, we assigned
to each extinct taxa a thermometabolic regime
(ectothermy or endothermy) depending on whether the
inferred values were significantly higher, lower or not
significantly different from the RMR value separating
ectotherms from endotherms (1.500 mL O, .h™1.g7067). We
reconstructed ancestral thermometabolic states (figure 3)
using the results obtained in the present study and those
obtained in previous studies using PEMs (1,13-15).
According to this optimisation (figure 3), endothermy
three times in Amniotes: in

arose independent

Archosauromorpha, in Sauropterygia, and in Therapsida.
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The presence of fully developed or incipient
endothermy has been suggested in other groups of
tetrapods: Ichthyosauria (63,74), Pterosauria (75) and
Mosasauria (63,76). For both aquatic taxa (mosasaurs and
ichthyosaurs) a study using a geochemistry approach
suggested a high inner temperature for ichthyosaurs
(between 30 and 35°C) and on medium inner temperature
for mosasaurs (around 30°C) (63). For ichthyosaurs, this
study suggested a fully developed endothermic condition
whereas it was probably an incipient endothermy for
mosasaurs (57). This result is congruent with that
obtained by de Buffrénil and Mazin, who found presence
of woven bone suggesting a high growth rate and, so, a
high metabolic rate in ichthyosaurs (74). The case of
mosasaurs is more complex. Houssaye et al. (76) analysed
the bone histology of mosasaurs limb bones and found a
predominance of parallel-fibered bone, which doesn’t
need a high metabolic rate to occur. But they also
described unusual parallel-fibered bone, which could
reflect a growth rate intermediate between that typical of
parallel-fibered bones and that associated to woven bone.
The

ambiguous and gigantothermy, a heat conservation linked

thermometabolic condition of mosasaurs is
to high body mass, is not excluded (76). For pterosaurs,
de Ricglés et al. (75) analysed the bone histology of limb
bones and found presence of woven bone, especially in
juvenile specimens, leading them to the conclusion that
these animals had a growth curve similar to those found
in extant birds. A high growth rate suggests an
endothermic condition for pterosaurs. This condition
would be correlated with the presence of air sacs detected
in some species (77). Such organs are very important in
modern birds to sustain a unidirectional airflow in the
lungs and so a high metabolism associated with flight.
The finding of unidirectional airflow in the lungs of
alligators (78) suggests that this condition would be
primitive for archosaurs and so inherited by pterosaurs.
Perspectives. Further research using quantitative
histology and PEMs the

thermometabolic condition of ichthyosaurs, pterosaurs,

will help to elucidate
mosasaurs and early synapsids. The predictive power of
inference models will increase including additional
explanatory factors such as life history traits, as well as
the

canals

new osteohistological features correlated to

thermometabolism, as for instance vascular

minimum diameter (79).
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