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aLApEH, Université Saad Dahleb, Blida, Algeria
bMechanical Engineering Department, El-Mergib University, Libya

cLEMTA, UMR 7563 (CNRS), 2, avenue de la forêt de Haye, BP 160, 54504
Vandoeuvre Cedex, France

dDepartment of Mechanical Engineering, Faculty of Engineering, University of
Hail, PO Box 2440 Hail, Saudi Arabia

1

Abstract

Linear stability of Poiseuille flow of Herschel-Bulkley fluid in a cylindrical pipe is
studied using modal and non-modal approaches. The first part of the present study
thus deals with the classical normal mode approach in which the resulting eigen-
value problem is solved using a Chebyshev collocation method. Within the consid-
ered range of parameters, the modal-linear theory predicts that perturbations are
dumped exponentially. In the second part, the effect of the rheological behaviour
of the fluid on the pseudospectra and the most amplified perturbations is investi-
gated. At very low Herschel-Bulkley number (Hb << 1 ), the optimal perturbation
consists of almost streamwise vortices, and the amplification of the kinetic energy is
provided by the lift-up mechanism. In contrast, for sufficiently large values of Hb,
the optimal perturbation is axisymmetric and the growth of the kinetic energy is
provided by the Orr-mechanism. For intermediate values of Hb, the optimal pertur-
bation is oblique. The amplification of such perturbation is due to a synergy between
Orr and lift-up mechanisms. In the last part of the study, the maximal value of the
Reynolds number, RecE, below which the perturbation energy decreases monotoni-
cally with time is computed for a large range of Hb. Asymptotic behaviors of RecE
for Hb << 1 and Hb >> 1 are established. The influence of the terms arising from
the viscosity perturbation is highlighted throughout this study.
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1 Introduction

The first step in the study of the transition to turbulence consists in consid-
ering the linearized equations and the starting point is the standard normal
mode approach. Existence of unstable modes means that there is an exponen-
tial growth of infinitesimal perturbation and the eigenfunction represents the
pattern that appear in early stage of transition. The predictions of the nor-
mal mode analysis match the laboratory experiments for some flows, notably
Taylor Couette flow and Rayleigh-Bénard convection. For other flows, such as,
open parallel shear flows, the normal mode approach fails to match the ex-
periments. The failure of the normal mode linear stability analysis to describe
the early stage of transition is attributed in part to the non-normal nature
of the linearized equations, i.e. their eigenfunctions are not orthogonal. The
non-normal nature manifests itself by a transient growth of perturbations and
a large receptivity to ambient disturbances. The amplification of the kinetic
energy of the perturbation may reach a significant amplitude that can trigger
nonlinear mechanisms before its long time decay due to viscous effects [1].
The physical mechanism behind the transient growth is related to the inviscid
vortex tilting mechanism in the presence of base flow shear.
The Orr-mechanism [2] and the lift-up mechanism [3], [4], [5] are two such
commonly identified disturbance growth phenomena in a shear flow. The Orr-
mechanism involves disturbance field that consists of spanwise-uniform vor-
tices initially tilted against the direction of the base flow. The disturbance is
then sheared and tilted. Its kinetic energy is amplified by the base shear via
the working of the Reynolds stress. In the lift-up mechanism, streamwise uni-
form vortices superimposed on a parallel shear flow lift up fluid at low velocity
from the wall and push down towards the wall fluid with high velocity. Hence,
elongated streaks with high and low velocity are generated.
For arbitrary 3D perturbations, both Orr and lift-up mechanisms are operat-
ing, but in a hierarchical manner. The Orr mechanism generates a transient
normal-wall velocity, which in turn creates by the lift-up mechanism stream-
wise streaks that decay slowly by viscosity [6].
The optimal perturbation, i.e. the initial perturbation that undergoes the
largest amplification of the kinetic energy, is a fundamental concept of the
linear stability theory [7]. In simple shear flows, such as Couette, Poiseuille or
Hagen-Poiseuille flows, the optimal perturbation takes the form of streamwise
or quasi streamwise vortices which evolve, via lift-up effect, into spanwise-
periodic streaks (regions of positive and negative streamwise velocity) elon-
gated along the main flow direction. A review on the lift-up process in shear
flows can be found in [8]

Comparatively to the Newtonian case, very few studies have been devoted to
the transient growth in non-Newtonian fluid flows. This is perhaps not sur-
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prising, given the inherent complexities involved. Non-Newtonian fluids can be
divided in three broad groups: (i) time-independent fluids, for which the viscos-
ity is solely dependent on the instantaneous second invariant of the strain-rate
tensor; (ii) viscoelastic fluids, for which stresses depend on the flow history
and (iii) time-dependent fluids, for which the strain-rate is a function of both
the magnitude and the duration of the applied stress.

Transient growth analysis of inertialess Couette and Poiseuille flows of Oldroyd-
B models was studied by Jovanovic and Kumar [9], [10]. It is shown that the
presence of elasticity can produce significant energy amplification. The most
amplified disturbances tend to be elongated in the streamwise direction. The
mechanism responsible for the energy amplification is related to the stretching
of the polymer molecules by the background shear which results in a lift-up of
the disturbances. In the case of inertia dominated channel flow of viscoelastic
fluids modeled by Oldroyd-B and FENE-P closures, Zhang et al. [11] showed
that the ratio between the polymer relaxation time and the characteristic time
of instability plays a key role on the energy amplification.

Studies on non-modal transient growth in viscosity-stratified fluid flows were
recently reviewed by Govindarajan and Sahu [12]. In the present study, we fo-
cus on purely viscous (inelastic) shear-thinning fluid flows. The mean features
of such fluid flows are: (i) an increase of the wall shear-rate with increasing
shear-thinning effects, (ii) a viscosity stratification and (iii) an anisotropy of
the shear-stress tensor perturbation which arises from the viscosity pertur-
bation. Chikkadi et al. [13] considered the case of plane Poiseuille flow of a
Carreau fluid, without taking into account for the anisotropic nature of the
shear-stress disturbance tensor. Rather, unexpectedly, the authors found that
the transient growth is relatively unaffected by the viscosity gradient. This
problem has been revisited by Nouar et al. [14] , and obtained a substantial
increase of the transient growth when the viscosity perturbation is taken into
account. The optimal perturbation is analogous to that of Newtonian fluids,
i.e. longitudinal streamwise vortices which transform into streaks by the lift-up
mechanism. Similar results are also obtained in the case of pipe flow of shear-
thinning fluids [15]. In the case of the plane Couette flow, the shear-thinning
effects reduce only to the anisotropy of the shear-stress tensor perturbation.
A significant increase of the transient growth is observed [16]. However, the
optimal perturbation remains similar to that for a Newtonian fluid.

Studies dealing with the transient growth in yield stress shear-thinning fluids
are very limited. Non-modal stability in plane Poiseuille flow of a yield stress
fluid was studied by Nouar et al. [17]. The rheological behavior of the fluid is
described by the Bingham model. Comparatively to pure shear-thinning fluids
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a fundamental additional parameter intervenes in the problem: the Bingham
or the generalized Bingham number, B, which is the ratio of the yield to
viscous stresses. This additional parameter will modify the viscosity stratifi-
cation, the wall shear rate, the anisotropy of the perturbation stress tensor
and the geometry of the yielded zone, where the exchange between the base
flow and the perturbation occurs. Nouar et al. [17] found that a large am-
plification of the kinetic energy of the perturbation can be obtained for such
fluid flows. At small B, the optimal perturbation is in the form of streamwise
uniform vortices, whereas for large B, the optimal transient growth occurs for
an oblique wave. Similar results were also obtained by Liu & Liu [18] in the
case of Hagen-Poiseuille flow of a Bingham fluid. However, in these studies the
physical mechanisms associated with the obliquity of the optimal perturbation
are not provided. The influence of the viscosity stratification and that of the
anisotropy of the perturbation shear-stress tensor is not clarified.

The objective of the present work is to provide a comprehensive description
of the temporal linear stability analysis of Hagen-Poiseuille flow of a shear-
thinning yield stress fluid. The rheological behavior of the fluid is described by
the Herschel-Bulkley which is used generally in the rheological analysis of yield
stress fluids. The goal is to clarify the influence of the viscosity stratification
and that of the anisotropy of the stress-tensor perturbation. The structure of
the paper is as follows. The governing equations and the base flows details are
presented in Sec. 2 and 3 respectively. The linear stability problem is formu-
lated in Sec. 4. The concept of tangent viscosity is introduced. The results of
the modal approach and the behavior of the least stable mode are discussed
in Sec. 5. The eigenvalue spectra are quite similar to those obtained in New-
tonian fluids. Nevertheless, we show that for axisymmetric disturbances, the
influence of the yield stress on eigenvalue spectra is very weak. An interpre-
tation based on the tangent viscosity is given. The nonnormality of the linear
operators is characterized by the ǫ-pseudospectra and the numerical range in
Sec. 6. The results of the energy growth, the optimal perturbations structures
and the energy growth scaling are also provided in Sec. 6. The influence of tan-
gent viscosity on the transient growth mechanism is highlighted. The energy
stability analysis is presented in Sec. 7. Finally, the summary and conclusions
are provided in Sec. 8.

2 Governing equations

The flow of an incompressible shear-thinning fluid with a yield stress τ̂0 in a

circular duct of radius R̂ is considered. A constant pressure-gradient
∂P̂

∂ẑ
is

imposed in the axial direction ez. The governing equations in dimensionless
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form are:

∇ ·U = 0, (1)

∂U

∂t
+U ·∇U = −∇P +∇ · τ , (2)

where U is the velocity, P the pressure and τ the deviatoric of the extra
stress tensor. The velocity vector U is of the form U = Uer + V eθ +Wez,
where U, V, W are the velocity components and er, eθ, ez are unit vectors in
the radial r, circumferential θ and axial z directions respectively. The above
equations are non-dimensionalized using the radius of the pipe R̂ as the length
scale, maximum velocity Ŵ0 of the basic flow as velocity scale and ρ̂Ŵ 2

0 as
stress and pressure scale. The dimensional quantities are denoted with a hat
symbol.
The rheological behavior of the fluid is assumed to be described by the Herschel-
Bulkley model, which is more realistic than Bingham law. According to [19],
the material structure that resists deformation and leads to the yield stress is
typically not completely destroyed at τ̂ = τ̂0 . The structure persists post-yield
and renders the viscosity shear-rate dependent. For several viscoplastic fluids,
the corresponding flow curve is well fitted by the Herschel-Bulkley model.
Using the Von-Mises criterion, the scaled constitutive equations are

τ =
1

Re
µγ̇ ⇐⇒ τ

II
>
Hb

Re
, (3)

γ̇
II
= 0 ⇐⇒ τ

II
≤
Hb

Re
, (4)

where γ̇
II

and τ
II

are the second invariant of the strain rate tensor γ̇ and of
the deviatoric of the extras stress tensor τ respectively, given by

γ̇
II
=
[

1

2
γ̇ijγ̇ij

]1/2

, τII =
[

1

2
τ̇ijτij

]1/2

(5)

and γ̇ij = Ui,j + Uj,i. The dimensionless effective viscosity µ is defined by

µ =

[

Hb

γ̇
II

+ (γ̇
II
)n−1

]

. (6)

The Herschel-Bulkley Hb and the Reynolds Re numbers derived from the
non-dimensional governing equations, are defined using a generalized viscosity

µ̂gen = K̂
(

Ŵ0/R̂
)n−1

. They are given by
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Hb =
τ̂0

K̂[Ŵ0/R̂]n
, Re =

ρ̂ R̂n Ŵ 2−n
0

K̂
, (7)

where τ̂0 is the yield stress, K̂ the consistency and n the flow behavior index.

3 Base flow

The base flow is a one directional shear flow, U = U b = Wb(r)ez driven by
a constant pressure gradient. The subscript b means base flow. The only non
zero elements of the strain rate tensor are off-diagonal γ̇rz,b = γ̇zr,b, so that
the deviatoric stress tensor elements are all zero except for τrz,b = τzr,b. The
momentum equations reduce to:

0 = −
dP

dz
+

1

r

d

dr
(rτrz) , (8)

where τrz,b is given by:

τrz,b =
1

Re



sgn

(

dWb

dr

)

Hb+

∣

∣

∣

∣

∣

dWb

dr

∣

∣

∣

∣

∣

n−1
dWb

dr



 ⇔ τrz,b >
Hb

Re
, (9)

dWb

dr
= 0 ⇔ τrz,b ≤

Hb

Re
. (10)

Here, sgn mean sign of the argument. Integration of (8) combined with (9,
10) and the non-slip boundary condition at the wall gives:

Pb (z) =
− 2Hb

Re r0
z + const, (11)

Wb =











1 ; 0 ≤ r ≤ r0

1−
(

r−r0
1−r0

)
n+1

n ; r0 ≤ r ≤ 1,
(12)

where r0 is the dimensionless radius of the plug zone. The basic flow (Fig. 1)
is characterized by a central region of radius r0 moving as a rigid solid, i.e.
a plug zone which is surrounded by a yielded region where the viscosity µb

varies nonlinearly with the shear rate:

µb =
Hb

|dWb/dr|
+ |dWb/dr|

n−1 . (13)
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Fig. 1. shematic representation of the base flow.

The viscosity stratification is more pronounced as r0 is higher or n is lower,
as it is shown in Fig. 2. The wall shear-rate, dWb/dr at r = 1, increases as the
width of the yielded zone is reduced or as the shear-thinning index decreases.

It is worthy to note that the yield surface r = r0 is not a material surface.
The variation of r0 as function of Hb and n is determined on one hand from
the integration of (8) and on the other hand from the constitutive equation:

|τw| =
Hb

r0 Re
and |τw| =

1

Re

[

Hb+
(

n+ 1

n

)n 1

(1− r0)
1+n

]

(14)

From (14) it can be shown that the radius of the yield surface is solution of
the following equation

Hb (1− r0)
n+1 −

(

n+ 1

n

)n

r0 = 0 , (15)

For low and large Hb, the following asymptotic behaviors are derived:

r0≈
(

n

n + 1

)n

Hb− (n + 1)
(

n

n + 1

)2n

Hb2 as Hb→ 0, (16)

r0≈ 1−
(

n+ 1

n

)

n

n+1
(

1

Hb

)

1

n+1

as Hb→ ∞ (17)

Finally, the base flow depends on two dimensionless parameters, n and Hb
or n and r0. The objective of the present work is to examine the influence of
n and Hb on the stability of the Hagen-Poiseuille flow of a Herschel-Bulkley
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Fig. 2. Viscosity profiles between the yield surface and the wall. (a) Influence
of the radius of the plug zone on the viscosity stratification for n = 0.5: (1)
r0 = 0.01, Hb = 0.0176; (2) r0 = 0.1, Hb = 0.203; (3) r0 = 0.5, Hb = 2.45; (4)
r0 = 0.8, Hb = 15.49. (b) Influence of the shear-thinning index with r0 = 0.1: (1)
n = 1; (2) n = 0.7; (3) n = 0.5; (4) n = 0.3.

fluid with respect to infinitesimal perturbations. This influence arises from
four different effects: (i) variation of the yielded zone, where the exchange of
energy between the perturbation and the base flow occurs; (ii) variation of the
axial velocity gradient dWb/dr; (iii) viscosity stratification and (iv) nonlinear
variation of the viscosity with the shear rate. The contribution of each of these
effects on the flow stability will be highlighted whenever possible.

4 Linear stability analysis

An infinitesimal perturbation (ǫu′, ǫp′), with ǫ ≪ 1, is imposed on the base
flow (U b, Pb). The perturbed flow is given by:
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(U b + ǫu′, Pb + ǫ p′) = (ǫ u′, ǫ v′,Wb + ǫ w′, Pb + ǫp′) . (18)

Wherever the yield stress is exceeded, i.e. τ > Hb/Re, the effective viscosity
of the perturbed flow is expanded about the base flow as:

µ (U b + ǫu′) = µb + ǫ µ′ + ..., (19)

where

µ′ =
∂µ

∂γ̇ij

∣

∣

∣

∣

∣

b

γ̇ij (u
′) . (20)

The deviatoric stresses in the disturbed flow can also be written as:

τij (U b + ǫu′) = τij (U b) + ǫτ ′ij + ..., (21)

with

τ ′ij = µb γ̇ij (u
′) + µ′ γ̇rz (U b) (22)

For one dimensional shear flow, with Wb(r) in the streamwise direction z, the
components of the deviatoric stress perturbation read:

τ ′ij =
1

Re
µb γ̇ij (u

′) if ij 6= rz, zr, (23)

τ ′rz =
1

Re

[

µb + γ̇rz (U b)
∂µ

∂γ̇rz

∣

∣

∣

∣

∣

b

]

γ̇rz (u
′) =

1

Re
µtγ̇rz (u

′) . (24)

In Eq. (24), µt is the tangent viscosity [14], defined by:

µt = (∂τrz/∂γ̇rz)b = n |DWb|
n−1 . (25)

It is worthy to note that: (i) µt is independent of Hb, i.e. the disturbance
“will not feel” the yield stress, and (ii) the deviatoric stress associated to the
perturbation is anisotropic. The second invariant of the deviatoric of the stress
tensor is linearly disturbed: |τ (U b + ǫu′)− τ (U b + ǫu)| = O (ǫ). Therefore,
the yield surface position ry is linearly disturbed from its position r0:

ry = r0 + ǫ h (θ, z, t) . (26)

The disturbance is assumed periodic in the z and θ-directions:
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(u′, v′, w′, p′, h′) = [u (r, t) , v (r, t) , w (r, t) , p (r, t) , h (t)] exp i (αz +mθ),

(27)

where α and m are the axial and azimuthal wave numbers respectively. After
some algebra, it can be shown that the linearization of continuity and mo-
mentum equations around the base flow leads to the following initial value
problem:

D (ru) + i [mv + α r w] = 0, (28)

∂u

∂t
=−iαWb u−Dp+

1

Re
µb

[

∆u−
2im

r2
v −

u

r2

]

+
2

Re
DµDu+

iα

Re
(µt − µb) (Dw + iαu) , (29)

∂v

∂t
=−iαWb v −

imp

r
+

1

Re
µb

[

∆v +
2im

r2
u−

v

r2

]

+
1

Re
Dµb

(

Dv +
im

r
u−

v

r

)

, (30)

∂w

∂t
=−iαWb w −DWbu− iα p+

1

Re
µb ∆w

+
1

Re
Dµb (Dw + iαu) +

1

Re

1

r
D [r (µt − µb) (Dw + i α u)] , (31)

with ∆ ≡ D2 +
1

r
D−

m2

r2
−α2 and D ≡

d

dr
. The boundary conditions for the

perturbation velocity are obtained from the non-slip and non-penetration at
the wall (r = 1):

u (1) = v (1) = w (1) = 0. (32)

The continuity of stress at the yield surface requires

γ̇ij (U b + ǫu′) = 0 at r = ry (33)

Expanding and linearizing about r = r0 give:

u (r0) = v (r0) = w (r0) = 0 , (34)

Du (r0) = Dv (r0) = 0; Dw (r0) =















0 if n < 1

h
2

(1− r0)
2 if n = 1

. (35)

We end up with nine boundary conditions: three at the wall and six at
the yield surface. The system seems overdetermined. Actually, the conditions
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Du(r0) = Dv(r0) = 0 and Dw(r0) = 0 when n < 1 are needed to overcome
the singularity in the viscosity at r = r0. When n = 1, the boundary condition
(35) is a condition for h not for w. The system of equations (28) - (31) may
be expressed in terms of u and v if α 6= 0 or in terms of u and w if m 6= 0.
One has to note that at the leading order, the unyielded zone is not disturbed
and behaves as a rigid solid from kinematic point of view.

5 Long-time behaviour of the disturbance: eigenvalue problem

When the long time behavior is sought, the disturbance is assumed to behave
exponentially as:

Ψ(r, t) = ψ(r) exp (−i C t), (36)

where Ψ stands for (u, v)T or (u, w)T and C = Cr + iCi is the complex
frequency. The phase speed of the perturbation is given by Cr/α and the
growth rate by Ci. The initial value problem is transformed into the following
generalized eigenvalue with C as eigenvalue

Luv (u, v)
T = CMuv (u, v)

T or Luw (u, w)T = CMuw (u, w)T (37)

depending on whether the (u, v) (if α 6= 0) or (u, w) (if m 6= 0) formulation is
used. Note that the eigenvalue problem (37) is only defined on the yielded zone
r ∈ [r0, 1]. With increasing the Herschel-Bulkley number, the width (1−r0) of
the sheared fluid zone decreases. To take into account this geometrical effect,
the following reduced parameters are introduced:

r = r̃(1− r0) + r0, z = z̃(1− r0), t = t̃(1− r0), (38)

α̃ = α (1− r0) , C̃ = C (1− r0) , (39)

R̃e = Re (1− r0)
n , H̃b = Hb (1− r0)

n . (40)

In terms of r̃, the basic velocity profile

Wb = 1− r̃
1+n

n ; r̃ ∈ [0, 1] (41)

is artificially independent of the Herschel-Bulkley number. The differential
eigenvalue problem (37), written in terms of tilde variables, with the boundary
conditions, is discretized using the Chebyshev spectral collocation method [7]
at (N +1) Gauss-Lobatto collocation points. The resulting generalized eigen-
value problem is solved using the QZ-algorithm available in Matlab software
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package. Spectra with increasing collocation points were compared to deter-
mine the adequate number of Chebyshev polynomials (N + 1). It was found
that with N = 120, the first 15 eigenvalues taken by increasing C̃i were re-
solved accurately within four digits (invariant four digits with increasing N)
for almost all the situations considered in this paper.

5.1 Case of a one-dimensional perturbation

In the case of a one-dimensional perturbation, i.e. α̃ = m = 0, the linear
inertial terms which ensure the exchange of energy between the base flow
and the perturbation vanish. The initial value problem (28)-(31) with the
associated boundary conditions (32)-(35) reduces to

u = 0, p(r) = constant, (42)

∂v

∂t̃
=

1

R̃e

1

η2
D̃

(

η3µ̃bD̃

(

v

η

))

, (43)

∂w

∂t̃
=

1

R̃e

1

η
D̃
(

ηµ̃tD̃w
)

, (44)

where

η = r̃ +
r0

1− r0
, D̃ =

d

dr̃
, µ̃b =

H̃b

|D̃Wb|
+ |D̃Wb|

n−1, µ̃t = n D̃|Wb|
n−1.(45)

The boundary conditions are:

v(r̃ = 1) = w(r̃ = 1) = v(r̃ = 0) = w(r̃ = 0) = 0; (46)

Multiplying (30) by v and (31) by w and then integrating from 0 to 1, the
following expressions are obtained:

1

2

∂

∂t̃

〈

v2
〉

r̃
= −

1

R̃e

〈

µ̃b

(

ηD̃

(

v

η

))2〉

r̃

(47)

and

1

2

∂

∂t̃

〈

w2
〉

r̃
= −

1

R̃e

〈

η µ̃t

(

D̃w
)2
〉

r̃
. (48)

where, 〈(.)〉r̃ =
∫ 1

0
(.)η dr̃.

It is clear that the kinetic energy of the perturbation decreases uniformly
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Fig. 3. (a) Eigenvalue spectrum for a pipe flow of Herschel-Bulkley fluid at
R̃e = 5 × 103, n = 0.5, r0 = 0.5, α̃ = 0 and m = 0. (b) Maximum growth

rate
∣

∣

∣
C̃i,max

∣

∣

∣
vs R̃e for two different values of shear-thinning index: (1) n = 1 and

(2) n = 0.3

with time. Consequently the Hagen-Poiseuille flow of Herschel-Bulkley fluid is
unconditionally linearly stable with respect to one dimensional perturbation.
Looking for a solution of (43),(44) as exp

(

−i C̃ t
)

(v̂, ŵ), it can be shown

straightforwardly that the eigenvalues are purely imaginary. Fig. 3(a) is an
example of spectrum obtained at R̃e = 5000 for Herschel-Bulkley fluid with

r0 = 0.5 and n = 0.5. The maximum growth rate C̃i,max behaves as R̃e
−1

(Fig.

3(b)). For a fixed r0,
∣

∣

∣C̃i,max

∣

∣

∣ decreases with increasing shear-thinning effects,

whereas for fixed n,
∣

∣

∣C̃i,max

∣

∣

∣ increases with increasing r0. Opposite effects can
be found by using a Reynolds number defined with the wall shear-viscosity.
The selection of the viscosity scale may be considered a matter of choice,
however the conclusion that one reaches by comparing shear-thinning fluids
among themselves and against Newtonian fluid can be radically different from
one choice to another.
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5.2 Case of axisymmetric perturbation: m = 0

The (u, v) formulation is used. The differential eigenvalue problem (37) re-
duces to two decoupled differential equations: the Orr-Sommerfeld and Squire
equations.

- The Orr-Sommerfeld modes are solution of the equation

Losu = −iC̃R̃eLu, (49)

with the boundary conditions:

u(1) = D̃u(1) = u(0) = D̃u(0) = 0, (50)

where, L ≡ D̃D̃+−α̃2, D̃+ = D̃+1/η and Los is the Orr-Sommerfeld operator:

Los≡−iα̃R̃eWb L− iα̃R̃e

(

D̃Wb

η
− D̃2Wb

)

+ µ̃bL
2 +

(

D̃µ̃b

)

(

2D̃L+
1

η
L

)

+
(

D̃2µ̃b

) (

L+ 2α̃2
)

+
(

L+ 2α̃2
) [

(µ̃t − µ̃b)
(

L+ 2α̃2
)]

. (51)

The eigenvalues spectrum of C̃ arising from the discretized operator−(i/Re)L−1Los

exhibits a similar three-branches as for the case of the Newtonian plane
Poiseuille flow.

In order to highlight separately the influence of r0, i.e, the modification of the
flow geometry on the eigenvalue spectra, we have fixed n = 1 and we have
canceled artificially H̃b terms in µ̃b expression. The result is illustrated in Fig.
4(a). For a fixed R̃e, the maximum growth rate increases with decreasing the
width of the yielded zone. This result may be related qualitatively with that
of Newtonian fluid flow stability in an annular space. In such case, Mott and
Joseph [20] have shown that the critical Reynolds number decreases as the
ratio of the inner cylinder to that of the outer one increases and approaches 1.
In Fig. 4(b), the eigenvalue spectrum obtained for R̃e = 5×103, α̃ = 1,m = 0,
n = 0.5, r0 = 0.8 and H̃b = 6.9282 is compared with that obtained by ne-
glecting the H̃b terms in the Orr-Sommerfeld equation. As it can be observed,
there is practically no effect of Hb terms on wall modes. For an axisymmetric
perturbation, the wall modes are more sensitive to µ̃t rather than µ̃b. Indeed,
in Eq. (51), µ̃t terms involve a fourth derivative D̃4v, while µ̃b involve a second
derivative D̃2v. Hence, the wall modes do not “fill” the yield stress.
The influence of the shear-thinning index on the wall modes is illustrated by
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Fig. 4. Modified Orr-Sommerfeld spectra for Herschel-Bulkley fluid flow in a pipe at
R̃e = 5×103, α̃ = 1 and m = 0. (a) n = 1 and the Hb terms are canceled artificially
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Fig. 5. Herschel-Bulkley fluid flow at R̃e = 5000, with r0 = 0.5, α̃ = 1 and m = 0.
(a) Growth rate of the least stable wall mode as function of R̃e: (1) n = 1; (2)
n = 0.7; (3) n = 5; (4) n = 0.3. (b) Phase speed of the least stable mode as
function of R̃e: (1) n = 1; (2) n = 0.7; (3) n = 5; (4) n = 0.3.

Fig. 5. We have represented |Ci,max| and C̃r,max of the least stable mode, vs
R̃e for different values of n. As n decreases, the viscosity around the plug zone
becomes larger and the wall mode is squeezed against the wall. The phase ve-
locity decreases and the growth rate comes closer to the unstable half plane.
For large values of R̃e, the scaling with R̃e is the same as for a Newtonian
fluid. Similarly, for interface and mean modes, the scaling with R̃e is the same
as for a Newtonian fluid.

- The Squire modes are solution of the equation

α̃Wbv + i
µ̃b

R̃e

(

D̃D̃+ − α̃2
)

+ i
D̃µb

R̃e

(

D̃ −
1

η

)

v = C̃v. (52)

with
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v(0) = v(1) = 0. (53)

Multiplying (52) by v∗, where the star designates the complex conjugate, and
integrating between the yield surface and the wall gives:

C̃i

〈

|v|2
〉

r̃
= −

〈

µ̃b

R̃e



α̃2|v|2 +

∣

∣

∣

∣

∣

D̃v −
v

η

∣

∣

∣

∣

∣

2




〉

r̃

, (54)

It is clear that the Squire modes are always damped.

5.3 Case of streamwise homogeneous perturbation: α̃ = 0 and m 6= 0

The (u, w) formulation is used. On setting α̃ = 0, the eigenvalue problem (37)
reduces to

iC̃

[

(

D̃+u
)2

+
1

η
D̃+u−

m2

η2
u

]

= −
µ̃b

R̃e

[

(

D̃+u
)2

+
1

η
D̃+u−

m2

η2
u

]2

−D̃µ̃bR̃e

[(

1

η
D̃D̃+u+ 2D̃3u+

4D̃2

η
u−

2m2

η2
D̃u+

m2

η3
u

)]

−
D̃2µ̃b

R̃e

[

D̃D̃+u−
m2

η2
u

]

(55)

−iC̃w = −D̃Wℓu+
µ̃b

R̃e

[

1

η
D̃
(

ηD̃w
)

−
m2

η2
w

]

+
D̃µ̃b

R̃e
D̃w +

1

η
D̃
[

η (µ̃t − µ̃b)
(

D̃w
)]

(56)

The set of eigenvalues of the system (55) and (56) can be divided into two
eigenmodes classes. The first one corresponds to the set of the eigenmodes of
(55) with a particular solution of (56). The second class represents the set of
eigenmodes of (56) with u = 0. It can be shown straightforwardly that the
eigenmodes are always damped. They are pure imaginary, i.e. the eigenmodes
do not propagate and decrease monotonically with time. An example of the
eigenvalues spectrum for α = 0, m = 1, R̃e = 5000, n = 0.5 and r0 = 0.5 is
shown in Fig. 6(a). The eigenvalues cluster to the origin with increasing R̃e. For
the streamwise case m = 1 and α = 0, the maximum growth rate approaches

zero as R̃e → ∞ almost exactly as R̃e
−1
. Figure 6(b) displays the variation

of
∣

∣

∣C̃i

∣

∣

∣

max
as a function of R̃e for two different values of the shear-thinning
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Fig. 6. (a) Eigenvalue spectrum at R̃e = 5 × 103, α̃ = 0, m = 1, n = 0.5 and
r0 = 0.5. (b) Evolution of the maximum growth rate as a function of R̃e for n = 1,
curve (1) and n = 0.3, curve (2).

index. The numerical results indicate that C̃i,max decreases with decreasing n.

Remark: Comparison with the situation of annular Poiseuille flow with slid-
ing inner cylinder
In the linear theory, the unyielded zone behaves as a rigid solid moving axially
with a constant velocity. The Hagen-Poiseuille flow of a yield stress fluid can be
viewed a priori as a combined axial Poiseuille Couette flow of a shear-thinning
fluid in a cylindrical annulus. To our knowledge, this problem has not been
considered before in the literature. For a Newtonian fluid, Sadeghi and Hig-
gins[21] studied the stability of sliding Couette-Poiseuille flow in an annulus
to both axisymmetric and asymmetric perturbations. Computations were per-
formed for a radius ratio R1/R2 = 0.5 and 0 ≤ m ≤ 3. Preziosi and Rosso [22]
studied the linear stability of a Newtonian fluid between sliding pipes. The
linearized disturbance equations were solved numerically for a radius ratio
R1/R2 ≥ 0.1, α ≤ 10 and m ≤ 5 and a Reynolds number, based on the axial
velocity of the moving cylinder, less than 104. For this range of parameters, the
authors did not observe any instability. Gitler [23], using a long-wave version
of the axisymmetric Orr-Sommerfeld equation (proposed initially by Cowley
and Smith [24]), showed that for a radius ratio R1/R2 < 0.1415, the Couette
flow is linearly unstable from a finite Reynolds number. Based on Gitler’s re-
sults, one might expect that Hagen-Poiseuille flow of a yield stress fluid would
be unstable at a finite critical Reynolds number at least for r0 ≤ 0.14. A long
wave-approximation of the Orr-Sommerfeld equation for Herschel-Bulkley was
established (see Appendix A) and solved numerically for two values of r0 : 0.1
and 0.05. We have not found any instability. This is probably due to the
fact that the velocity profile can not be written as the sum of Couette and
Poiseuille flow of a yield stress fluid.
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Fig. 8. Eigenfunctions at R̃e = 5000, n = 0.5, r0 = 0.1 with α̃ = m = 1. (a) Wall
mode ; (b) interfacial mode; (c) mean mode. Continuous line is the real part and
dashed line is the imaginary part.

5.4 Case of oblique perturbation : α̃ 6= 0 and m 6= 0

In this situation, either the (u, v) or the (u, w) formulation can be used. The
shape of the eigenvalue spectrum is similar to that of a Newtonian fluid, ex-
cept that for a yield stress fluids, there are two separate vertical branches, one
of them is associated to the Squire modes described in §5.2 as shown in figure
7. As an indication, we have represented the eigenfunctions u for the three
selected eigenmodes. As expected, for the wall eigenmode, variations of the
axial velocity occur mainly near the wall, while for the interfacial eigenmode,
variations are observed near the yield surface (interface). The mean mode is
mainly characterized by oscillations in the associated eigenfunctions.

Finally for the range of the rheological parameters considered in this study,
all the eigenmodes lie in the stable half of the complex plane. Thus, it is
conjectured that Poiseuille flow of Herschel-Bulkley fluid in a cylindrical pipe
is linearly stable with respect to infinitesimal perturbations.
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6 Short time behavior: pseudospectra, transient growth and opti-
mal perturbation

6.1 Nonnormality: pseudospectra and numerical range

The eigenvalues describe the time asymptotic behavior of disturbances. Thus
for Hagen-Poiseuile flow of yield stress fluids, a perturbation introduced at
t = 0 decays to zero for large times. The stability analysis based on eigenvalues
is not sufficient to describe the temporal behavior of the disturbance at all
times because of the non-normality of the linear operator. This mathematical
property means that there is a potential for extraction of energy from the
base flow by a subspace of perturbation leading to transient growth, despite
the absence of an exponential instability.
The non-normality of the linear stability operator L ≡ M−1

uw(uv)Luw(uv), Eq.
(37), is characterized by using ǫ-pseudospectrum and numerical range tools
(Trefethen et al. [25], Reddy et al. [26], Schmid & Henningson [27]). The
computation needs to define an inner product and a norm.
For a velocity disturbance vector-function q = (u, v)T , the scalar product
based on the energy density is defined as

(q1, q2)E =
∫ 1

r0
qH2 Qq1rdr with (57)

qH2 Qq1 = u1u
∗
2 +

1

α2
D+u1D

+u∗2 +

(

1 +
m2

α2r

)

v1v
∗
2 +

im

α2r

(

v1D
+u∗2 −D+u1v

∗
2

)

,

where the superscript ‘H ’ means transpose conjugate. The associated energy
norm is given by

||q||E = (q, q)E =
∫ 1

r0
qHQqrdr. (58)

Q is a positive definite matrix. It can be decomposed into Q = FHF using a
Cholesky decomposition. The energy norm of a perturbation is equivalent to
the standard (Eucledian)L2-norm of the vector Fq.
Let F be the discrete representation of L. The ǫ-pseudospectrum of F is
defined as the set of complex numbers z for which || (zI − F)−1 ||E ≥ ǫ−1.
It is usually displayed graphically with contours of the norm of the resolvent
(zI − F)−1 for various values of ǫ. Pseudospectra can also be defined as the set
of complex numbers z which are eigenvalues of F + ∆F for some perturbation
matrix ∆F with ||∆F||E ≤ ǫ. The more non-normal the linear operator L, the
greater the potential for a disturbance operator ∆F to affect the eigenvalues.
A third equivalent definition of the ǫ-pseudospectrum, closer to computation,
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Fig. 9. Spectral portrait of the modified Orr-Sommerfeld operator at
R̃e = 5000, α̃ = 1, for a Herschel-Bulkley fluid: influence of the radius plug zone.
Continuous lines are the boundaries of the ǫ-pseudospectra and the dashed line
is the numerical range. (a) n = 0.5, r0 = 0.01 (H̃b = 0.017), (b) n = 0.5,
r0 = 0.8 (H̃b = 6.93) .

involves the singular value decomposition. It is the set of complex numbers z
for which σmin

(

zI − FFF−1
)

≤ ǫ, where σmin is the smallest singular value.

The numerical range of F is the set of complex numbers (Fq,q)E / (q,q)E .
For a normal operator, the numerical range is the convex hull of the spectrum.
Therefore, for a stable normal operator, the numerical range is always in the
stable half plane. However, it can extend significantly to even protrude into the
unstable half plane for stable non-normal operators. Its maximum protrusion
determines the maximum energy growth rate at t = 0+ ([28], [29])

6.1.1 Axisymmetric perturbation

In figure 9, spectra, pseudospectra and numerical ranges of the linear stability
operator Los (51) are shown for axisymmetric perturbations with α̃ = 1, n =
0.5, R̃e = 5000 and two values of the plug radius r0 = 0.01 and 0.8. It is clear
that the Orr-Sommerfeld operator is non-normal. At R̃e = 5000, perturbations
with norm ǫ > 0.01 is necessary to protrude the pseudospectra in the unstable
half plane. As expected for axisymmetric perturbations, the influence of r0
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or H̃b on the pseudospectra is very weak. Indeed, the perturbation is mainly
sensitive to the tangent viscosity which is independent of the yield stress.

6.1.2 streamwise homogeneous perturbation

Spectra, pseudospectra and numerical ranges of the linear stability operator
(55), (56) for streamwise homogeneous perturbation (longitudinal rolls) are
depicted in Figure 10 at R̃e = 5000, α̃ = 0, m = 1, n = 0.5 and two values of
r0: 0.01 (H̃b = 0.017) and 0.8 (H̃b = 6.93). On contrast with the former case,
the increase of H̃b reduces significantly the extension of the pesudospectra in
the unstable half plane. For instance, at r0 = 0.01, a perturbation of norm
ǫ ≈ 5.2×10−6 is necessary to reach the unstable half plane, while for r0 = 0.8,
a much more intense perturbation ǫ ≈ 1.0× 10−3 is needed.
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Fig. 10. Spectral portrait of the linear operator for streamwise homogeneous pertur-
bation at R̃e = 5000, n = 0.5, α̃ = 0 and m = 1. The dashed curve is the numerical
range of the linear operator considered. Continuous line curves delimit the isovalues
of the ǫ-pseudospectra. (a) r0 = 0.01: (1) ǫ = 2.5 × 10−3, (2) ǫ = 1.5 × 10−3, (3)
ǫ = 7 × 10−4, (4) ǫ = 3 × 10−4 ; (b) r0 = 0.8: (1) ǫ = 0.25, (2) ǫ = 0.13, (3)
ǫ = 9× 10−2, (4) ǫ = 5× 10−2, (5) ǫ = 3× 10−2
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6.1.3 Oblique perturbation

For an oblique perturbation, the pseudospectra and numerical ranges are qual-
itatively similar to those obtained for an axisymmetric perturbation. However,
the influence of H̃b is much more significant. Increasing H̃b reduces the maxi-
mum protrusion of the numerical range and the extension of the pseudospectra
in the unstable half plane.

6.1.4 Norm of the minimal perturbation

As for Newtonian fluids, the norm of the minimal destabilizing perturbation,

ǫmin behaves as (R̃e
−1/2

) for large R̃e. Note that for a given R̃e, ǫmin decreases
with decreasing n or r0.
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Fig. 11. Norm of the minimal destabilizing perturbation as a function of the modified
Reynolds number for two values of the shear-thinning index, n = 0.1 and 0.3 and
two values of r0: (a) r0 = 0.01; (b) r0 = 0.8. The axial and azimuthal wavenumbers
are α̃ = 1 and m = 1 respectively.)

6.2 Transient growth and optimal disturbances

The transient evolution of perturbations in the linear regime is determined
following the methodology described by Schmid and Henningson [27]. Let g(t)
the ratio between the energy norm ||q(t)||E of the perturbation at time t and
its initial norm ||q0||E

g(t) =
||q(t)||E
||q0||E

(59)

For a given Fourier mode, the amplification of the energy at time t maximized
over all possible non-zero initial conditions is denoted by
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G(t, α,m) = sup
q

0
6=0
g(t). (60)

The maximum transient energy growth possible over all times is

Gmax(α,m) = sup
t
G(t, α,m). (61)

The maximum of Gmax for all the pairs (α,m) is

Gopt = sup
α,m

G(α,m), (62)

which is reached by the optimal perturbation at time topt. Unlike the modal
approach, here the growth of disturbances occurs over relatively short initial
time and is related to an inviscid mechanism. The viscosity acts to moderate
the amplification.

6.2.1 Transient growth for a given Fourier mode

- Case of oblique and streamwise homogeneous perturbations

Figure 12 shows the kinetic energy amplification G(t̃) as a function of time at
R̃e = 3000 and three values of the dimensionless yield stress: H̃b = 0.02 (r0 =
0.01), H̃b = 0.22 (r0 = 0.1), H̃b = 0.5 (r0 = 0.2). The flow behavior index n
is fixed to n = 1. Two different initial conditions are considered: longitudinal
rolls with α̃ = 0, m = 1 (Fig. 12a) and oblique perturbation α̃ = 1, m = 1
(Fig. 12b). With increasing H̃b, the viscosity increases thus reducing the vis-
cous diffusion time and therefore tmax and Gmax. At very low H̃b, the transient
growth remains significantly lower than that obtained for a Newtonian fluid,
particularly for the case of α̃ = 0, m = 1. The unmatched transient growth at
the limit H̃b = 0 is explained as follows. In the framework of the linear stabil-
ity analysis, it is assumed that the perturbation is infinitesimal with respect
to all scales of the base flow. If ǫ is a characteristic scale of the perturbation
size, therefore ǫ = o(r0). In other words, the yield surface is linearly disturbed
and the plug zone remains intact ([17], [30]). Hence, when the Hb terms are
canceled artificially in the perturbation equations, one recovers the linear sta-
bility problem of Couette-Poiseuille flow between two coaxial cylinder where
the outer is fixed and the inner is moving with a constant axial velocityW = 1.

- Case of axisymmetric perturbations
For axisymmetric perturbations, the influence of r0 on the transient growth
is relatively weak. Indeed, for an axisymmetric perturbation, spectra, pseu-
dospectra and numerical range do not substantially depend on r0.
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Fig. 12. kinetic energy amplification at R̃e = 3000, n = 1 and different values of the
plug radius r0: r0 = 0.01 (H̃b = 0.02), r0 = 0.1 (H̃b = 0.22) and r0 = 0.2 (H̃b = 0.5).
(a) α̃ = 0, m = 1. The Newtonian curve is given by Schmid and Henningson [27].
(b) α̃ = 1, m = 1. The Newtonian curve is given by Meseguer and Trefethen [31].
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Fig. 13. Optimal axial wavenumber α̃opt (a) and optimal azimuthal wavenumber
mopt (b) as a function of the radius of the plug zone at R̃e = 5000 and for three
values of the shear-thinning index: (1) n = 1, (2) n = 0.7, (3) n = 0.5 and n = 0.3.

6.2.2 Characteristics of the optimal perturbation and optimal transient growth

We have computed Gmax at R̃e = 5000 and for the set of rheological parame-
ters n = 0.3, 0.5, 0.7 and 1, with 0.001 ≤ r0 ≤ 0.96 (0.0017 ≤ H̃b ≤ 48.0). The
characteristics of the optimal perturbations, i.e. α̃opt and mopt corresponding
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to maxα̃,m(G
max) are displayed in the Figure 13 as a function of the plug zone

radius. Three regions can be distinguished depending mainly on r0:

(i) The first region holds for low values of r0, say r0 . 0.33, which corresponds
to H̃b ≤ 0.74 when n = 0.5. In this region, αopt = 0 and the optimal azimuthal
wavenumber mopt increases with increasing shear-thinning effects. The optimal
perturbation consists of pairs of counter-rotating streamwise vortices, In Fig-
ure 14, we have represented the structure of the optimal perturbation at t = 0
and t̃ = t̃opt for r0 = 0.01 and n = 0.5. These streamwise counter-rotating vor-
tices allow the transfer of energy to the streamwise-velocity component by the
lift-up mechanism creating high (+) and low (−) streamwise streaks displayed
in Fig. 14(b). Note that the location of the maximum streamwise velocity com-
ponent approaches the wall with increasing H̃b or r0. At t = 0, almost all the
energy is in the azimuthal (61.52%) and radial (38.46%) components and only
a negligible part is in the streamwise component. At optimal time, t = topt,
the kinetic energy is merely concentrated in the axial component.
(ii) The second region holds for 0.35 . r0 . 0.93. In this region, α̃opt in-
creases gradually until α̃ ≈ 0.5 at r0 ≈ 0.6, then strongly until a maximum
at r0 ≈ 0.93. With increasing H̃b or shear-thinning effects, the width of the
zone where the exchange of energy between the base flow and the perturbation
occurs, is reduced leading to an increase of mopt. The optimal perturbation
is oblique and its wave vector has an angle which increases with increasing
r0. The time evolution of the axial velocity component, in the (r, z) and (r, θ)
planes is shown in Fig. 15. The optimal perturbation is initially oriented in the
direction opposite to the mean shear, then aligned with it at the optimal time.
As indicated by Farrell and Ioannou [6], the kinetic energy of the perturbation
is amplified thanks to Orr- and lift-up mechanisms. An alternative explanation
of the transient growth was proposed by Vitoshkin et al. [32]. These authors
pointed out the role played by the interplay between the spanwise (here az-
imuthal) vorticity q and the divergence plane d (in the shear-plane, rz). This
is highlighted in the analysis of the energy growth via the Reynolds stress
production term. For this, a 2D Helmoltz decomposition is performed:

u = ud + uq with ud = ∇ (ϕ) and uq = −rot (ψeθ) , (63)

where ϕ and ψ are scalar functions such that the planar divergence d =
∂u/∂r+u/r+∂w/∂z and the azimuthal vorticity q = ∂v/∂r+v/r−(1/r)∂u/∂θ
satisfy

d = ∆H (ϕ) and q = ∆H (ψ) (64)

where ∆H ≡ ∂2/∂r2 + (1/r)∂/∂r + ∂2/∂z2 is the 2D Laplacian in the shear
plane (r, z). The energy growth via the Reynolds stress is
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Fig. 14. Optimal perturbation and optimal streaks at R̃e = 5000, n = 0.5, r0 = 0.01
(H̃b = 0.0175): α = 0 and m = 2. (a) Velocity vectors uer + veθ of the optimal
perturbation at t = 0. (b) Axial velocity w contours at t = topt = 165

∂ 〈E〉

∂t
= −ℜ

〈

γ̇brzuw
∗
〉

= −ℜ
〈

γ̇brz (ud + uq)
(

w∗
d + w∗

q

)〉
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= −ℜ
〈

γ̇brzudw
∗
d

〉

− ℜ
〈

γ̇brzuq w
∗
q

〉

− ℜ
〈

γ̇brzudw
∗
q

〉

−ℜ
〈

γ̇brzuq w
∗
d

〉

,

with E = |u|2 and 〈(·)〉 =
∫ 1

r0
(·)rdr. Time evolution of the different terms is

depicted in Fig. 16(a) for n = 0.5, r0 = 0.5, R̃e = 5000. The first term on the
right-hand side of Eq. (65) represents the contribution of the planar divergence
to the energy growth. This contribution is positive, but relatively small. The
second term, i.e. the rotational term −

〈

γ̇brzuqw
∗
q

〉

, is the contribution of the 2D
Orr-mechanism. Initially, this term is positive and participates to the increase
of E. From t = topt/2, the vortices are tilted with the shear and −

〈

γ̇brzuqw
∗
q

〉

is
negative: the Orr-mechanism contributes to the decay of the energy. The third
term, −

〈

γ̇brzudw
∗
q

〉

is the first mixed q− d term. It is positive and contributes
strongly to the energy growth and is able to overwhelm the large negative
contribution of the Orr-mechanism, when the vortices align with the base
shear. The fourth term, −

〈

γ̇brzuqw
∗
d

〉

is the second mixed q−d term. It is small
and negative. With increasing r0, the contribution of the Orr-mechanism in
the amplification of the perturbation kinetic energy becomes more significant
as illustrated in Fig. 16(b) and 16(c).

(iii) For very large plug radius, 0.93 ≤ r0 < 1, the optimal perturbation is
axisymmetric. The transient growth of the perturbation energy arises from
the Orr-mechanism. It is associated with the tilting of the disturbance into
the direction of the mean shear. This tilting phenomenon is illustrated by Fig.
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Fig. 15. Temporal evolution of the optimal perturbation.
n = 0.5, r0 = 0.5 (H̃b = 1.732), R̃e = 5000, with α̃opt = 0.28, mopt = 7,
t̃opt = 38.6. Axial velocity contours at (a) t̃ = 0; (b) t̃ = t̃opt/2; (c) t̃ = t̃opt ; (d)
t̃ = (3/2)t̃opt.

17, where contours of axial velocity of the optimal perturbation are displayed
at different times. In contrast with the previous situation (ii), the 2D optimal
perturbation is oriented transversally to the main shear at the optimal time.
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Fig. 16. Contribution of the different Reynolds-stress components to the en-
ergy amplification for an optimal oblique perturbation at R̃e = 5000, with (a)
n = 0.5, r0 = 0.5, α̃ = 0.28, m = 7; (b) n = 0.5, r0 = 0.8, α̃ = 1.54, m = 12;
(c) n = 0.5, r0 = 0.9, α̃ = 1.715,m = 17; (d) Case where µt − µb terms and their
derivatives are canceled, n = 0.5, r0 = 0.9, α̃ = 0.6,m = 44. (1) −〈γ̇rzudw

∗
d〉; (2)

−
〈

γ̇rzuqw
∗
q

〉

; (3) −
〈

γ̇rzudw
∗
q

〉

; (4) −〈γ̇rzuqw
∗
d〉

6.2.3 Discussion

• If we set n = 1, and we cancel artificially H̃b terms in the linear stability
operators, we recover the Couette-Poiseuille flow of a Newtonian fluid. The
optimal perturbation consists of longitudinal counter rotating vortices pairs
(α = 0) for any r0 < 1. The lift-up mechanism is the only operating mech-
anism in the energy amplification. The azimuthal wavenumber increases
significantly with increasing r0. A slight increase of Gopt with increasing r0
is observed.

• The obliquity of the optimal perturbation which may be characterized by
the ratio arctang(α/m) is a consequence of the anisotropy terms, i.e. terms
arising from the viscosity perturbation. Indeed, if we cancel artificially µt−µb

terms as well as their derivatives, the obliquity is strongly reduced. For
instance at r0 = 0.9, the ratio α/m is much small (10 times smaller) when
the anisotropy terms are neglected. Note that the energy amplification is
also significantly reduced and the lift-up is the main mechanism operating.
The contribution of the different terms of Eq. (65) in the transient growth
at r0 = 0.9 and n = 0.5 is represented in Fig. 16(d). Comparatively to Fig.
16(c), the contribution of the Orr mechanism is limited.
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Fig. 17. Temporal evolution of the optimal perturbation.
n = 0.5, r0 = 0.96 (H̃b = 41.47), R̃e = 5000, with α̃opt = 0.94, mopt = 0,
t̃opt = 16.2. Axial velocity contours at (a) t̃ = 0; (b) t̃ = t̃opt/2; (c) t̃ = t̃opt ; (d)
t̃ = (3/2)t̃opt.

6.2.4 Scaling laws for Gopt and topt

For given r0 and n, the dependence of G
opt and topt on Re is studied. It is found

that Gopt increases with R̃e. The scaling with Re2, Fig 18(a) is recovered for
Hershel-Bulkley fluids in the first region where α = 0. It also applies in the
second region until r0 . 0.6, where the lift-up mechanism is the dominant
mechanism in the transient growth (Fig. 16(a)). Similarly, the scaling of topt

with Re is satisfied, Fig. 18(b). Analysis of the numerical results show that
they can be fitted as

Gopt

R̃e
2 = An exp (Bn r0) and

t̃opt

R̃e
= A′

n exp (B
′
n r0) , (66)

where the coefficients An, A
′n and the exponents Bn, depend on n. They are

given in Table 1
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Fig. 18. Variation of Gopt/R̃e
2
and Topt/R̃e as a function of the radius of the plug

zone for n = 0.5 and different values of the R̃e: (1) ˜Re = 3000, (2) R̃e = 4000, (3)
R̃e = 5000, (4) R̃e = 7000.

n 0.3 0.5 0.7 1

An × 106 66.1 68.1 68.1 62.9

Bn −2.22 −3.28 −3.55 −3.62

A′
n × 103 24.6 32.1 35.4 32.9

B′
n −2.72 −2.81 −2.96 −2.8

Table 1
Fitting coefficients in the scaling laws Gopt/R̃e

2
and topt/R̃e for different values of

the shear-thinning index n.

7 Energy stability, Euler-Lagrange equations

In this section, the maximum Reynolds number, RecE, below which, the per-
turbation kinetic energy decreases monotonically with time is determined. In
the yielded zone, Ω = [0; 2 π]×]r0; 1]× [0; 2π/α], the mean kinetic energy, E,
of a three dimensional perturbation is defined by:
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E =
1

||Ω||

∫

Ω

[

u′2r + v′2r + w′2
r

2

]

dΩ, (67)

where u′r is the real part of u(r, t) exp [i(α z +mθ)] and similarly for v′r and
w′

r. Hence, E can be written as

E =
1

2 (1− r20)

∫ 1

r0
[u u∗ + vv∗ + ww∗] r dr (68)

The temporal variation of the mean kinetic energy
dE

dt
is obtained by multi-

plying the linearized perturbation equations (29), (30) and (31) by u∗, v∗ and
w∗ respectively and then integrated over the domain Ω, with the condition
u = 0 at the wall and at the interface. The result is a modified Reynolds-Orr
equation, which after some algebra, is given by

(

1− r20
) dE

dt
= I (u)−

1

Re
[V(u)−A(u)] (69)

where I (u), V(u) and A(u) denote the inertial, viscous and anisotropy terms,
defined by

I(u) = −〈DWb (urwr + uiwi)〉 , (70)

V(u) =

〈

µb

(

|Du|2 +

(

α2 +
m2

r2

)

|u|2 +
|u|2 + |v|2

r2
−

2im

r2
(uv∗ − u∗v)

)〉

,

(71)

A(u) =
〈

(µb − µt) |Dw + iαu|2
〉

. (72)

In the above equations |u|2 = u2r + u2i , |u|
2 = |u|2 + |v|2 + |w|2 and 〈(.)〉 =

∫ 1

r0
(.)r dr. There is no energy growth of the perturbation, i.e, the basic flow

remains “energy stable”, if
dE

dt
< 0. Define Re1 as the largest value of Re for

which this condition is satisfied

1

Re1
= max

u

I(u)

V(u)−A(u)
, (73)

where u is an admissible perturbation satisfying the continuity equation and
the boundary conditions. This constrained optimization problem is solved us-
ing variational calculus. The corresponding Euler-Lagrange equations are
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wDWb = −Dξ + 2Λ

[

µb

(

△u−
2im

r2
v −

u

r2

)

+ 2
dµ

dr

du

dr

]

+2Λ [iα (µt − µb) (Dw + iα)] , (74)

0 = −
im

r
ξ + 2Λ

[

µb

(

△v +
2im

r2
u−

v

r2

)

+
dµb

dr

(

Dv +
im

r
u−

v

r

)

]

, (75)

uDWb = −i α ξ + 2Λ

[

µb △ w +
dµ

dr
(Dw + iαu)

]

+2Λ
1

r
D [r (µt − µb) (Dw + iαu)] . (76)

with

Du+
u

r
+ i

[

m

r
v + αw

]

= 0. (77)

Equations (74)-(76) define an eigenvalue problem, where Λ is the eigenvalue
to compute and

Re1 (α,m, n,Hb) = maxΛ. (78)

The eigenvalue problem (74)-(76) is solved numerically using the procedure
described in §5 with mapping [r0, 1] into [0, 1] and the transformations (38)
- (40). The results of the numerical computation are presented in terms of

marginal stability curves, i.e. curves in the
(

α̃, R̃e1
)

plane, that separate re-
gions of initial energy density growth from regions of initial energy decay.
Influence of the plug radius
In order to highlight the influence of the unyielded zone radius, r0, on the
global stability conditions, the H̃b terms are canceled artificially and n is
fixed to 1. Figure 19 shows in this particular case, i.e. Couette-Poiseuille flow
of a Newtonian fluid, that the most dangerous perturbation is a streamwise
vortices (α = 0) with an azimuthal wavenumber m increasing with r0. The
maximum Reynolds number, R̃eCE = min

α̃,m
R̃e1 (α̃,m), that ensures no en-

ergy growth, depends weakly on r0. When r0 → 1, R̃ecE tends towards the
value obtained by Nouar et al. [17] for a Bingham plane Poiseuille flow, i.e.
R̃ecE = 79.82. When r0 → 0, R̃ecE tends to R̃ecE = 91.08. This value is dif-
ferent from that obtained by Joseph and Carmi[33] for Hagen-Poiseuille flow
of a Newtonian fluid, i.e. R̃ecE = 81.49. This singularity is a consequence of
the boundary conditions at the yield surface.
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Fig. 19. Newtonian Couette-Poiseuille flow. Boundaries in the (α̃, R̃e) delimiting
zones of global stability. (a) r0 = 0.001, R̃ecE = 91.08 ; (b) r0 = 0.2, R̃ecE = 85.06;
(c) r0 = 0.5, R̃ecE = 81.84; (d) r0 = 0.9, R̃ecE = 80.06. The curves are labeled
with the azimuthal wavenumber

Viscosity stratification without anisotropy terms
The influence of the viscosity stratification, on the global stability is illustrated
in Fig. 20. The terms arising from the viscosity perturbations are canceled. It
is worthy to note that: (i) the most dangerous perturbation is a streamwise
perturbation with an azimuthal wavenumber mc larger that obtained for a
Newtonian Couette-Poiseuille flow; (ii) the critical Reynolds number ReCE

increases strongly with increasing r0 (or Hb), because of the increase of the
viscous dissipation. From H̃b ≈ 30, the numerical results show that R̃ecE ∝
H̃b.

Viscosity stratification with anisotropy terms

Taking into account the H̃b terms with n < 1, reduces significantly the critical
Reynolds number for no energy growth. For weak values of H̃b, the critical
conditions are still obtained for a perturbation in the form of streamwise vor-
tices but with lower azimuthal wavenumber, 21(a). The variation of R̃ecE with
n is fitted by R̃ecE ≈ 91.1− 26(1− n), for 0.3 ≤ n ≤ 1.
With increasing H̃b, the most dangerous perturbation becomes oblique 21(b).
For sufficiently high value of H̃b, the critical mode is axisymmetric, as shown in
figure (19), where variations of the critical axial α̃ and azimuthal m wavenum-
bers as function of H̃b are represented. It is worth noting that for the ax-
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Fig. 20. Influence of viscosity stratification without anisotropy terms.
Boundaries in the (α̃, R̃e) delimiting zones of global stability. (a)
r0 = 0.5, n = 0.5, H̃b = 1.73, mc = 7, R̃ecE = 237.9 ; (b)
r0 = 0.9, H̃b = 15.59, mc = 42, R̃ecE = 1342. The curves are labeled by
the azimuthal wavenumber.
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Fig. 21. Viscosity stratification with anisotropy terms. Boundaries in the
(α̃, R̃e) delimiting zones of global stability: Effect of the plug zone width. (a)
r0 = 0.5, n = 0.5, H̃b = 1.73, mc = 5, α̃c = 0, R̃ecE = 163.37 ; (b)
r0 = 0.9, n = 0.5, H̃b = 15.59,mc = 16, α̃c = 0.8, R̃ecE = 647.64.

isymmetric perturbation, the viscous dissipation involves the tangent viscosity
µt < µb. The variation of the critical Reynolds number, R̃eCE is given by the
curve (1) in figure 23. The conditional stability derived by Nouar and Frigaard
[34] for Bingham fluid is also represented by curve (2). In this analysis, the
effect of the yield stress is limited to the modification of the unyielded zone

radius. For large H̃b (H̃b ≥ 30), R̃ecE varies as H̃b
1/2

. The numerical results

may be fitted as R̃ecE ≈ 218n0.46H̃b
1/2

. It is interesting to note that for plane
Poiseuille flow of a Bingham fluid, it is found R̃ecE ≈ 217B̃1/2. Concern-
ing the critical wavenumber, the following asymptotic behavior is obtained,

α̃ ∼ H̃b
−1/2

. It can be considered as an extension of the theoretical prediction
done by Frigaard and Nouar [35] for a Bingham fluids to Herschel-Bulkley
fluids.
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8 Conclusion

Linear stability analysis and receptivity of Hagen-Poiseuille flow of Herschel-
Bulkley fluid are investigated using modal and non modal approaches. The
base flow is mainly characterized by (i) a central plug zone of radius r0 moving
with a constant velocity and (ii) a nonlinear variation of the viscosity between
the wall and the yield surface. Two dimensionless parameters govern the prob-
lem: the shear-thinning index n and the modified Herschel-Bulkley number H̃b
or equivalently n and r0. In the linear stability analysis, taking into account
the viscosity perturbation leads to an anisotropy of the stress-tensor pertur-
bation. The component τ ′rz = τ ′zr involves the tangent viscosity µt, which is
independent of the yield stress, while the other components τ ′ij , ij 6= rz, zr
involve the effective viscosity µb > µt.
The results of the modal approach show that: (i) In the case of an axisym-
metric perturbation, the influence of Hb (dimensionless yield stress) is reduced
mainly to the modification of the width of the yielded zone; (ii) In the case of an
oblique perturbation, the Hb terms contribute to stabilize the flow through an
increase of the viscous dissipation; (iii) The Hagen-Poiseuille flow of Herschel-
Bulkley fluid is asymptotically stable to infinitesimal disturbances.
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Because of the non-normality of the linear stability operators (with respect
to a scalar product based on the energy norm), a transient algebraic amplifi-
cation of the kinetic energy of the perturbation is observed. The influence of
the rheological parameters on the transient growth and the characteristics of
the optimal perturbation is studied. It is shown that: (i) with increasing the
dimensionless yield stress H̃b, the amplification of the kinetic energy Gmax is
reduced. However, for an axisymmetric perturbation, H̃b has practically no
effect on Gmax. (ii) For H̃b << 1, the optimal perturbation is in the form
of longitudinal rolls. The amplification of the kinetic energy is governed by

the lift-up mechanism. The scaling laws in R̃e
2
for Gopt and R̃e for topt are

recovered. (iii) With increasing H̃b, shear-thinning effects become more sig-
nificant, the optimal perturbation is oblique in the plane (r, z) with an axial
wavenumber α̃ = O(1). The optimal azimuthal wavenumber increases with
decreasing the width of the yielded zone. The optimal perturbation evolves by
the effects of Orr and Lift-up mechanisms. (iv) For sufficiently large value of
H̃b, the optimal perturbation is axisymmetric and the transient growth occurs
only by the Orr-mechanism.
Concerning the energy stability analysis and the determination of the maxi-
mum Reynolds number ReCE below which the kinetic energy of the pertur-
bation decreases uniformly with time, the numerical results show that for
H̃b << 1, with 0.3 ≤ n ≤ 1, the most dangerous perturbation is in the
form of longitudinal rolls with R̃ecE ≈ 91.1 − 26(1 − n). For large H̃b, the

most dangerous perturbation is axisymmetric and RecE ≈ 218n0.46H̃b
0.5
, with

α̃ ∝ H̃b
−0.5

. If the viscosity perturbation is not taken into account, R̃ecE ∝ H̃b.

The different scaling laws, given in sections §6-§7, involve the dimension-
less parameters Hb and Re defined with a generalized viscosity, µ̂gen (§2)
derived from the dimensionless form of the momentum equations. However,
the structure of: (i) the base flow, the less stable mode and (iii) the op-
timal perturbation, suggests that wall shear viscosity is a more appropri-
ate choice of viscosity scale. For an axisymmetric perturbation, tangent wall
shear viscosity is even more relevant. Results obtained in terms of Re and
can be expressed in terms of wall Reynolds number, Rew, using the rela-
tion Rew = Re (1− r0)

n [n/(n+ 1)]n−1. Using Rew rather than Re does not
globally change the conclusions given above. Nevertheless, the comparison of
yield-stress shear-thinning fluids among themselves does require to indicate
the scale viscosity adopted.

This work puts just a brick to a more comprehensive building to identify
possible paths of transition. Experimental studies of transition to turbulence
in a pipe for yield stress fluids were performed by Peixinho et al. [36], Esmael
et al. [37] and Guzel et al. [38]. A weakly turbulent flow is observed, where the
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time-averaged axial velocity profiles exhibit an asymmetry. The mechanism
associated to this nonlinear asymmetry is not yet clarified.
The present work can be pursued in two directions. The first one, also based
on linear stability equations, starts from the realization that the base flow
around which the linearization is performed is just an idealization, whereas in
reality small defects inevitably occur. This approach proposed by Bottaro et

al. [39] has shown some success in capturing features of transition in pipe flow
(Gavarinni et al. [40], Ben-Dov & Cohen [41], [42]). It was applied for the first
time to the channel flow of Bingham flow by Nouar et al. [43], where scaling
laws for transition were proposed. The second direction, is to determine a
weakly nonlinear optimal perturbation. This approach, proposed recently by
Pralits et al. [44] allows to identify initial states which relaminarize from those
which grow without bound.

A Long wave approximation

Following the asymptotic method introduced by Cowley and Smith [24] for a
Couette-Poiseuille flow, the following “long-wave” eigenvalue problem is de-
rived for an axisymmetric perturbation:

iλ (Wb − ω)
(

φ′′ −
1

r
φ′

)

+ iλ
(

DWb

r
−D2Wb

)

φ (A.1)

= F n−1
[

nφ′′′ −
2n

r
φ′′′ +

3n

r2

(

φ′′ −
1

r
φ′

)]

(A.2)

+ (n− 1)F n−1DF

F

(

nφ′′′ −
3n

r

(

φ′′ −
1

r
φ′

))

(A.3)

+n (n− 1)F n−1

(

(n− 2)
(DF )2

F 2
+
D2F

F

)

(

φ′′ −
1

r
φ′

)

, (A.4)

where φ = ru, λ = α̃R̃e, ω = C̃/α̃ and F = |DWb|. Equation A.4 is solved by
the same method as that described in §5. Figure A.1 shows the evolution of
the eigenvalue ω as a function of λ. We have not found any instability.

37



10
3

10
4

10
5

10
610

−3

10
−2

10
−1

λ = α̃R̃e

−
ω
=

−
C̃

i/
α̃

Fig. A.1. Maximum temporal amplification rate of the perturbation as function of
λ = α̃R̃e at n = 0.5 and two values of the plug zone radius: (�) r0 = 0.8 and (•)
r0 = 0.1 .
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flow of yield stress fluid in a pipe. J. Non-Newtonian Fluid Mech., 128:172–184,
2005.

[37] A. Esmael, C. Nouar, A. Lefevre, and N. Kabouya. Transitional flow of a non-
newtonian fluid in a pipe: Experimental evidence of weak turbulence induced
by shear-thinning behavior. Phys. Fluids, 22:101701, 2010.

[38] B. Guzel, T. Burghelea, I. Frigaard, and D.M. Martinez. Observation of laminar-
turbulent transition of a yield stress fluid in Hagen-Poiseuille flow. J. Fluid
Mech., 627:97–128, 2009.

[39] A. Bottaro, P. Corbett, and P. Luchini. The effect of base flow variation on
flow stability. J. Fluid Mech., 476:293–302, 2003.

[40] L. M. Mack. The initial stage of transition in cylindrical pipe flow: role of
optimal base-flow distorsion. J. Fluid Mech., 517:131–165, 2004.

[41] G. BenDov and J. Cohen. Critical Reynolds number for a natural transition to
turbulence in pipe flows. Phys. Rev. Lett., 98:064503, 2007.

[42] G. BenDov and J. Cohen. Instability of optimal non-axisymmetric base flow
deviations in pipe poiseuille flow. J. Fluid Mech., 588:189–215, 2007.

40



[43] C. Nouar and A. Bottaro. Stability of the flow of a Bingham fluid in a channel:
eigenvalue sensitivity, minimal defects and scaling laws of transition. J. Fluid
Mech., 642:349–372, 2010.

[44] J.O. Pralits, A. Bottaro, and S. Cherubini. Weakly nonlinear optimal
perturbations. J. Fluid Mech., 785:135–151, 2015.

41


