

## Short- and long-term rhythmic interventions: perspectives for language rehabilitation

Daniele Schön, Barbara Tillmann

### ▶ To cite this version:

Daniele Schön, Barbara Tillmann. Short- and long-term rhythmic interventions: perspectives for language rehabilitation. Annals of the New York Academy of Sciences, 2015, The Neurosciences and Music V, 1337 (1), pp.32-39. 10.1111/nyas.12635 . hal-02446642

## HAL Id: hal-02446642 https://hal.science/hal-02446642

Submitted on 21 Jan 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

| APT <b>A</b> RA                         | NYAS    | nyas12635-1685016 | Dispatch: November 30, 2014 | CE:              |  |
|-----------------------------------------|---------|-------------------|-----------------------------|------------------|--|
|                                         | Journal | MSP No.           | No. of pages: 8             | PE: Lia Zarganas |  |
| <br>Ann. N.Y. Acad. Sci. ISSN 0077-8923 |         |                   |                             |                  |  |

#### ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

Issue: The Neurosciences and Music V

2

4

5

7

8

10 11

12

13 14

15

16 17

18

19

20

21

22

23

24

25

26

28 29 30

31

50

51

52

# Short- and long-term rhythmic interventions: perspectives for language rehabilitation

#### Daniele Schön<sup>1,2</sup> and Barbara Tillmann<sup>3,4</sup>

<sup>1</sup>Innovation, Nanomaterials and Strategy (INS), Aix-Marseille University, Marseille, France. <sup>2</sup>INSERM, Marseille, France. <sup>3</sup>Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Lyon, France. <sup>4</sup>University Lyon 1, Lyon, France

Address for correspondence: Daniele Schön, Torredut de neurosciences des systèmes, Centre MEG, Service de Neurophysiologie Clinique, CHU Timone–Rue Saint Pierre, 13385 Marseille, Cedex 5, France. daniele.schon@univ-amu.fr

This paper brings together different perspectives on the investigation and understanding of temporal processing and temporal expectations. We aim to bridge different temporal deficit hypotheses in dyslexia, dysphasia, or deafness in a larger framework, taking into account multiple nested temporal scales. We present data testing the hypothesis that temporal attention can be influenced by an external rhythmic auditory stimulation (i.e., musical rhythm) and benefits subsequent language processing, including syntax processing and speech production. We also present data testing the hypothesis that phonological awareness can be influenced by several months of musical training and, more particularly, rhythmic training, which in turn improves reading skills. Together, our data support the hypothesis of a causal role of rhythm-based processing for language processing and acquisition. These results open new avenues for music-based remediation of language and hearing impairment.

Keywords: music; rhythm; language; rehabilitation; entrainment

#### Dynamics of attending

01 Temporal expectations are linked to synchronization, entrainment, and phase coupling of exter-Q2 nal stimuli and internal oscillators. An illustrative 35 example of phase coupling can be seen in a setup 36 in which several metronomes set to the same tempo 37 but with different phases, once placed on a moving 38 table, will synchronize and end up sharing the same 39 phase (see https://www.youtube.com/watch?v= 40 Aaxw4zbULMs). Once energy can travel from one 41 metronome to the other via the moving table, 42 metronomes synchronize, and the minimal energy 43 state of the system is reached. This example of phase 44 coupling can be seen as a good metaphor of how 45 music, that is, periodic and temporally structured 46 sounds, can synchronize and entrain neural popu-47 lations via traveling waves (first acoustic and then 48 neuroelectric). 49

In regard to synchronization and entrainment, Jones<sup>1</sup> has started to develop a theoretical framework of temporal attention. The hypothesis of this

dynamic attending theory (DAT) is that attention is not evenly distributed over time, but rather fluctuates (or oscillates) in time via cycles. These oscillations would be driven by a phase coupling between internal (neuronal) oscillators and (external) periodicities in the environment (e.g., music). There can be different frequency relationships with that of the external regulator, leading to metric hierarchical structures in music.<sup>2</sup> Thus, attentional energy would be maximal at most expected moments in time (that is, moments with high probability that an event would occur). The DAT was first described for and applied to music (see, in particular, Ref. 3), and then also to speech or movement. Large and Jones<sup>4</sup> have proposed a mathematical model describing entrainment phenomena in music perception. In this model, the periodic music structure entrains the attentional oscillatory cycles. Moreover, the metrical structure (the organization of strong and weak beats) also affects these attentional fluctuations, engendering larger peaks at strong beats.2,4

Ann. N.Y. Acad. Sci. xxxx (2014) 1-8 © 2014 New York Academy of Sciences.

1

2

3 The DAT has been empirically tested in the au-4 ditory domain for musical material, speech mate-5 rial, as well as cross-modal perceptual setups to test 6 for interactions with visual perception. The various 7 data sets have shown that perception is enhanced 8 for musical events (tones, chords) that are presented 9 at highly expected moments in time, notably on the 10 beat.5-7 More recently, a series of cross-modal exper-11 iments has shown that this enhancement is not only 12 limited to the auditory modality but can also benefit 13 visual processing. Indeed, when one is listening to 14 an auditory regular sequence (e.g., a metronome), 15 processing of visual stimuli is facilitated when the 16 stimulus is presented on the beat in comparison to 17 when it is presented off the beat.<sup>8–10</sup>

18 The facilitated processing is not limited to the 19 comparison between presentations on the beat ver-20 sus off the beat: it also depends on the structural 21 hierarchy of beats. In a recent experiment, we presented visual or auditory targets simultaneously to 23 a piece of music (e.g., a Bach Solo Sonata for vio-24 lin). Presenting visual stimuli on the beat or off the 25 beat had a relatively small effect. In contrast, tar-26 gets presented on the strong beat or right before, 27 showed shorter RT compared to those presented on 28 or right before a weaker beat.<sup>11</sup> It thus seems that 29 the rhythm of attention is locked to the occurrences 30 of strong beat, with weak beats in the trough of the 31 oscillation. With respect to neural substrates, this 32 effect seems to rely on the left intraparietal lobule, a region that has been shown to be involved in the 34 temporal orienting of attention, the ability to flexi-35 bly and voluntarily orient attention to moments in 36 time.<sup>12</sup> More precisely, the functional connectivity 37 between this region and a motor network (premotor 38 and motor regions) as well as a sensory network (au-39 ditory and visual cortices) seems to fluctuate over 40 time, notably with peaks of connectivity strength 41 at strong beats. This possibly reflects a top-down 42 attentional mechanism (highly coupled to the mo-43 tor network) that modulates the metabolic activity 44 in auditory and visual areas and influences event 45 processing.<sup>13</sup>

46 47

48

#### Extending the DAT from music to speech

The DAT framework was first developed for mu sical material for both pitch and time dimensions,
 that is, listeners' expectations for what kind of pitch
 will come next and when in time it will occur.

This attentional framework (temporal expectations) has been also applied for speech material, even though the periodicity (isochrony) in the speech signal is less pronounced than the periodicity in the musical signal.<sup>14</sup> Although quasi-isochronous beats are found across all music cultures (and allow motor synchronization), in conversational speech, and although rhythmic grouping certainly shapes speech perception, the degree of regularity is certainly weaker.<sup>15</sup> Nonetheless, when one is listening to speech, the temporal regularity of the alternating stressed and unstressed syllables would cause the listener's attention to time-lock (couple) to this temporal pattern going from one stress to the following. Interestingly, this effect goes beyond the physical salience of the phonemes and, rather, seems to rely on the fact that the perception of salient events, such as stressed syllables, generates expectancies concerning later events (position of the next stress).<sup>16</sup>

Thus, similarly to what has been suggested above in the musical domain, attention is directed to points at which stressed syllables are expected to occur. In a similar manner, as pitches are better processed when they occur at expected time points, syllables and words are better processed when they occur at expected time points. Temporal regularity and predictability of speech can enhance different aspects of speech processing, going from phoneme perception over lexical processing to syntax and semantic processing.<sup>17–20</sup>

On the basis of these findings, namely the effects of temporal regularity and predictability on both music and speech processing, we now present three possible ways of combining music and speech in different experimental designs. The aim of these designs is to see whether, and to what extent, music can entrain attentional processes and affect speech (and language) perception and production and possibly explain the potential underlying mechanisms. These designs differ with respect to their time scale, going from short over medium to longer time periods, and with respect to the role of the participant with respect to the music (active or passive listening). The hypothesis that musical structures might boost temporal processing that benefits linguistic processing even in an impaired language system fits with the conclusion of Thomson and Goswami<sup>21</sup> stating, "... there is value in the use of rhythmic interventions for children with both developmental dyslexia and SLI."

Schön & Tillmann

2

4

#### Rhythmic speech cuing

We recently investigated whether complex metrical 5 rhythms corresponding to the prosodic structure 6 of sentences can enhance phonological processing 7 via rhythmic expectations. In this paradigm, par-8 ticipants listen to a metrical sequence immediately 9 followed by a word or a sentence and perform 10 a phoneme detection task.  $\equiv$ s, the metrical se-11 quence is a sort of cue to the temporal structure of 12 the following speech, and we refer to this paradigm 13 as rhythmic cuing, to distinguish it from rhyth-14 mic priming, which we describe in the next sec-15 tion. The cue's meter can either match or mismatch 16 the prosody of the sentence with respect to both 17 stress patterns and number of elements. We col-18 lected both behavioral and electrophysiological data 19 using a phoneme detection task (e.g., "say whether 20 the last syllable of the sentence contains the sound 21 [a]").

Providing a matching rhythmic cue resulted in faster reaction times, thus revealing a cross-domain 24 effect of the musical metrical structure on the 25 phonological processing of speech. This effect was 26 larger when participants received audiomotor training with the rhythmic sequences before the task. 28 In this training, participants were asked to repro-29 duce the rhythmic pattern several times. This pos-30 sibly allowed them to internalize more finely the 31 temporal structure of the cues. Electrophysiologi-32 cal data confirmed these behavioral effects, showing a mismatch-like negative component, possi-34 bly originating in the auditory associative cortices, 35 clearly visible when the speech target did not match 36 the metrical structure of the previous temporal 37 sequence.22,23 38

Building on these findings on speech perception, 39 we decided to study whether speech production may 40 also benefit from rhythmic cuing, because this may 41 have important implications about how rhythm can 42 be used in speech therapies. More precisely, we stud-43 ied whether metrical cuing has an effect on phono-44 logical production abilities in prelingually deaf 45 children (wearing a hearing device). In our study, 46 children listened to a rhythmical isochronous se-47 quence (drum sounds) and had to reproduce it vo-48 cally (using two phonemes: ([ti] and [pa]). Then, 49 they listened to a sentence and had to repeat it. The 50 sentence either matched or mismatched the metri-51 cal structure of the rhythmical sequence (i.e., same 52

number of syllables but with a different stress pattern). There was also a baseline condition wherein sentences were not preceded by a rhythmical sequence. Matching conditions resulted in a greater phonological accuracy of spoken sentences compared to baseline and mismatching conditions at several levels of phonological measurements (the production of vowels, consonants, syllables, and words), suggesting that rhythmic cuing can enhance phonological production. This facilitation may take place via an enhanced perception of the target sentence, similarly to the studies presented above. Nonetheless, on the basis of previous findings described above,<sup>23</sup> we suggest that both an enhanced entrainment of speech motor rhythms through rhythmic listening and a greater familiarity of speech motor rhythms through rhythmic training contribute to the greater accuracy in speech imitation.

#### Rhythmic priming of language processing

Another way of combining music and speech is to use the musical material as an auditory rhythmic stimulation to boost language processing, in particular language processing that requires temporal sequencing and segmentation (at local and/or global levels). In this case, in contrast to rhythmic cuing wherein the stimulation is short and mimics the temporal structure of the following sentence, the stimulation is typically longer and does not necessarily have a "precise" temporal relation with the following linguistic task.

Linguistic meter has been described as a good candidate to support segmentation,<sup>24</sup> and regular predictable presentation has been shown to influence syntax processing.<sup>19,25</sup> As successful metric processing allows for the prediction of when a subsequent element will occur, a metric pattern serves as a "framework" enabling listeners to sequence linguistic input and to build up syntactic hierarchies. Kotz et al.26 have shown that metrical stimulation makes it possible to compensate for a sequencing deficit in sentence processing in patients with focal basal ganglia lesions, suggesting that metrical stimulation is likely to act as a therapeutic tool modulating sequencing capacities. The authors suggested a compensation of the basal ganglia impairment with the help of an overactivation in premotor areas. Kotz et al.27 proposed that the basal ganglia

1

2

3 (or more generally the medial pre-SMA-basal gan-4 glia circuit) and the cerebellar-thalamic-pre-SMA 5 pathway have important roles in the processing of timing in spoken sequences. They play a role in 7 sequencing and segmentation of incoming infor-8 mation streams, in attention formation of sensory 9 predictions, as well as in beat perception and syn-10 tax processing. When the contribution of the basal 11 ganglia is impaired, nonlinguistic stimulation (via the metric prime) might stimulate the cerebellar-13 thalamic-pre-SMA pathway and boost the develop-14 ment of internal oscillators and their synchroniza-15 tion to the external (stimulus) oscillations.

16 These findings suggest the use of external os-17 cillators as compensatory mechanisms in patients 18 with syntactic integration deficits or, more gener-19 ally, in sequencing and segmentation deficits. In 20 a recent work,<sup>28</sup> we have extended this benefit of 21 a metrical prime to syntax processing in children 22 with developmental language disorders: children 23 with SLI and children with dyslexia (and their age-24 matched and reading-age-matched control partic-25 ipants). Even though recent research has revealed 26 that children with SLI and children with dyslexia 27 have deficits in rhythm and meter processing,<sup>21,29–32</sup> 28 we formed the hypothesis that these populations 29 might benefit from the musical prime, as did the 30 basal ganglia patients (for whom deficits in tempo-31 ral processing have also been reported).<sup>3</sup>  $\equiv$ 

In our study, we compared the influence of two rhythmic structures (played by two percussion in-34 struments) on syntax processing: a regular prime 35 and an irregular prime, for which meter extraction 36 was easy and difficult, respectively. In the experi-37 mental paradigm, children listened for 30 seconds 38 to the musical excerpt, and this music presentation 39 was followed by a block of experimental trials of the 40 language task requiring grammaticality judgments. 41 Sentences (presented auditorily) were either syntac-42 tically correct or incorrect, and children indicated 43 whether a given sentence was correct or not. Over 44 the experimental session, blocks of the language task 45 were preceded by either regular primes or irregular 46 primes. The results showed an influence of the prime 47 on the subsequent language task: children's perfor-48 mance in the grammaticality judgments was better 49 after a regular prime than after an irregular prime.

In this first study we have compared the influence
 of regular and irregular musical primes to establish
 the potential effect of prior music on subsequent

language processing. This comparison does not yet allow conclusions about compensatory benefits of the regular prime in comparison to children's performance without music. We have chosen this procedure as a first approach because the comparison of a regular prime with a no-music condition is inadequate for their unequal levels of arousal and the unknown temporal persistence (or carryover effects) of the regular prime. We have now started to introduce a baseline condition aiming to investigate whether the benefit observed for regular musical primes (in comparison to the irregular primes) actually represents a benefit in comparison to a normal/silent listening situation. The first results obtained with children with SLI showed better performance after the regular musical prime than after the baseline condition (here we used an environmental sound scene). These findings are encouraging for the use of musical primes to boost language processing, suggesting their potential use for rehabilitation purposes.

Along the same lines, we are now extending this research to reading performance, aiming to test whether the beneficial effect of a regular rhythmic prime extends to syllable segmentation in a reading task. Children were asked to read words and pseudowords. The items of both types of stimuli were constructed to differ in their syllabic complexity as instilled by sonority cues, which allowed us to manipulate the difficulty level of segmentation.<sup>34,35</sup> We tested dyslexic and SLI children and their matched controls by comparing regular and irregular contexts first.34 Results showed some improvement for syllable segmentation in reading after regular primes. For the more difficult items (containing the ambiguous syllable boundaries), SLI children produced more correct syllable boundaries after regular than irregular primes. For SLI and dyslexic children, the quality of reading increased after the regular prime, for example, with reduced phoneme omissions (i.e., the entire stimulus was read; /vukti/ versus /vyki/ or /vyti/). This work now needs also to be completed with the addition of a neutral (baseline) context to further determine the beneficial effect of the regular prime.

#### Long-term rhythmic training

The third example of an experimental design assessing the links between musical rhythm and language processing is a long-term training of rhythmic skills. In contrast to the short-term effects Schön & Tillmann

2

Rhythmic interventions for language rehabilitation

3 described above, this type of design implies both an 4 active involvement-with respect to training-and 5 a long-term intervention, typically over several 6 weeks, months, or, even better, years. In the case 7 of clinical studies, this corresponds to randomized 8 control trials, requiring a strict observance of several 9 methodological issues. Although these studies are 10 of utmost interest insofar as they speak of the causal 11 role of music training on nonmusical abilities (e.g., language), they are rather difficult to carry out. 13 This is why most literature on the effects of music 14 training on language skills essentially relies on 15 correlational or cross-sectional studies. However, 16 more recently, various long-term approaches using 17 musical training have been proposed, mainly con-18 firming conclusions coming from cross-sectional 19 studies comparing musicians and nonmusicians.<sup>36</sup>

20 Another difficulty of the long-term approach is 21 linked to the choice of the content of musical activ-22 ity. Indeed, most of the time a general music training is chosen, often barely defined and relying on 24 all properties of a music activity: timbral, melodic, 25 harmonic, rhythmic, emotional, social, and so on. 26 Although this is done for the obvious reasons of maximizing the chances of success and to get close 28 to a more realistic musical training, results cannot 29 disentangle the contribution of each of these differ-30 ent musical features to speech processing. Thus, the 31 ideal design should compare the effects of differ-32 ent types of music intervention, both with respect 33 to effects on speech and language processing and to 34 covariance of the different measures. In other terms, 35 one should first show that rhythmic training has an 36 impact on grammatical skills, for instance, and then 37 also show that among other musical competences 38 (e.g., harmonic, melodic skills) the changes in per-39 formance in rhythmic tasks are the best predictor of 40 the changes in performance in language tasks.

41 We now briefly present an example of long-42 term rhythmic training on a population of children 43 with developmental dyslexia. One explanation of 44 the poor performance in rhythmic tasks described 45 above is a deficit in processing the amplitude enve-46 lope and more precisely in processing rise time.<sup>37</sup> 47 Rise times are critical in speech perception because 48 they facilitate syllabic segmentation and prosodic 49 processing. Poor auditory perception of slow tem-50 poral modulations may thus cause poor perception 51 of speech rhythm and syllable stress.<sup>38</sup> Interestingly, 52 phase locking between the speech envelope and

low-frequency oscillations in the auditory cortex implements a mechanism for efficient sampling and segmentation of speech.<sup>39</sup>

Going back to the phase-coupling model described above with the DAT, one possibility would be that although a "normal" neural oscillatory activity will phase lock to speech modulation patterns,<sup>40,41</sup> in developmental dyslexia there may be a poor phase alignment between speech and neural activity.42 We recently collected data from a highly selected sample of Italian children with developmental dyslexia to investigate, on one hand, the relation among musical temporal, phonological, and decoding skills and, on the other hand, the causal effects of music rhythmic training on phonological and reading abilities. Results clearly show both a larger improvement in several phonological and reading abilities compared to the control group (here trained in visual arts) and a similar developmental trajectory of rhythmic and phonological abilities.43,44 This adds evidence to previous studies showing a potential benefit of music training to improve phonological abilities.45-48

# Temporal scales and perspectives for rehabilitation

When we consider the use of music and rhythm to improve linguistic skills, it is important to keep in mind that several temporal scales come into play. These levels possibly rely on different neural circuitry and are affected to a certain extent in different language pathologies. Table 1 proposes an overview. This is not an exhaustive list of all possible temporal levels that may be relevant but is an overview to show the diversity and complexity of the processes involved and, possibly, to stimulate further research to better define these temporal levels and suggest new ones.

The shortest temporal scale (<3 ms) is important to ensure a high consistency in neural responses to sounds in the brain stem. A low brain-stem response consistency has been observed in poor readers,<sup>49</sup> and a high-response consistency is typically associated with proficient sensorimotor synchronization skills.<sup>50</sup> Next, we have a temporal scale (approximately 40 ms) that is important in perceiving consonantic contrasts that are known to be poorly perceived by children with developmental dyslexia,<sup>51</sup> whereas musician children discriminate similar consonants better than nonmusician children.<sup>52</sup> Q3

Q4

| Function                                            | Scale                | Effect of music training | Language disorders |  |
|-----------------------------------------------------|----------------------|--------------------------|--------------------|--|
| Consistency of spectrotemporal analysis             | < 3 ms               |                          | Х                  |  |
| Consonantic contrasts                               | $\sim 40 \text{ ms}$ |                          | Х                  |  |
| Amplitude modulation: speech rate and speech rhythm | 50–500 ms            |                          | Х                  |  |
| Word segmentation and prosodic boundaries           | > 500 ms             |                          | Х                  |  |
| Bayesian cognition and predictive coding            | > 1 s                | ?                        | Х                  |  |

 Table 1. Nonexhaustive overview of different levels of analyses involved in speech and language comprehension and an approximate corresponding temporal scale

NOTE: The two columns on the right indicate whether there is evidence that music training benefits this level of processing ( $\sqrt{}$  indicates Yes) and whether this level may be impaired in individuals suffering language disorders (X indicates Yes, impaired).

14 15 16

13

2

4

17 We have described the next two levels concerning 18 amplitude modulation, word segmentation, and 19 prosodic boundaries (approximately from 50 ms 20 to above 500 ms). These levels can be impaired in speech disorders<sup>48</sup> and are typically processed more 21 22 efficiently by musicians than by nonmusicians.<sup>53,54</sup> 23 The last level is on a rather long time scale, above 24 1 second. Prediction as well as cognition based on 25 Bayesian inference are what allow readers to decode "Aoccdrnig to rscheearch at Cmabrigde Uinervtisy" 26 27 without difficulties. Actually, readers are not able to 28 refrain from reading the correct words and imagin-29 ing the correct sounds. Although this level is also im-30 paired in developmental dyslexia, we are not aware 31 of any study testing whether musicians have an 32 advantage compared to a nonmusician population.

Overall, one can predict that by improving these different levels of temporal processing via rhythmic stimulation, children with language disorders might also benefit to some extent and improve their language processing. This hypothesis, together with the rather encouraging set of findings presented above, can be integrated in the temporal sampling framework recently proposed by Goswami for dyslexia and by extension for SLI.<sup>38</sup> Together with the DAT, postulating internal oscillators guiding attention over time, Goswami suggests that an impaired rhythmic entrainment leads to difficulties in developing attention over time, engendering in turn deficits in syllabic segmentation and other sequential processes.<sup>38</sup> Goswami discusses the potential benefits of therapeutic interventions or educational practices based on rhythm and music (e.g., metrical poetry or singing nursery rhymes) as those might entrain the impaired oscillatory networks. In line with this framework, the data described above provide new grounds and motivations for further testing the benefit of rhythmic stimulation on language processing and its underlying mechanisms. The perspective of using music might also exploit the motivational advantages and pleasantness that musical material can provide in a rehabilitation setting beyond its stimulating effect for impaired temporal processing networks.

|  | Prime 1 | μ <sup>2</sup> / <sub>4</sub> ·, λ. μ. | Le scandal <b>eux</b> sén <u>at</u>     |  |  |  |
|--|---------|----------------------------------------------------------------------------|-----------------------------------------|--|--|--|
|  | Prime 2 |                                                                            | Le carr <b>osse</b> du coch <u>er</u>   |  |  |  |
|  | Prime 3 | u¾ ₂                                                                       | ll prescrit le bon cach <u>et</u>       |  |  |  |
|  | Prime 4 |                                                                            | Choregraph <b>ier</b> le ball <u>et</u> |  |  |  |

47 48 49

Figure 1. Example of four different matching rhythmical primes preceding a spoken sentence. The participant sees a target vowel on the screen and hears a rhythm followed by a sentence (matching or mismatching). The task is to say whether the vowel is present or not in the last word of the sentence.

6

Schön & Tillmann

2

4

5

7

8

9

10

13

14

15

16

17

18

19

21

22

24

25

26

27

28

29

30

31

32

34

35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

#### Conflicts of interest

The authors declare no conflicts of interest.

#### References

- Jones, M.R. 1976. Time, our lost dimension: toward a new theory of perception, attention, and memory. *Psychol. Rev.* 83: 523–355.
- Jones, M.R. 2009. "Musical time." In *The Handbook of Music Psychology*. S. Hallam, I. Cross & M. Thaut, Eds.: 81–92. New York: Oxford University Press.
- Jones, M.R. & M. Boltz. 1989. Dynamic attending and responses to time. *Psychol. Rev.* 6: 459–491.
- Large, E. & M.R. Jones. 1999. The dynamics of attending: how we track time-varying events. *Psychol. Rev.* 106: 119– 159.
- Jones, M.R., H. Moynihan, N. MacKenzie & J. Puente. 2002. Temporal aspects of stimulus-driven attending in dynamic arrays. *Psychol. Sci.* 13: 313–319.
- Schmuckler, M.A. & M.G. Boltz. 1994. Harmonic and rhythmic influences on musical expectancy. *Percept. Psychophys.* 56: 313–325.
- Tillmann, B. & G. Lebrun-Guillaud. 2006. Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. *Psychol. Res.* 70: 345– 358.
- Escoffier, N., D. Yeo & A. Schirmer. 2010. Unattended musical beats enhance visual processing. *Acta Psychol.* 135: 12–16.
- Miller, J.E, L.A. Carlson & J.D. McAuley. 2013. When what you hear influences when you see: listening to an auditory rhythm influences the temporal allocation of visual attention. *Psychol. Sci.* 24: 11–18.
- Brochard, R., M. Tassin & D. Zagar. 2013. Got rhythm... for better and for worse. Cross-modal effects of auditory rhythm on visual word recognition. *Cognition* 127: 214–219.
- Bolger, D., W. Trost & D. Schön. 2013. Rhythm implicitly affects temporal orienting of attention across modalities. *Acta Psychol.* 142: 238–244.
- Coull, J. & A. Nobre. 2008. Dissociating explicit timing from temporal expectation with fMRI. *Curr. Opin. Neurobiol.* 18: 137–144.
- Bolger, D., J.T. Coull & D. Schön. 2014. Metrical rhythm implicitly orients attention in time as indexed by improved target detection and left inferior parietal activation. *J. Cogn. Neurosci.* 26: 593–605.
  - Dalla Bella, S., A. Białuńska & J. Sowiński. 2013. Why movement is captured by music, but less by speech: role of temporal regularity. *PLoS One* 8: e71945.
  - Patel, A.D. 2008. Music, Language, and the Brain. New York: Oxford University Press.
  - Martin, J.G. 1972. Rhythmic (hierarchical) versus serial structure in speech and other behavior. *Psychol. Rev.* 79: 487–509.
  - Pitt, M.A. & A.G. Samuel. 1990. The use of rhythm in attending to speech. J. Exp. Psychol. Hum. Percept. Perform. 16: 564–573.
- Falk, S., T. Rathcke & S. Dalla Bella. 2014. When speech sounds like music. J. Exp. Psychol. 40: 1491–1506.

Rhythmic interventions for language rehabilitation

- Schmidt-Kassow, M. & S.A. Kotz. 2008. Entrainment of syntactic processing? ERP-responses to predictable time intervals during syntactic reanalysis. *Brain Res.* 21: 144– 155.
- Quené, H. & R.F. Port. 2005. Effects of timing regularity and metrical expectancy on spoken-word perception. *Phonetica* 62: 1–13.
- 21. Thomson, J.M. & U. Goswami. 2008. Rhythmic processing in children with developmental dyslexia: auditory and motor rhythms link to reading and spelling. *J. Physiol.* **102**: 120– 129.
- Cason, N. & D. Schön. 2012. Rhythmic priming enhances the phonological processing of speech. *Neuropsychologia* 50: 2652–2658.
- Cason, N., C. Astesano & D. Schön. Under review. Bridging music and speech rhythm: rhythmic priming and audio-motor training affect speech perception. *Acta Psychol.*



- Cutler, A. 1994. The perception of rhythm in language. Cognition 50: 79–81.
- Schmidt-Kassow, M. & S.A. Kotz. 2009. Event-related brain potentials suggest a late interaction of meter and syntax in the P600. J. Cogn. Neurosci. 21: 1693–1708.
- Kotz, S.A., T.C. Gunter & S. Wonneberger. 2005. The basal ganglia are receptive to rhythmic compensation during auditory syntactic processing: ERP patient data. *Brain Lang.* **95**: 70–71.
- Kotz, S.A., M. Schwartze & M. Schmidt-Kassow. 2009. Nonmotor basal ganglia functions: a review and proposal for a model of sensory predictability in auditory language perception. *Cortex* 45: 982–990.
- Przybylski, L., N. Bedoin, S. Krifi-Papoz, *et al.* 2013. Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. *Neuropsychology* 27: 121–131.
- Weinert, S. 1992. Deficits in acquiring language structure: the importance of using prosodic cues. *Appl. Cogn. Psychol.* 6: 545–571.
- Corriveau, K. & U. Goswami. 2009. Rhythmic motor entrainment in children with speech and language impairment: tapping to the beat. *Cortex* 45: 119–130.
- Overy, K., R.I. Nicolson, A.J. Fawcett & E.F. Clarke. 2003. Dyslexia and music: measuring musical timing skills. *Dyslexia* 9: 18–36.
- Muneaux, M., J.C. Ziegler, C. Truc, *et al.* 2004. Deficits in beat perception and dyslexia: evidence from French. *NeuroReport* 15: 1255–1259.
- 33. Schwartze, M., P.E. Keller, A.D. Patel & S.A. Kotz. 2011. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneousmotor tempo, and the detection of tempo changes. *Behav. Brain Res.* 216: 685–691.
- Bedoin, N. & P. Dissard. 2002. Sonority and syllabic structure in reading: differences between French and English readers. *Curr. Psychol. Lett.* 2: 67–83.
- Fabre, D. & N. Bedoin. 2003. Sensitivity to sonority for print processing in normal readers and dyslexic children. *Curr. Psychol. Lett.* 10: 1–7.
- François, C., J. Chobert, M. Besson & D. Schön. 2013. Music training for the development of speech segmentation. *Cereb. Cortex* 23: 2038–2043.

Ann. N.Y. Acad. Sci. xxxx (2014) 1-8 © 2014 New York Academy of Sciences.

Q6

2 3

4

5

7

8

9

11

13

14

15

16

17

18

Q7

20

21

22

23

24

26

27

34 35 36

8

- 37. Goswami, U., D. Gerson & L. Astruc. 2010. Amplitude envelope perception, phonology and prosodic sensitivity in children with developmental dyslexia. Read. Writ. 23: 995-1019.
  - 38. Goswami, U. 2011. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 15: 3-10.
- 39. Gross, J., N. Hoogenboom, G. Thut, et al. 2013. Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biol. 11: e1001752.
- Ghitza, O. 2011. Linking speech perception and neu-40. rophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm. Front. Psychol. 2: 130.
- 41. Giraud, A.L. & D. Poeppel. 2012. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15: 511-517.
- 42. Lehongre, K., F. Ramus, N. Villiermet, et al. 2011. Altered low-gamma sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron. doi: 10.1016/j.neuron.2011.11.002.
- 43. Flaugnacco, E., L. Lopez, C. Terribili, et al. 2014. Rhythm perception and production predict reading abilities in developmental dyslexia. Front. Hum. Neurosci. 8: 392.
- 44. Flaugnacco, E., L. Lopez, C. Terribili, et al. Under review. Music training increases phonological awareness and reading skills in developmental dyslexia: a randomized control **Q**8 trial. J. Child. Psychol. Psychiatry.
  - Cogo-Moreira, H., C.R.B. de Avila, G.B. Ploubidis & J.d.J. Mari. 2013. Effectiveness of music education for the improvement of reading skills and academic achievement in

young poor readers: a pragmatic cluster-randomized, controlled clinical trial. PLoS One 8: e59984.

- 46. Overy, K. 2000. Dyslexia, temporal processing and music: the potential of music as an early learning aid for dyslexic children. Psychol. Music 28: 218-229,
- Bhide, A., A. Power & U. Goswami. 2013. A rhythmic musical 47. intervention for poor readers: a comparison of efficacy with a letter-based intervention. MBE 7: 113-123
- Goswami, U., M. Huss, N. Mead, et al. 2013. Perception of 48. patterns of musical beat distribution in phonological developmental dyslexia: significant longitudinal relations with word reading and reading comprehension. Cortex 49: 1363-1376.
- 49. Hornickel, J. & N. Kraus. 2013. Unstable representation of sound: a biological marker of dyslexia. J. Neurosci. 33: 3500-3504.
- 50. Tierney, A. & N. Kraus. 2013. The ability to move to a beat is linked to the consistency of neural responses to sound. J. Neurosci. 33: 14981-14988.
- 51. Tallal, P. 2004. Improving language and literacy is a matter of time. Nat. Rev. Neurosci. 5: 721-728.
- 52. Chobert, J., C. Marie, C. François, et al. 2011. Enhanced passive and active processing of syllables in musician children. J. Cogn. Neurosci. 23: 3874-3887.
- 53. Francois, C. & D. Schön. 2011. Musical expertise boosts implicit learning of both musical and linguistic structures. Cereb. Cortex 21: 2357-2365.
- 54. François, C., J. Chobert, M. Besson & D. Schön. 2013. Music training for the development of speech segmentation. Cereb. Cortex 9: 2038–2043.

Ann. N.Y. Acad. Sci. xxxx (2014) 1-8 © 2014 New York Academy of Sciences.

#### Queries

- **Q1:** Author: Please provide academic degree(s) for the corresponding author.
- **Q2:** Author: Please provide complete details for affiliations 2 and 4, that is, Department/Division. Also, check the affiliation field as typeset.
- Q3: Author: Please provide the significance of "?" in Table 1.
- Q4: Author: Figure 1 has not been cited in the text, please check.
- Q5: Author: Please provide page range and volume number for Ref. (23).
- **Q6:** Author: Ref. (33) has not been cited in the text, please cite it at relevant place or delete from the Reference List, and renumber the references.
- **Q7:** Author: Please provide volume number for Ref. (42).
- Q8: Author: Please update Ref. (44) with page range, volume number, and year of publication, if published.