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Fig. 1. Cross section of the axial-flux reluctance magnetic 

coupling  
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Abstract: In this paper, design optimization of an axial flux reluctance magnetic coupling is presented. The optimal design 
procedure is based on a 2-D semi-analytical model defined at the mean radius combined with a multi-objective genetic 
algorithm (NSGA-II). In order to take into account the end-effects in the radial direction, a correction factor is defined to 
improve the torque and the axial force determination. The obtained results are compared with those of 3-D nonlinear finite 
element simulations and experimental results. It is shown that the proposed semi-analytical model is very accurate and 
requires very little computing time. 
 

1. Introduction 

Magnetic couplings can be used to transmit rotational 

movement between two shafts through a sealed wall in order 

to avoid any contact with the product to be treated for safety 

or hygienic reasons. The torque transmission between the 

two shafts is carried out without contact by the interaction 

between magnetic fields in the air-gap.  

There are two main types of magnetic couplings: 

synchronous and asynchronous (eddy-current), with radial 

and axial flux topologies. The synchronous magnetic 

coupling [1, 2] consists of rare-earth permanent magnets 

(PMs) placed on both rotors that move at the same speed [3]. 

This kind of coupling has maximum transmittable torque, 

which is the highest value of torque that can be transmitted 

before the stall and called pull-out torque [4, 5]. For eddy-

current magnetic couplings [6, 7], one of the two rotors 

consists of a conductive plate, which usually is copper. The 

torque transmission is due to the induced currents which 

depend on the relative speed between the two rotors (slip). 

This results in Joule losses [8, 9], and adequate cooling may 

be necessary to avoid overheating [10].  

Among classical magnetic couplings technologies, 

reluctance torque magnetic couplings have received very 

little attention in the literature [11]. As shown in Fig. 1, an 

axial-flux reluctance magnetic coupling consists of two 

ferromagnetic discs facing each other and separated by a 

small air-gap. One side is equipped with sector-shaped rare-

earth PMs magnetized in the axial direction with alternate 

polarity. The other side is made with mild steel salient poles 

with the same number as PMs. If one of the rotors is rotated, 

a change of stored energy will happen in the magnetic 

circuit. This change is resisted by a restoring torque toward 

the aligned position. The angular shift between the two discs 

is directly related to the transmitted torque value. In steady-

state, the two rotors rotate at the same angular speed. 

The main advantage of the reluctance magnetic 

couplings compared to more classical synchronous magnetic 

couplings with PMs on both sides is their durability in high-

temperature environments, i.e. the side with salient-poles 

can be used in high-temperature environments and the other 

side with magnets can be used in room temperature.  

Besides, since fewer magnets have been used, the 

manufacturing price will reduce. On the other hand, the 

main drawback is lower torque density [11]. 

This paper is part of recently developed studies on 

the analytical modeling of magnetic couplings for their 

design [12-15]. Analytical models that can be found in the 

literature focus on more conventional topologies, such as 

those with permanent magnets on both sides [12, 13] or 

those with a copper disc on one side based on eddy currents 
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Fig. 2. 2-D model at the mean radius for one pole-pitch,  

y-z plane. 

[14, 15]. For these structures where all the regions (magnet, 

air-gap, or copper) have the same geometry and therefore 

the same periodicity for the analytical solution, the 

analytical models are relatively simple. Here, the analytical 

model is more complicated due to the slotting effect (Fig. 2) 

which the operation of this magnetic coupling is based on it. 

Models already have been developed for the study of 

reluctance magnetic couplings but they are not suitable for 

use in an optimization procedure because they are too 

simple to predict the torque correctly [11] or they require 

too much computation time, i.e. 3-D finite element 

simulations [16]. 

In this paper, we propose a 2-D semi-analytical 

model based on the subdomains method (SDM). SDM is a 

semi-analytical method that consists of dividing the problem 

into the physical regions named subdomains. Then 

Maxwell's equations are solved analytically in each sub-

domain [17-20]. This method gives accurate results when 

the slotting effect must be taken into account. This method 

has been applied for the study of permanent magnet 

machines [17, 18], PM linear motors considering different 

magnetization patterns [19] and study of the reluctance 

motors [20]. 

The semi-analytical model proposed in this paper is 

developed at the mean radius in Cartesian coordinate. A new 

correction factor is defined to take into account the 3-D 

effects in the radial direction. Then the model is used for 

multi-objective design optimization by helping the genetic 

algorithm. The results are compared with 3-D non-linear 

finite element simulations and experimental tests. 

2. 2-D Semi-Analytical Model  

To simplify the analytical modeling, we will consider 

a 2-D model defined at the mean radius Rm. As a result, the 

curvature effects and 3-D effects in the radial direction will 

be neglected. It has been shown that curvature effects can be 

neglected without great errors for axial-field actuators [13], 

[21]. On the other hand, the decay of the magnetic field on 

the radial edges of the magnetic coupling must be taken into 

account otherwise the pull-out torque and the axial force 

will overestimate. Hence, a correction factor will be 

introduced in the formula of the torque and axial force in 

order to take this effect into account. 

 

2.1. 2-D Semi-analytical Model in the y-z  
 

The 2-D model of the reluctance magnetic coupling 

at the mean radius is shown in Fig. 2. By considering this 

simplification, the cylindrical structure of Fig. 1 is made 

equivalent to a linear reluctance magnetic coupling. The 

model is then defined in a Cartesian coordinate system 

where the y-coordinate represents the circumferential 

direction and the z-coordinate the axial direction. An infinite 

dimension is considered in the x-direction. In addition, to 

obtain the simplest model, the following assumptions have 

been made: 

 

- The iron parts (salient-pole and back-iron) have 

infinite magnetic permeability. 

- The permanent magnets have a relative recoil 

permeability μr = 1.  

The first hypothesis means that the magnetic 

saturation on the performance of the magnetic coupling has 

been neglected. This is the most important assumption and 

the principal limitation of the proposed model. However, in 

the next section, it will be shown that neglecting the 

magnetic saturation is not an issue, because the optimal 

shape of the salient poles corresponds to an unsaturated 

condition for the studied example. The second hypothesis 

implies using rare-earth permanent magnets (NdFeB or 

SmCo), but this is necessary to obtain good performances in 

terms of torque density [11]. 

As shown in Fig. 2, the entire domain is divided into 

3 regions: Region I corresponds to the PMs, Region II is for 

the air-gap, and Region III shows the slot between two 

salient-pole. To compute the torque for different relative 

positions between the two rotors, the magnets (region I) can 

be shifted by an angle δ (torque angle) from the center of a 

salient-pole. As the problem presents a periodicity in the y-

direction, the whole domain will be limited by 0 ≤ y ≤ τ, 

where τ is the pole-pitch. Also, because the whole domain is 

current-free, a magnetic scalar potential formulation is used 

to solve the problem. From the Maxwell equations, we 

obtain the following partial differential equation for each 

region (i = I, II, III). 
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where Φi is the magnetic scalar potential in region i. It is 

note worthy to say that the magnetization vector of the 

magnets presents only one independent component in the z-

direction, hence the Laplace equation (1) is valid in the PMs 

region. According to the periodicity of the magnetic field 

distribution along the y-directions in the air-gap and PMs 

regions (i = I, II), solution of (1) is as follow: 
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where A
i
, B

i
, C

i
, and D

i
 are the integration constants which 

can be determined from the interface conditions between the 

regions, and k=k/, k is a positive odd integer 



 

 

 
 

Fig. 3. Radial dependence of the flux density in the air-gap 

[4].   

The solution in the slot region is a bit more difficult 

to determine [20]. For this region, we have to consider the 

following boundary conditions: 
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Considering (1) and (3), the magnetic scalar potential 

in region III is as follows: 
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where A
III

 and B
III

 are the integration constants in region III 

and n=n/β, n is a positive integer. 

As indicated previously, the 10 integration constants 

are obtained from the interface conditions between the 

regions, which lead to a linear system of 10 equations given 

in the appendix. The boundary conditions at z = 0 (region I) 

and z = c (region III), and the interface condition between 

regions I and II at z = b are easy to handle. 

 On the other hand, the interface condition between 

region II and region III at z = b given by (5) is more difficult 

and corresponds to the main difficulty for this type of semi-

analytical model. The method has been developed with great 

detail in [17]-[20] for cylindrical or rectangular problems 

and will therefore not be repeated here. 
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The next step is to determine the torque and axial-

force expression from the Maxwell stress tensor. A line 

placed in the middle of the air-gap (region II) is taken as the 

integration path so the electromagnetic torque T2D and the 

axial force F2D can be expressed as follows: 
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where ByII and BzII are the y- and z-component of the flux 

density in the air-gap which are derived from the magnetic 

scalar potential (2) as: 
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where 0 is the vacuum permeability. Substituting (8) into (6) 

and (7), the analytical expressions for the electromagnetic 

torque and for the axial force become: 
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At this point, it is worth noting that it is not possible 

to give a direct relation between the torque and the 

geometrical parameters, as it was the case for more simple 

magnetic couplings geometries without slotting effect [4, 

10]. When the slotting effect is taken into account by using 

the sub-domain method [17]-[20], it is necessary to 

numerically invert a matrix to solve the system of 10 linear 

equations between the integration constants given in the 

appendix: 
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where [M] is the topological matrix, (X) is a vector of the 

integration constants which should be determined, and (S) is 

the source term which depends on the magnet distribution. 

A numerical solution of (11) can be obtained by using 

mathematical software (Matlab). Therefore, the proposed 

model is known as semi-analytical. 

Because infinite dimension has been considered in 

the x-direction (radial direction), the torque and the axial 

force obtained from (9), (10) will have overestimation 

compared to the real value.  This is due to the decay of the 

flux density on the radial edge of the magnets which is not 

taken into account in the torque and axial force expressions. 

To account for this 3-D effect, the following sub-section is 

dedicated to the definition of a correction factor. 

 

2.2. Radial end effects, correction factor   
 

In [4] that focused on axial flux magnetic coupling 

with PMs arranged on both discs, the radial dependence of 

the axial flux density in the air-gap has been measured. The 

results are recalled in Fig. 3. As it can be observed, the axial 

flux density drops down rapidly near the edges of the 

magnet whereas it was considered constant and equal to its 

value at the mean radius in the previous section, as shown 

by the thick line curve in Fig. 3. This assumption leads to an 



 

 

 
 

Fig. 4. 2-D model in the x-z plane at y = 0 (under a 

salient-pole)  

 
 

Fig. 6. Impact of the air-gap length on the correction 

factor. 

 
 

Fig. 7. B-H curve for the iron parts (3-D FEM) 

 
 

Fig. 5. Axial flux density distribution along the x-direction  

overestimation of the torque and the axial force [4]. 

In order to take into account this 3-D effect in a 

simple way and have a better estimation for the torque and 

the axial force, a correction factor Ke is introduced by 

carrying-out a supplementary 2-D analytical model in the x-

z plane as shown in Fig. 4. The objective is to obtain the 

axial flux density distribution along the x-direction. We have 

to solve a problem with two regions having the same 

dimension, the correction factor is estimated under a salient-

pole at y = 0. The domain is limited in the x-direction by 

imposing a perfect magnetic boundary condition at x = ± L/2. 

In order to have no impact of this artificial boundary on the 

magnetic field determination, we impose L>>H.  .  

The axial component of the flux density defined at    

z = a +b is given by: 
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Fig. 5 shows the flux density distribution along the x-

direction obtained from (13) with H = 30 mm, a = 10 mm 

and b = 5 mm. It can be observed that the waveform is close 

to the one obtained by measurement given in Fig. 3, but with 

a symmetrical aspect around x = 0. 

Because the magnetic force varies with the square of 

the flux density, the correction factor Ke will be defined as: 
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where Bmax is defined at x = 0 as shown in Fig. 5.  

Then the torque and axial force with the 3-D effects 

will be computed by combining (9) and (10) with (14) as: 

 

3 2D e DT K T  and  3 2D e DF K F  (15) 

 

Variation of the correction factor as a function of air-

gap length is given in Fig. 6 for H = 30 mm and H = 100 

mm and considering a fixed value for the PMs thickness     

(a = 10 mm). These results show that the length of the air-

gap and the radial length of the magnets have a significant 

impact on the value of the correction factor. 
 

3. Comparison with 3-D Finite Element Simulation 

 

In order to show the effectiveness of the proposed 

semi-analytical model, the results are compared with those 

obtained from 3-D finite-element simulations by considering 

the actual geometry of the reluctance magnetic coupling 

(Fig. 1). For the 3-D finite element simulations, we have 

used COMSOL Multiphysics® software with a scalar 

potential formulation (magnetostatic). The non-linear 

magnetic property (B-H curve) for the salient-pole has been 

considered in the FE analysis. The B-H characteristic is 

shown in Fig. 7. 



 

 

 
 

Fig. 9. Flux line distribution under no-load condition 

obtained with 3-D FE simulation 

 
(a) 

 

 
(b) 

 

Fig. 10. Flux density distribution along the y-direction in 

the middle of the air-gap for b = 3mm; (a) no load 

condition (δ = 0), (b) full load condition (δ = 9°). 

 
 

Fig. 8. 3-D FE simulations: mesh distribution in the 

magnet and in the iron parts. 

Table 1: Geometrical parameters of the studied reluctance 

magnetic coupling  
 

Symbol Quantity value 

R1 Inner radius of the magnets 30 mm 

R2 

a 

b 

c 

α 

Outer radius of the magnets 

Magnets thickness 

Air-gap length 

Salient-pole thickness 

PMs pole-arc to pole-pitch ratio 

60 mm 

10 mm 

variable 

15 mm 

0.83 

β 

p 

Slot-opening to pole-pitch ratio 

Pole-pairs number 

0.77 

5 

Br 
 

Remanence of  the magnets 1.25 T 

 

 

The mesh in the different regions has been refined 

until convergent results are obtained. The meshes in the 

magnet and in the iron part are shown in Fig. 8. Only 1 pole 

of the magnetic coupling has been considered in the FE 

analysis with anti-periodic boundary conditions in the 

circumferential direction. The air surrounding the magnetic 

coupling is considered in the FE simulation (an infinite box 

surround the system).  

The geometrical parameters are given in Table 1. 

These values correspond to the ones obtained during an 

optimization procedure that will be presented in the next 

part. 

The contours of magnetic flux density in the iron part 

under no load condition ( = 0) obtained with the 3-D FE 

simulation is shown in Fig. 9. The flux density inside the 

teeth is around 1.4T, which is slightly below the knee point 

of the B-H curve shown in Fig. 7. 

 

3.1. Flux Density Distribution in the Air-Gap 
 

Fig. 10 shows the flux density distribution along the 

y-direction in the middle of the air-gap, at the mean radius, 

under no-load (δ = 0°) and full-load condition (δ = 9°). Due 

to the presence of the salient-pole, the flux density in the air 

gap has large variations, especially for the y-component. We 

can observe that very good agreements are obtained between 

the analytical results and the 3-D FE simulations 

 

3.2. Pull-Out Torque 
 

For a reluctance magnetic coupling [11], the torque is 

a function of sin(2pδ), where δ is the torque angle, whereas 

it is a function of sin(pδ) for a magnetic coupling with PMs 

on the two discs [4]. This means that the pull-out torque Tmax 

is reached for δ = /4p that corresponds to δ = 9° for the 

studied coupling with p = 5. 



 

 

 
 

Fig. 11. Pull-out torque versus the air-gap length with or 

without the correction factor. 

 
 

Fig. 12. Axial force versus the air-gap length with or 

without correction factor. 

 
 

Fig. 13. Torque versus the number of pole-pairs. 

 
 

Fig. 14. Torque versus the slot-opening to pole pitch ratio. 

The air-gap length has a large influence on the 

performance of a magnetic coupling. Its value is imposed by 

the thickness of the sealing barrier between the two 

mechanical shafts. In order to show the effectiveness of the 

correction factor Ke on the torque prediction, Fig. 11 shows 

the pull-out torque as a function of air-gap length obtained 

without considering the correction factor (9) and taking it 

into account (15).  

One can observe that the pull-out torque is well 

predicted by using the proposed semi-analytical model, even 

with changing the air-gap length. This result clearly shows 

the obtained gain in precision thanks to the correction factor. 

The error exceeds 30% without using the correction factor 

(9) and it is reduced to less than 10% when the correction 

factor is used (15). Another important result is a significant 

decrease in magnetic coupling performance as the air-gap 

increases. The pull-out torque goes from a value of 20 Nm 

for an air-gap of 2 mm to about 7 Nm for an air-gap of 6 

mm, which corresponds to a decrease of around 65%. 

 

3.3. Axial Force 
 

The main disadvantage of an axial-flux magnetic 

coupling concerns the axial force between the two discs 

which affect the bearing losses of the drive [4]. It is 

therefore important to predict it accurately. The maximum 

value for the axial force corresponds to the no-load 

condition (i.e. δ = 0°). Fig. 12 shows the axial force as a 

function of the air-gap length with or without the correction 

factor. For the studied coupling, the axial force reaches a 

value of about 1000 N for an air-gap of 3 mm. Again, the 

correction factor greatly improves the predictions compared 

to 3-D nonlinear FE simulations. 

 

3.4. Influence of Geometrical Parameters 
 

In this section, the impact of some geometrical 

parameters on the performance of the magnetic coupling is 

studied. The main objective is to verify the correctness of 

the semi-analytical model in predicting the trend, compare 

to the 3-D non-linear FE results. The geometrical parameters 

are those given in Table 1. Only one parameter varies and 

other dimensions have been fixed. 

 It is well-known that the number of pole-pairs has a 

great impact on magnetic couplings performances. For a 

given air-gap length, there is always an optimum value. Fig. 

13 shows that the analytical model is able to predict this 

optimal value which is equal to p = 4 for an air-gap b = 3 

mm. In general, the optimal value for the number of pole-

pairs decreases when the air-gap increases [4]. 

It can be seen in Fig. 13 that the torque prediction 

obtained with the semi-analytical model is underestimated 

for large number of pole-pairs and slightly overestimated for 



 

 

 
 

Fig. 15. Torque versus the salient-pole thickness. 

 
 

Fig. 16. Flowchart of optimum design with GA 

p < 4. This is mainly due to the curvature effect that has 

been neglected in the proposed 2-D analytical model, while 

3-D FE simulations take this effect into account [22]. 

For a reluctance magnetic coupling, another 

important parameter is the slot-opening to pole pitch ratio β 

as shown in Fig. 2.  Fig. 14 shows that the maximum torque 

occurs for a large value of β  0.8, which corresponds to a 

small opening angle for the salient-pole (20%) compared to 

the PMs pole-arc to pole pitch ratio (83%). This result is in 

agreement with a previously published paper about 

reluctance magnetic couplings [11]. When the salient-pole 

opening becomes very small (i.e. β > 0.9), magnetic 

saturation occurs and the torque decreases more rapidly than 

the one predicted by the semi-analytical model. This loss of 

accuracy for the analytical model will not be a problem for 

the optimization procedure because this area (very low value 

for the salient-pole opening angle) never corresponds to an 

optimal value. 

Fig.15 depicts the torque versus the salient-pole 

thickness. It can be observed that the torque increases with 

the salient-pole thickness and becomes constant for c ≥ 15 

mm. This result indicates that it is important to choose this 

value carefully to obtain the best performance (not too small 

and not too big). Once again, very good prediction is 

obtained with the semi-analytical model.  

 

4. Design optimization and experimental result 

 

4.1. Design optimization procedure with GA 
 

As the semi-analytical model is very fast in terms of 

computational time and very efficient in terms of precision, 

it will be used in a design optimization procedure. It is 

worth noting that 50 ms is needed to compute the torque 

with the analytical model whereas it takes over 40 s with 3-

D FE simulations, which corresponds to a time saving of 

more than 800. It is well-known that Genetic Algorithm 

(GA) is a robust and effective tool in optimization problems. 

Here the multi-objective genetic algorithm NSGA-II, which 

is available in Matlab has been used. This algorithm will be 

coupled with the proposed semi-analytical model. 

The flowchart for the optimization procedure is given 

in Fig. 16. Seven parameters (R1/R2, R2, p, a, c, , and ) 

need to optimize. Two objective functions that correspond to 

minimize the magnet volume (Vm) and the external radius 

(R2) have been defined. Also, one constraint is imposed 

which corresponds to the desired pull-out torque (16 Nm) 

while the air-gap length is fixed to b = 3 mm. The 

optimization problem can be summarized as given in (16).   
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It should be noted that an additional constraint could be 

added in (16) to limit the maximum flux density in the 

salient-pole to avoid magnetic saturation effects (Bteeth ≤ 

1.6T for example). Although the flux density in the salient-

pole is not calculated with the proposed semi-analytical 

model (infinite permeability), it can be estimated from the z-

component of the flux density in the air-gap (8) by applying 

the magnetic flux conservation. This issue has not been 

addressed in this paper.  

The bounds of the variables in vector x (16) were 

chosen as follows: R1/R2 = 0.1-0.9; R2 = 20-100 mm; p = 2-

10; a = 2-20 mm; c = 2-25 mm;  = 0.1-0.9; β = 0.1-0.9. 

The optimization procedure uses 100 individuals evolving 

for 50 generations. It takes less than 30 s to obtain the Pareto 

front given in Fig. 17. 



 

 

 
 

Fig. 17. Pareto front obtained with GA: Magnets volume 

vs. Outer radius R2 for Tmax = 16 Nm. 

    
(a)                                          (b) 

 
 

 
(c) 

 

Fig. 19. Reluctance magnetic coupling prototype. (a) 

salient-pole side, (b) PMs side, (c) Magnetic coupling 

placed between the two motors. 

Table 2: Output optimal value for the design parameters 

obtained with GA 

Symbol Quantity value 

R1/R2 Outer radius/Inner radius  0.5 

R2 

a 

c 

α 

Outer radius of the magnets 

Magnets thickness 

Salient-pole thickness 

PMs pole-arc to pole-pitch ratio 

60 mm 

10 mm 

15 mm 

0.83 

β 

p 

Slot-opening to pole-pitch ratio 

Pole-pairs number 

0.77 

5 

 

 
 

Fig. 18. Pareto front obtained with PSO: Magnets volume 

vs. Outer radius R2 for Tmax = 16 Nm. 

It can be observed that the optimal value for the 

volume of the magnets and therefore the price of the 

magnetic coupling increases when the outer radius of the 

magnets decreases and vice versa. The solution noted A in 

Fig. 17 corresponds to the optimal parameters given in 

Table 2. These geometrical parameters are those 

corresponding to the prototype built for the experimental 

validations and presented in the following section. 

 

4.2. Design optimization procedure with PSO 
 

Particle Swarm Optimization (PSO) is a stochastic 

optimization method for non-linear functions. It is based on 

the reproduction of a social behavior. The origin of this 

method comes from observations made during computer 

simulations of flights in a group of birds and schools of fish 

[23]. These simulations highlighted the ability of individuals 

in a moving group to maintain an optimal distance from 

each other and to follow a global movement in relation to 

local movements in their neighborhood. This social behavior 

based on the analysis of the environment and the 

neighborhood is then a method of optimum search by 

observing the trends of neighboring individuals. Each 

individual tries to optimize his chances by following a 

tendency that he moderates by his own experiences. PSO 

has been largely used for the design optimization of 

electrical machines and actuators. 

A multi-objective PSO technique is used for the 

design optimization of the studied magnetic coupling. The 

objective functions and the constraint are the same as the 

one defined in (16). The resulting Pareto front is given in 

Fig. 18. The obtained results from this method are close to 

those obtained with GA (Fig. 17). The magnets volume for 

an external radius R2 = 6 cm is slightly higher (73 cm
3
) than 

that obtained with the GA method (70 cm
3
). 

 

4.3. Static torque measurement 
 

To validate the semi-analytical model from an 

experimental point of view and to check the performance of 

the magnetic coupling, we have manufactured the prototype 

shown in Fig. 19.  Fig. 19(a) shows the salient-pole side 



 

 

 
 

Fig. 21. Measured and predicted static torque for three 

air-gap values. 

    
(a) 

 
                

 

 
(b) 

 

Fig. 20. Experimental setup for the static torque 

measurement: (a) photograph, (b) block-scheme 

representation (top view). 

 

which is composed of ten ferromagnetic teeth. The thickness 

of the back iron has been chosen to avoid magnetic 

saturation. We used low carbon steel (grade AISI-1010) 

with high relative permeability in the linear region of the B-

H curve and a high level of saturation to improve the 

performance. The second disc is made using sector-type 

NdFeB glued on the iron yoke as shown in Fig. 19(b). The 

geometrical parameters are given in Table 1. 

Fig. 20 shows the reluctance magnetic coupling 

placed on the test bench. The axial coupling is inserted 

between two electrical machines (DC motors, 3 kW, 1500 

rpm). In fig. 20, the air-gap value is b = 3 mm. The air-gap 

length has been set by inserting non-magnetic plates of 

known thickness between the two discs. Figs. 20(a) and 20(b) 

respectively show a photograph and a block-scheme 

representation of the test bench arrangement for the static 

torque measurement. As shown in Fig. 20(b), the static 

torque was measured thanks to weights (250 g, 500 g, 1 kg) 

suspended to a rod (l = 1 m) locked to one rotor, the other 

being fixed. The relative angular position δ was measured 

using an incremental encoder with a resolution of 4096 

pulses/revolution (precision of 0.088 degrees) and the data 

was transferred into a computer. 

The measured static torque as a function of load 

angle δ is shown in Fig. 21 and is compared with the ones 

obtained with the semi-analytical model.  

Three values for the air-gap were considered (b = 3 

mm; 5 mm, and 7 mm). As shown in Fig. 21, good 

agreement between the measured and predicted torque 

values have been obtained, which clearly show the validity 

of the proposed analytical model. The error on the pull-out 

torque prediction is never greater than 10%. The small 

differences between the model and the tests can be 

explained by the test procedure to measure the load torque, 

which is relatively simple (weight suspended at the end of a 

long bar) and may lead to measurement errors. 

5. Limitations of the semi-analytical model 

 

In the proposed semi-analytical model, the curvature 

effect and the magnetic saturation of the iron parts have 

been neglected. Although we have obtained accurate results 

in sections 3 and 4 for the studied magnetic coupling, some 

lack of precision may occur for particular geometrical 

configurations of the magnetic coupling such as very low 

air-gap and tooth opening values (saturation effect), or for 

very low or very large values of the pole-pairs number 

where the curvature effect is more pronounced. 

 

5.1. Curvature effect 
 

As shown in [13] and [21], the curvature effects can 

be analyzed by considering a dimensionless number  

defines as the ratio of the radial excursion of the magnets H 

to the pole-pitch  : 
 

H



      with    2 1H R R     and    mR

p


      (17) 

 

A large value for  means that the curvature is 

pronounced. In order to change the value of  given in (15), 

the pole-pitch value is varied by changing the pole-pairs 

number from p = 1 to p = 10, which gives 0.42 <  < 4.24. 

The other geometrical parameters are kept constant and are 

those given in Table I with an air-gap value fixed to 3 mm. 

Fig. 22 gives the relative error on the pull-out torque 

between the semi-analytical model and the 3-D FE 

simulations. It can be seen that the pull-out torque is 

predicted without error if the curvature coefficient  ≃ 1.8. 

For lower or greater values of the curvature coefficient, the 



 

 

 
 

Fig. 22. Curvature effect: relative error on the pull-out 

torque between 3-D FEM and the semi-analytical model. 

 
 

Fig. 23. Magnetic saturation effect: pull-out torque versus 

the slot opening for two air-gap values: 1 mm and 3 mm. 

relative error increases but remains below 10%, which is 

acceptable. This result confirms the ones obtained in [13] 

and [21] where it was shown that curvature effect can be 

neglected without great errors for axial-field actuators. 

 

5.2. Magnetic saturation effect 
 

As indicated previously, magnetic saturation is the 

most important assumption of the proposed model. 

Magnetic saturation occurs in the teeth and is highly 

dependent on the air-gap and tooth opening value, the 

smaller the air-gap or tooth opening, resulting in the greater 

the magnetic saturation effect.  

In order to highlight the magnetic saturation effect on 

the pull-out torque, it has been computed for two values of 

the air-gap length (1 mm and 3 mm) and by varying the slot 

opening , as shown in Fig. 23. Fig. 23 shows that magnetic 

saturation has a great impact on the pull-out torque for very 

low air-gap and tooth opening dimensions. It can be seen 

that the pull-out torque is well predicted until  < 0.8 for an 

air-gap of 3 mm whereas this value drops to  < 0.7 for an 

air-gap of 1 mm. 

Fig. 23 shows that the optimal dimensions for the 

salient-pole correspond to the limit of the magnetic 

saturation (knee-point of the BH curve). It should be noted 

that an additional constraint could be added in the 

optimization procedure (Fig. 16) to limit the maximum flux 

density in the salient-pole to avoid magnetic saturation 

effects (Bteeth ≤ 1.6T), then infinite permeability assumption 

will be valid. 

6.  Conclusion 

Reluctance magnetic coupling can be a solution for 

torque transmission between two shafts without contact. 

Compared to more classical synchronous magnetic 

couplings with permanent magnets on the two discs, it can 

be used in high temperature or corrosive environments. In 

this paper, we have developed a new analytical tool for the 

design optimization of a reluctance magnetic coupling. A 

correction factor has been proposed to take into account the 

3-D effects in the radial direction. Comparisons with 3-D 

finite element simulations and measurements have shown 

the ability of the semi-analytical model in predicting the 

pull-out torque and the axial force with precision. Moreover, 

as the semi-analytical model is very effective in terms of 

computational time, it has been used in a design 

optimization procedure with multi-objective genetic 

algorithm. Finally, we have shown the limits of the model in 

terms of magnetic saturation. 
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8. Nomenclature 

 

R1 Inner radius of the magnets. 

R2 Outer radius of the magnets. 

Rm Mean radius of the magnets (Rm = (R1+R2)/2). 

H Radial length of the magnets (H = R2 - R1). 

a Magnets thickness. 

b Air-gap length. 

c Salient-poles  thickness. 

α Permanent magnets pole-arc to pole-pitch ratio 

β Slot-opening to pole-pitch ratio 

p Pole-pairs number. 

Br Remanence of the magnets. 

τ Pole pitch (τ = Rmπ/p). 

9. Appendix 

 

The 10 integration constants are obtained by solving a 

linear system of 10 equations by using Matlab: 
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