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Joshi et al. (2018)1 showed how the variance components of the basic factorial mating design 

used in this study were translated into estimates of maternal, dominance and additive variances 

related to a pedigree. The basic factorial mating design had 3 core components (VSire, VDam, 

and VFsib) which can be related to the covariances (C) between individuals, i and j, assuming a 

mean is fitted to the population. 

i, j no common parent (U),  CU = 0        (1) 

i, j paternal half-sibs (PHS),   CPHS = VSire       (2) 

i, j maternal half-sibs (MHS),  CMHS = VDam      (3) 

i, j full-sibs (FS),    CFS = VSire + VDam + VFsib    (4) 

For this population i and j were in generation 22, and Joshi et al. (2018)1 published the main 

results with a base set at generation 20. 

Dominance. Assuming the non-additive genetic variation was primarily arising from 

dominance then Joshi et al. (2018)1 showed:   

CU = (4σ2
A + σ2

D)/16      (5) 

CPHS = (6σ2
A + 2σ2

D)/16     (6) 

CMHS = (6σ2
A + 2σ2

D)/16 + σ2
M   (7) 

CFS = (8σ2
A + 4σ2

D)/16 + σ2
M    (8) 

The fitted mean will account for the genotypic drift from the base generation, which is 

represented by CU, and Equation 5 can be subtracted from the (6), (7) and (8). 

CPHS = (2σ2
A + σ2

D)/16    (9) 

CMHS = (2σ2
A + σ2

D)/16 + σ2
M              (10) 

CFS = (4σ2
A + 3σ2

D)/16 + σ2
M                   (11) 

Solving these equations and equating them to (2) to (4) results in the following:   
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• σ2
M is estimated as CMHS – CPHS . 

• σ2
D is estimated as 16(CFS–CPHS–CMHS) =16VFsib 

• σ2
A is estimated as 16CPHS-8(CFS-CMHS) = 8(VSire - VFsib). 

Epistasis2. Consider now an assumption that the non-additive genetic variation was primarily 

arising from A#A, denoted σ2
I :   

CU = (16σ2
A + 4σ2

I)/64       (5) 

CPHS = (24σ2
A + 9σ2

I)/64      (6) 

CMHS = (24σ2
A + 9σ2

I)/64 + σ2
M    (7) 

CFS = (32σ2
A + 16σ2

I)/64 + σ2
M     (8) 

As with dominance the fitted mean removes CU and this is subtracted from remaining 

covariances. 

CPHS = (8σ2
A + 5σ2

I)/64      (6) 

CMHS = (8σ2
A + 5σ2

I)/64 + σ2
M    (7) 

CFS = (16σ2
A + 12σ2

I)/64 + σ2
M     (8) 

The solutions to these equations are: 

• σ2
M is estimated as CMHS – CPHS . 

• σ2
I is estimated as 32(CFS–CPHS–CMHS) =32VFsib 

• σ2
A is estimated as 28CPHS-20(CFS-CMHS) = 8VSire - 20VFsib = 8(VSire - VFsib) – 12VFsib. 

Therefore the estimate of σ2
A from this design is reduced when the non-additive variation is 

assumed to be additive-by-additive epistasis rather than dominance, and this reduction is of the 

order of 3/8 σ2
I. 
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