Additional file 3: Equivalence of contrasts used to construct H_{a} for HWE and NOIA genomic relationship matrices

Genomic dissection of maternal, additive and nonadditive genetic effects for growth and carcass traits in Nile tilapia

R Joshi, THE Meuwissen, JA Woolliams and HM Gjøen

Let $x_{i j}$ be the count of an arbitrarily chosen alternative allele for locus $j(j=1 \ldots \mathrm{~m})$ in individual $i(\mathrm{i}=1 \ldots \mathrm{n})$ so that $x_{i j}=0,1$ or 2 . Following the notation of [1], the genomic relationship matrices for additive effects are constructed from contrasts h_{a} to give coefficients $h_{a}[i, j]$ for each locus for each individual and the $h_{a}[i, j]$ form an $n \times m$ matrix $\mathbf{H}_{\mathrm{a}} . \mathbf{G}$ is then calculated as

$$
\begin{gathered}
\mathbf{G}_{\mathrm{NOIA}}=\left[\operatorname{tr}\left(\mathbf{H}_{\mathbf{a}} \mathbf{H}_{\mathrm{a}}^{\mathrm{T}}\right) / \mathrm{n}\right]^{-1} \mathbf{H}_{\mathbf{a}} \mathbf{H}_{\mathbf{a}}^{\mathrm{T}} \\
\mathbf{G}_{\mathrm{HWE}}=\left[2 \sum_{j=1}^{m} p_{j}\left(1-p_{j}\right)\right]^{-1} \mathbf{H}_{\mathbf{a}} \mathbf{H}_{\mathbf{a}}^{\mathrm{T}}
\end{gathered}
$$

For HWE the $h_{a}[i, j]$ coefficients are commonly used and are given in [1] (un-numbered equation on page number 1299) as:

Genotype Coefficient

$\left.\begin{array}{ll}\text { AA } & 2-2 p_{j} \\ \text { Aa } & 1-2 p_{j} \\ \text { aa } & -2 p_{j}\end{array}\right]$

Note that in the text of [1], $p_{j}=p_{A}$ and for comparison we continue to use both subscript j and subscript A as in [1].

For NOIA the $h_{a}[i, j]$ coefficients are given in [1] in their Equation 1 as:

Genotype Coefficient

aa

$$
\left.\begin{array}{l}
-\left(-p_{A a}-2 p_{a a}\right) \tag{S2.2}\\
-\left(1-p_{A a}-2 p_{a a}\right) \\
-\left(2-p_{A a}-2 p_{a a}\right)
\end{array}\right]
$$

These are equivalent forms. The allele frequencies can also be calculated from the genotype frequencies by: $p_{j}=p_{A}=p_{A A}+\frac{1}{2} p_{A a}$ and $p_{a}=1-p_{j}=p_{a a}+\frac{1}{2} p_{A a}$. Substituting these into S2.2 gives S 2.1 as shown below.

Genotype Coefficient

AA
$-\left(-p_{A a}-2 p_{a a}\right)=p_{A a}+2 p_{a a} \quad=2 p_{a} \quad=2\left(1-p_{j}\right) \quad=2-2 p_{j}$
Aa $-\left(1-p_{A a}-2 p_{a a}\right)=p_{A a}+2 p_{a a}-1=2 p_{a}-1=2\left(1-p_{j}\right)-1=1-2 p_{j}$
aa $-\left(2-p_{A a}-2 p_{a a}\right)=p_{A a}+2 p_{a a}-2=2 p_{a}-2=2\left(1-p_{j}\right)-2=-2 p_{j}$

Example. Let $p_{a a}=0.3, p_{A a}=0.2$ and $p_{A A}=0.5$; so $p_{A}=p_{j}=0.6$ and $p_{a}=0.4$. The locus is not in HWE as $2 p_{A} p_{a}=0.48 \neq p_{A a}$. Then the coefficients are as follows:
Genotype
AA
Aa
aa

From S2.1

$\begin{array}{rlll}2-2 \times 0.6 & =0.8 & -(-0.2-2 \times 0.3) & =0.8 \\ 1-2 \times 0.6 & =-0.2 & -(1-0.2-2 \times 0.3) & =-0.2 \\ -2 \times 0.6 & =-1.2 & -(2-0.2-2 \times 0.3) & =-1.2\end{array}$

In conclusion the difference between $\mathbf{G}_{H W E}$ and $\mathbf{G}_{\text {NOIA }}$ lies only in their scaling and not in the contrasts used to calculate the elements of \mathbf{H}_{a}.

Literature Cited

1. Vitezica ZG, Legarra A, Toro MA, Varona L. Orthogonal Estimates of Variances for Additive, Dominance, and Epistatic Effects in Populations. Genetics. 2017;206:1297-307.
