Additional file 3: Equivalence of contrasts used to construct **H**_a for HWE and NOIA genomic relationship matrices

Genomic dissection of maternal, additive and nonadditive genetic effects for growth and carcass traits in Nile tilapia

R Joshi, THE Meuwissen, JA Woolliams and HM Gjøen

Let x_{ij} be the count of an arbitrarily chosen alternative allele for locus j (j = 1 ... m) in individual *i* (i = 1 ... n) so that $x_{ij} = 0$, 1 or 2. Following the notation of [1], the genomic relationship matrices for additive effects are constructed from contrasts h_a to give coefficients $h_a[i, j]$ for each locus for each individual and the $h_a[i, j]$ form an $n \ge m$ matrix H_a . G is then calculated as

$$\mathbf{G}_{\text{NOIA}} = [tr(\mathbf{H}_{a}\mathbf{H}_{a}^{\text{T}})/n]^{-1}\mathbf{H}_{a}\mathbf{H}_{a}^{\text{T}}$$
$$\mathbf{G}_{\text{HWE}} = [2\sum_{j=1}^{m} p_{j}(1-p_{j})]^{-1}\mathbf{H}_{a}\mathbf{H}_{a}^{\text{T}}$$

For HWE the $h_a[i, j]$ coefficients are commonly used and are given in [1] (un-numbered equation on page number 1299) as:

Genotype	Coefficient	
AA	$2 - 2p_{j}$	
Aa	$1 - 2p_{j}$	 [S2.1]
aa	$-2p_j$	

Note that in the text of [1], $p_j = p_A$ and for comparison we continue to use both subscript j and subscript A as in [1].

For NOIA the $h_a[i, j]$ coefficients are given in [1] in their Equation 1 as:

Genotype Coefficient

AA

 $-(-p_{Aa} - 2p_{aa}) -(1 - p_{Aa} - 2p_{aa}) -(2 - p_{Aa} - 2p_{aa})$ [S2.2] Aa

aa

These are equivalent forms. The allele frequencies can also be calculated from the genotype frequencies by: $p_j = p_A = p_{AA} + \frac{1}{2}p_{Aa}$ and $p_a = 1 - p_j = p_{aa} + \frac{1}{2}p_{Aa}$. Substituting these into

S2.2 gives S2.1 as shown below.

Genotype	Coefficient
AA	$-(-p_{Aa}-2p_{aa}) = p_{Aa}+2p_{aa} = 2p_a = 2(1-p_j) = 2-2p_j$
Aa	$-(1-p_{Aa}-2p_{aa}) = p_{Aa}+2p_{aa}-1 = 2p_a-1 = 2(1-p_j)-1 = 1-2p_j$
aa	$-(2 - p_{Aa} - 2p_{aa}) = p_{Aa} + 2p_{aa} - 2 = 2p_a - 2 = 2(1 - p_j) - 2 = -2p_j$

Example. Let $p_{aa} = 0.3$, $p_{Aa} = 0.2$ and $p_{AA} = 0.5$; so $p_A = p_j = 0.6$ and $p_a = 0.4$. The locus is not in HWE as $2p_Ap_a = 0.48 \neq p_{Aa}$. Then the coefficients are as follows:

Genotype	From S2.1		From S2.2	
AA	$2 - 2 \times 0.6$	= 0.8	-(-0.2 – 2 x 0.3)	= 0.8
Aa	1 – 2 x 0.6	= -0.2	-(1 – 0.2 – 2 x 0.3)	= -0.2
aa	- 2 x 0.6	= -1.2	-(2 – 0.2 – 2 x 0.3)	= -1.2

In conclusion the difference between \mathbf{G}_{HWE} and \mathbf{G}_{NOIA} lies only in their scaling and not in the contrasts used to calculate the elements of \mathbf{H}_{a} .

Literature Cited

1. Vitezica ZG, Legarra A, Toro MA, Varona L. Orthogonal Estimates of Variances for Additive, Dominance, and Epistatic Effects in Populations. Genetics. 2017;206:1297–307.